1
|
Duclos KK, Grünbaum T, Angers B, Cloutier R, Jamniczky HA. Topological and variational modularity: A case study using the pectoral girdle across the Chrosomus eos-neogaeus hybridization complex. Anat Rec (Hoboken) 2025. [PMID: 40275719 DOI: 10.1002/ar.25666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025]
Abstract
Modularity and integration are key developmental properties and have remained central in evo-devo research because of how they relate to evolvability. While modularity and integration have commonly been assessed with landmark-based geometric morphometrics (GMM), other methods such as anatomical network analysis (AnNA) are increasingly being explored. Nonetheless, AnNA has seldom been used to assess variability within taxa, and there have been no attempts to verify whether its results are commensurate with GMM. We used the pectoral girdle of members of the Chrosomus eos-neogaeus hybridization complex as a case study system to assess differences between AnNA and GMM-based approaches and discuss how they should be best used. The general anatomy and composition of the pectoral girdle do not vary much within the complex; however, bones within the pectoral girdle show significant diversity in morphology and in the presence of sutures. Indeed, C. neogaeus displays characteristically enlarged coracoids and radials, and bone fusion between the cleithra, coracoids, and radials, while C. eos displays a gracile and unfused pectoral girdle. Hybrids display morphologies that are distinct from both parental species. AnNA detected multiple potential patterns of modularity, and GMM supported similar patterns of modularity across the complex but suggested different trajectories of morphological variation. Altogether, AnNA can be a valuable tool to formulate novel hypotheses in understudied taxa, which may then be tested using GMM, but careful morphological descriptions of skeletal systems are a valuable addition to the interpretation of both AnNA and GMM approaches.
Collapse
Affiliation(s)
- Kevin K Duclos
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Thomas Grünbaum
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Canada
| | - Bernard Angers
- Département de Sciences Biologiques, Université de Montréal, Montreal, Canada
| | - Richard Cloutier
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Canada
| | | |
Collapse
|
2
|
Fratani J, Fontanarrosa G, Duport-Bru AS, Russell A. Exploring the Influence of Neomorphic Gekkotan Paraphalanges on Limb Modularity and Integration. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2025; 344:14-28. [PMID: 39221754 DOI: 10.1002/jez.b.23275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/29/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Digital specializations of geckos are widely associated with their climbing abilities. A recurring feature that has independently emerged within the sister families Gekkonidae and Phyllodactylidae is the presence of neomorphic paraphalanges (PPEs), usually paired, paraxial skeletal structures lying adjacent to interphalangeal and metapodial-phalangeal joints. The incorporation of PPEs into gekkotan autopodia has the potential to modify the modularity and integration of the ancestral limb pattern by affecting information flow among skeletal limb parts. Here we explore the influence of PPEs on limb organization using anatomical networks. We modeled the fore- and hindlimbs in species ancestrally devoid of PPEs (Iguana iguana and Gekko gecko) and paraphalanx-bearing species (Hemidactylus mabouia and Uroplatus fimbriatus). To further clarify the impact of PPEs we also expunged PPEs from paraphalanx-bearing network models. We found that PPEs significantly increase modularity, giving rise to tightly integrated sub-modules along the digits, suggesting functional specialization. Species-specific singularities also emerged, such as the trade-off between the presence of PPEs favoring modularity (along the proximodistal axis) and the interdigital webbing favoring integration (across the lateromedial axis) in the limbs of U. fimbriatus. The PPEs are characterized by low connectivity compared with other skeletal elements; nevertheless, this varies based on their specific location and seemingly reflects developmental constraints. Our results also highlight the importance of the fifth metatarsal in generating a shift in lepidosaurian hindlimb polarity that contrasts with the more symmetrical bauplan of tetrapods. Our findings support extensive modification of the autopodial system in association with the addition of the neomorphic and intriguing PPEs.
Collapse
Affiliation(s)
- Jessica Fratani
- Unidad Ejecutora Lillo (UEL), CONICET-Fundación Miguel Lillo, San Miguel, Tucumán, Argentina
| | - Gabriela Fontanarrosa
- Instituto de Biodiversidad Neotropical (IBN), CONICET-UNT, Yerba Buena, Tucumán, Argentina
| | - Ana Sofía Duport-Bru
- Instituto de Biodiversidad Neotropical (IBN), CONICET-UNT, Yerba Buena, Tucumán, Argentina
- Facultad de Ciencias Naturales e IML, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Anthony Russell
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Carril J, De Mendoza RS, Degrange FJ, Barbeito CG, Tambussi CP. Evolution of avian foot morphology through anatomical network analysis. Nat Commun 2024; 15:9888. [PMID: 39543214 PMCID: PMC11564758 DOI: 10.1038/s41467-024-54297-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
Avian evolution led to morphological adaptive variations in feet. Diverse foot types are accompanied by a diverse muscle system, allowing birds to adopt different primary lifestyles, and to display various locomotor and manipulative skills. We provide insights of evolutionary and functional significance on the avian foot architecture through Anatomical Network Analysis, a methodology focused on connectivity patterns of anatomical parts. Here, we show that: (1) anatomical parts largely conserved in living birds and already present in ancestral dinosaurs exhibit the highest connectivity degree, (2) there is no link between the more complex foot networks and the ability to perform more specialized skills or a higher number of different tasks, (3) there is a trend towards the simplification of foot networks on a macroevolutionary scale within birds, and (4) foot networks are phylogenetically constrained and conserved in all birds despite their foot type diversity, probably due to stabilizing selection.
Collapse
Affiliation(s)
- Julieta Carril
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina.
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Av. 60 y 118, Buenos Aires, 1900, Argentina.
| | - Ricardo S De Mendoza
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Av. 60 y 118, Buenos Aires, 1900, Argentina
| | - Federico J Degrange
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Universidad Nacional de Córdoba-CONICET, Ing. Ismael Bordabehere y Av. Haya de la Torre, Córdoba, 5016, Argentina
| | - Claudio G Barbeito
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Av. 60 y 118, Buenos Aires, 1900, Argentina
| | - Claudia P Tambussi
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Universidad Nacional de Córdoba-CONICET, Ing. Ismael Bordabehere y Av. Haya de la Torre, Córdoba, 5016, Argentina
| |
Collapse
|
4
|
Miller E, Lee HW, Abzhanov A, Evers SW. The topological organization of the turtle cranium is constrained and conserved over long evolutionary timescales. Anat Rec (Hoboken) 2024; 307:2713-2748. [PMID: 38102921 DOI: 10.1002/ar.25356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
The cranium of turtles (Testudines) is characterized by the secondary reduction of temporal fenestrae and loss of cranial joints (i.e., characteristics of anapsid, akinetic skulls). Evolution and ontogeny of the turtle cranium are associated with shape changes. Cranial shape variation among Testudines can partially be explained by dietary and functional adaptations (neck retraction), but it is unclear if cranial topology shows similar ecomorphological signal, or if it is decoupled from shape evolution. We assess the topological arrangement of cranial bones (i.e., number, relative positioning, connections), using anatomical network analysis. Non-shelled stem turtles have similar cranial arrangements to archosauromorph outgroups. Shelled turtles (Testudinata) evolve a unique cranial organization that is associated with bone losses (e.g., supratemporal, lacrimal, ectopterygoid) and an increase in complexity (i.e., densely and highly interconnected skulls with low path lengths between bones), resulting from the closure of skull openings and establishment of unusual connections such as a parietal-pterygoid contact in the secondary braincase. Topological changes evolutionarily predate many shape changes. Topological variation and taxonomic morphospace discrimination among crown turtles are low, indicating that cranial topology may be constrained. Observed variation results from repeated losses of nonintegral bones (i.e., premaxilla, nasal, epipterygoid, quadratojugal), and changes in temporal emarginations and palate construction. We observe only minor ontogenetic changes. Topology is not influenced by diet and habitat, contrasting cranial shape. Our results indicate that turtles have a unique cranial topology among reptiles that is conserved after its initial establishment, and shows that cranial topology and shape have different evolutionary histories.
Collapse
Affiliation(s)
- Eve Miller
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Berkshire, UK
- Natural History Museum, London, UK
| | - Hiu Wai Lee
- Department of Earth Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Arkhat Abzhanov
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Berkshire, UK
- Natural History Museum, London, UK
| | - Serjoscha W Evers
- Department of Geosciences, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
5
|
Krahl A, Werneburg I. Deep-time invention and hydrodynamic convergences through amniote flipper evolution. Anat Rec (Hoboken) 2022; 306:1323-1355. [PMID: 36458511 DOI: 10.1002/ar.25119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/15/2022] [Accepted: 10/25/2022] [Indexed: 12/04/2022]
Abstract
The diapsid plesiosaurs were pelagic and inhabited the oceans from the Triassic to the Cretaceous. A key evolutionary character of plesiosaurs is the four wing-like flippers. While it is mostly accepted that plesiosaurs were underwater fliers like marine turtles, penguins, and maybe whales, other swimming styles have been suggested in the past. These are rowing and a combination of rowing and underwater flight (e.g., pig-nosed turtle, sea lion). Underwater fliers use lift in contrast to rowers that employ drag. For efficiently profiting of lift during underwater flying, it is necessary that plesiosaurs twisted their flippers by muscular activity. To research the evolution of flipper twisting in plesiosaurs and functionally analogous taxa, including turtles, we used anatomical network analysis (AnNA) and reassessed distal flipper muscle functions. We coded bone-to-bone and additionally muscle-to-bone contacts in N × N matrices for foreflippers of the plesiosaur, the loggerhead sea turtle, the pig-nosed turtle, the African penguin, the California sea lion, and the humpback whale based on literature data. In "R," "igraph" was run by using a walktrap algorithm to obtain morphofunctional modules. AnNA revealed that muscle-to-bone contacts are needed to detect contributions of modules to flipper motions, whereas only-bone matrices are not informative for that. Furthermore, the plesiosaur, the marine turtles, the seal, and the penguin flipper twisting mechanisms, but the penguin cannot actively twist the flipper trailing edge. Finally, the foreflipper of the pig-nosed turtle and of the whale is not actively twisted during swimming.
Collapse
Affiliation(s)
- Anna Krahl
- Paläontologische Sammlung, Fachbereich Geowissenschaften der Universität Tübingen, Tübingen, Germany
| | - Ingmar Werneburg
- Paläontologische Sammlung, Fachbereich Geowissenschaften der Universität Tübingen, Tübingen, Germany.,Senckenberg Center for Human Evolution and Palaeoenvironment an der Universität Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Rawson JRG, Esteve-Altava B, Porro LB, Dutel H, Rayfield EJ. Early tetrapod cranial evolution is characterized by increased complexity, constraint, and an offset from fin-limb evolution. SCIENCE ADVANCES 2022; 8:eadc8875. [PMID: 36083907 PMCID: PMC9462696 DOI: 10.1126/sciadv.adc8875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The developmental underpinnings and functional consequences of modifications to the limbs during the origin of the tetrapod body plan are increasingly well characterized, but less is understood about the evolution of the tetrapod skull. Decrease in skull bone number has been hypothesized to promote morphological and functional diversification in vertebrate clades, but its impact during the initial rise of tetrapods is unknown. Here, we test this by quantifying topological changes to cranial anatomy in fossil and living taxa bracketing the fin-to-limb transition using anatomical network analysis. We find that bone loss across the origin of tetrapods is associated not only with increased complexity of bone-to-bone contacts but also with decreasing topological diversity throughout the late Paleozoic, which may be related to developmental and/or mechanical constraints. We also uncover a 10-Ma offset between fin-limb and cranial morphological evolution, suggesting that different evolutionary drivers affected these features during the origin of tetrapods.
Collapse
Affiliation(s)
| | - Borja Esteve-Altava
- Institut de Biologia Evolutiva, Departament de Ciències Experimentals i la Salud, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laura B. Porro
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Hugo Dutel
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
- Department of Engineering, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Emily J. Rayfield
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| |
Collapse
|
7
|
Strong CRC, Scherz MD, Caldwell MW. Convergence, divergence, and macroevolutionary constraint as revealed by anatomical network analysis of the squamate skull, with an emphasis on snakes. Sci Rep 2022; 12:14469. [PMID: 36008512 PMCID: PMC9411180 DOI: 10.1038/s41598-022-18649-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/17/2022] [Indexed: 11/08/2022] Open
Abstract
Traditionally considered the earliest-diverging group of snakes, scolecophidians are central to major evolutionary paradigms regarding squamate feeding mechanisms and the ecological origins of snakes. However, quantitative analyses of these phenomena remain scarce. Herein, we therefore assess skull modularity in squamates via anatomical network analysis, focusing on the interplay between 'microstomy' (small-gaped feeding), fossoriality, and miniaturization in scolecophidians. Our analyses reveal distinctive patterns of jaw connectivity across purported 'microstomatans', thus supporting a more complex scenario of jaw evolution than traditionally portrayed. We also find that fossoriality and miniaturization each define a similar region of topospace (i.e., connectivity-based morphospace), with their combined influence imposing further evolutionary constraint on skull architecture. These results ultimately indicate convergence among scolecophidians, refuting widespread perspectives of these snakes as fundamentally plesiomorphic and morphologically homogeneous. This network-based examination of skull modularity-the first of its kind for snakes, and one of the first to analyze squamates-thus provides key insights into macroevolutionary trends among squamates, with particular implications for snake origins and evolution.
Collapse
Affiliation(s)
- Catherine R C Strong
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.
| | - Mark D Scherz
- Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen Ø, Denmark
| | - Michael W Caldwell
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
De Mendoza RS, Carril J, Degrange FJ, Demmel Ferreira MM, Nieto MN, Tambussi CP. Redefining the simplicity of the craniomandibular complex of nightjars: The case of Systellura longirostris (Aves: Caprimulgidae) by means of anatomical network analysis. J Morphol 2022; 283:945-955. [PMID: 35621367 DOI: 10.1002/jmor.21482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/28/2022] [Accepted: 05/08/2022] [Indexed: 11/09/2022]
Abstract
To study morphological evolution, it is necessary to combine information from multiple intersecting research fields. Here, we report on the structure of the bony and muscular elements of the craniomandibular complex of birds, highlighting its morphological architecture and complexity (or simplification) in the context of anatomical networks of the Band-winged Nightjar Systellura longirostris (Caprimulgiformes, Caprimulgidae). This species has skull osteology and jaw myology that departs from the general structural plan of the craniomandibular complex of Neornithes and is considered morphologically simple. Our goal is to test if its simplification is also reflected in its anatomical network, particularly in those parameters that measure complexity and to explore if the distribution of the networks in a phylomorphospace is conditioned by their evolutionary history or by convergence. Our results show that S. longirostris clusters with other Strisores and momotids and is segregated from the other bird species analyzed when plotted in the phylomorphospace, as a consequence of convergence in the network parameters. Systellura has a craniomandibular complex consisting of fewer muscles connecting more bones than the model species (e.g., the rock pigeon or the guira cuckoo). In this sense, Systellura is actually more complex regarding the number of integrative bony parts, while its craniomandibular complex is simpler. According to its anatomical network, Systellura also can be interpreted as less complex, particularly compared with other Strisores and taxa that reflect the general structure of the craniomandibular complex in Neornithes.
Collapse
Affiliation(s)
- Ricardo S De Mendoza
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Julieta Carril
- Laboratorio de Histología y Embriología Descriptiva, Experimental y Comparada (LHYEDEC), Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Federico J Degrange
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Universidad Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María M Demmel Ferreira
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Universidad Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Mauro N Nieto
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Universidad Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Claudia P Tambussi
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Universidad Nacional de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
9
|
Buono MR, Vlachos E. Breaking the mold: telescoping drives the evolution of more integrated and heterogeneous skulls in cetaceans. PeerJ 2022; 10:e13392. [PMID: 35539009 PMCID: PMC9080436 DOI: 10.7717/peerj.13392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/16/2022] [Indexed: 01/14/2023] Open
Abstract
Background Along with the transition to the aquatic environment, cetaceans experienced profound changes in their skeletal anatomy, especially in the skull, including the posterodorsal migration of the external bony nares, the reorganization of skull bones (= telescoping) and the development of an extreme cranial asymmetry (in odontocetes). Telescoping represents an important anatomical shift in the topological organization of cranial bones and their sutural contacts; however, the impact of these changes in the connectivity pattern and integration of the skull has never been addressed. Methods Here, we apply the novel framework provided by the Anatomical Network Analysis to quantify the organization and integration of cetacean skulls, and the impact of the telescoping process in the connectivity pattern of the skull. We built anatomical networks for 21 cetacean skulls (three stem cetaceans, three extinct and 10 extant mysticetes, and three extinct and two extant odontocetes) and estimated network parameters related to their anatomical integration, complexity, heterogeneity, and modularity. This dataset was analyzed in the context of a broader tetrapod skull sample as well (43 species of 13 taxonomic groups). Results The skulls of crown cetaceans (Neoceti) occupy a new tetrapod skull morphospace, with better integrated, more heterogeneous and simpler skulls in comparison to other tetrapods. Telescoping adds connections and improves the integration of those bones involved in the telescoping process (e.g., maxilla, supraoccipital) as well as other ones (e.g., vomer) not directly affected by telescoping. Other underlying evolutionary processes (such as basicranial specializations linked with hearing/breathing adaptations) could also be responsible for the changes in the connectivity and integration of palatal bones. We also find prograde telescoped skulls of mysticetes distinct from odontocetes by an increased heterogeneity and modularity, whereas retrograde telescoped skulls of odontocetes are characterized by higher complexity. In mysticetes, as expected, the supraoccipital gains importance and centrality in comparison to odontocetes, increasing the heterogeneity of the skull network. In odontocetes, an increase in the number of connections and complexity is probably linked with the dominant movement of paired bones, such as the maxilla, in retrograde telescoping. Crown mysticetes (Eubalaena, Caperea, Piscobalaena, and Balaenoptera)are distinguished by having more integrated skulls in comparison to stem mysticetes (Aetiocetus and Yamatocetus), whereas crown odontocetes (Waipatia, Notocetus, Physeter, and Tursiops) have more complex skulls than stem forms (Albertocetus). Telescoping along with feeding, hearing and echolocation specializations could have driven the evolution of the different connectivity patterns of living lineages.
Collapse
Affiliation(s)
- Mónica R. Buono
- Instituto Patagónico de Geología y Paleontología, CCT CONICET-CENPAT, Puerto Madryn, Chubut, Argentina
| | - Evangelos Vlachos
- CONICET and Museo Paleontológico Egidio Feruglio, Trelew, Chubut, Argentina
| |
Collapse
|
10
|
Connectivity Patterns of the Hindlimb Musculoskeletal System in Living and Fossil Diving Birds. Evol Biol 2022. [DOI: 10.1007/s11692-022-09568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Cranial Anatomical Integration and Disparity Among Bones Discriminate Between Primates and Non-primate Mammals. Evol Biol 2021. [DOI: 10.1007/s11692-021-09555-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractThe primate skull hosts a unique combination of anatomical features among mammals, such as a short face, wide orbits, and big braincase. Together with a trend to fuse bones in late development, these features define the anatomical organization of the skull of primates—which bones articulate to each other and the pattern this creates. Here, I quantified the anatomical organization of the skull of 17 primates and 15 non-primate mammals using anatomical network analysis to assess how the skulls of primates have diverged from those of other mammals, and whether their anatomical differences coevolved with brain size. Results show that primates have a greater anatomical integration of their skulls and a greater disparity among bones than other non-primate mammals. Brain size seems to contribute in part to this difference, but its true effect could not be conclusively proven. This supports the hypothesis that primates have a distinct anatomical organization of the skull, but whether this is related to their larger brains remains an open question.
Collapse
|
12
|
Adrian B, Smith HF, Hutchison JH, Townsend KEB. Geometric morphometrics and anatomical network analyses reveal ecospace partitioning among geoemydid turtles from the Uinta Formation, Utah. Anat Rec (Hoboken) 2021; 305:1359-1393. [PMID: 34605614 DOI: 10.1002/ar.24792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 01/13/2023]
Abstract
We present new fossil records of the geoemydid turtle Bridgeremys pusilla from the Uinta Formation of Utah. Turtles are abundant throughout the unit, and known taxa are similar to those from the older strata in the Upper Green River Basin in Wyoming from the Bridger and Washakie Formations. B. pusilla is known from Bridgerian deposits but was not previously known from after the Turtle Bluff Member of the Bridger Formation. The taxon was coveal with two species of the geoemydid Echmatemys (E. callopyge and E. wyomingensis), a common genus of extinct pond turtles known primarily from lacustrine and fluvial deposits in western North America, including the Uinta Basin. In addition to previously documented morphological differences, our geometric morphometric analyses revealed significant differences in epiplastral morphology between B. pusilla and the two coeval Echmatemys species. Bridgeremys pusilla shared several morphological characters with Testudinidae. However, our anatomical network analysis suggests that the carapace of B. pusilla distributed stress forces in a manner more similar to emydids (basal and derived) than to derived testudinoids (Testudinidae and Emydidae), including Echmatemys species. This finding changes our understanding of the ecology of the species and sheds light onto how geoemydid turtles of the Uinta Formation may have partitioned the available ecospace. These new Uintan records extend the geographic range of B. pusilla into the Uinta Basin and stratigraphically through the top of the Uinta Formation, extending the temporal range of the taxon by more than 4 million years through the Uintan North American Land Mammal Age to the base of the Duchesne River Formation.
Collapse
Affiliation(s)
- Brent Adrian
- Department of Anatomy, Midwestern University, Glendale, Arizona, USA
| | - Heather F Smith
- Department of Anatomy, Midwestern University, Glendale, Arizona, USA.,School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA
| | - J Howard Hutchison
- University of California Museum of Paleontology, University of California, Berkeley, Berkeley, California, USA
| | - K E Beth Townsend
- Department of Anatomy, Midwestern University, Glendale, Arizona, USA
| |
Collapse
|
13
|
Vlachos E. A modularity analysis helps improving the structure of the International Code of Zoological Nomenclature. PeerJ 2021; 9:e10815. [PMID: 33665017 PMCID: PMC7908869 DOI: 10.7717/peerj.10815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/30/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND In a recent work I transformed a complex and integrated text like the International Code of Zoological Nomenclature into a network of interconnected parts of text. This new approach allowed understanding that a continuous body of text cannot accurately reflect the true structure of the Code, and provided a scientific methodology to identify a priori parts that could be affected by future revisions. In this next step, I investigate further the structure of the Code, seeking to use the network in order to identify the various conceptual communities grouping the various articles and other text items of the Code. METHODS Using the first version of the network of the Code, I perform a comprehensive modularity analysis in two rounds: the first round aims to identify the fewest and largest communities or modules for the entire network, whereas the second round identifies the sub-modules within each larger module. The potential conflicts between the current structure of the Code and the module composition are evaluated with a parcellation analysis. RESULTS The optimal modularity search identified 10 different modules in the entire network of varying size (ranging from 75 to 200 nodes). Each module can be further divided into smaller modules, that all-together allow describing the 65 conceptual groups of text items in the Code. Parcellation analysis revealed that two-thirds of the current chapters of the Code are in excellent or good accordance with the recovered conceptual modules, whereas the current composition of six chapters is in serious conflict with the conceptual structure of the Code. DISCUSSION Judging only the composition and not the order of appearance of the Articles in the Chapters of the Code, I show that in many cases the current structure of the Code is found to correspond quite well to the concepts presented therein. The most important conflict is found on the provisions related to the various groups of names governed by the Code: family-, genus-, and species-group names. Currently, these provisions are spread out in different Articles in different Chapters, along the entire length of the Code. The modularity analysis suggests that re-organizing the Code in chapters that will deal with all aspects related to a given group (e.g., chapters including information on name formation, availability, typification, and validity for a given group), could potentially improve reader experience and, consequently, the applicability of the Code.
Collapse
Affiliation(s)
- Evangelos Vlachos
- CONICET and Museo Paleontologico Egidio Feruglio, Trelew, Chubut, Argentina
| |
Collapse
|
14
|
Esteve-Altava B. A node-based informed modularity strategy to identify organizational modules in anatomical networks. Biol Open 2020; 9:9/10/bio056176. [PMID: 33077552 PMCID: PMC7595689 DOI: 10.1242/bio.056176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The study of morphological modularity using anatomical networks is growing in recent years. A common strategy to find the best network partition uses community detection algorithms that optimize the modularity Q function. Because anatomical networks and their modules tend to be small, this strategy often produces two problems. One is that some algorithms find inexplicable different modules when one inputs slightly different networks. The other is that algorithms find asymmetric modules in otherwise symmetric networks. These problems have discouraged researchers to use anatomical network analysis and boost criticisms to this methodology. Here, I propose a node-based informed modularity strategy (NIMS) to identify modules in anatomical networks that bypass resolution and sensitivity limitations by using a bottom-up approach. Starting with the local modularity around every individual node, NIMS returns the modular organization of the network by merging non-redundant modules and assessing their intersection statistically using combinatorial theory. Instead of acting as a black box, NIMS allows researchers to make informed decisions about whether to merge non-redundant modules. NIMS returns network modules that are robust to minor variation and does not require optimization of a global modularity function. NIMS may prove useful to identify modules also in small ecological and social networks. Summary: A new method to identify modules in anatomical networks without optimization and statistically assess their degree of overlap. This method will assist researchers in identifying meaningful biological modules.
Collapse
Affiliation(s)
- Borja Esteve-Altava
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Doctor Aigüader 88, 08003 Barcelona, Spain
| |
Collapse
|
15
|
Lee HW, Esteve-Altava B, Abzhanov A. Evolutionary and ontogenetic changes of the anatomical organization and modularity in the skull of archosaurs. Sci Rep 2020; 10:16138. [PMID: 32999389 PMCID: PMC7528100 DOI: 10.1038/s41598-020-73083-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Comparative anatomy studies of the skull of archosaurs provide insights on the mechanisms of evolution for the morphologically and functionally diverse species of crocodiles and birds. One of the key attributes of skull evolution is the anatomical changes associated with the physical arrangement of cranial bones. Here, we compare the changes in anatomical organization and modularity of the skull of extinct and extant archosaurs using an Anatomical Network Analysis approach. We show that the number of bones, their topological arrangement, and modular organization can discriminate birds from non-avian dinosaurs, and crurotarsans. We could also discriminate extant taxa from extinct species when adult birds were included. By comparing within the same framework, juveniles and adults for crown birds and alligator (Alligator mississippiensis), we find that adult and juvenile alligator skulls are topologically similar, whereas juvenile bird skulls have a morphological complexity and anisomerism more similar to those of non-avian dinosaurs and crurotarsans than of their own adult forms. Clade-specific ontogenetic differences in skull organization, such as extensive postnatal fusion of cranial bones in crown birds, can explain this pattern. The fact that juvenile and adult skulls in birds do share a similar anatomical integration suggests the presence of a specific constraint to their ontogenetic growth.
Collapse
Affiliation(s)
- Hiu Wai Lee
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, Berkshire, UK
- Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Borja Esteve-Altava
- Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain.
| | - Arhat Abzhanov
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, Berkshire, UK.
- Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| |
Collapse
|
16
|
Fernández MS, Vlachos E, Buono MR, Alzugaray L, Campos L, Sterli J, Herrera Y, Paolucci F. Fingers zipped up or baby mittens? Two main tetrapod strategies to return to the sea. Biol Lett 2020; 16:20200281. [PMID: 32750267 DOI: 10.1098/rsbl.2020.0281] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The application of network methodology in anatomical structures offers new insights on the connectivity pattern of skull bones, skeletal elements and their muscles. Anatomical networks helped to improve our understanding of the water-to-land transition and how the pectoral fins were transformed into limbs via their modular disintegration. Here, we apply the same methodology to tetrapods secondarily adapted to the marine environment. We find that these animals achieved their return to the sea with four types of morphological changes, which can be grouped into two different main strategies. In all marine mammals and the majority of the reptiles, the fin is formed by the persistence of superficial and interdigital connective tissues, like a 'baby mitten', whereas the underlying connectivity pattern of the bones does not influence the formation of the forefin. On the contrary, ichthyosaurs 'zipped up' their fingers and transformed their digits into carpal-like elements, forming a homogeneous and better-integrated forefin. These strategies led these vertebrates into three different macroevolutionary paths exploring the possible spectrum of morphological adaptations.
Collapse
Affiliation(s)
- Marta S Fernández
- CONICET - División Paleontología Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, B1900AVW La Plata, Argentina
| | - Evangelos Vlachos
- CONICET - Museo Paleontológico Egidio Feruglio, Av. Fontana 140, 9100 Trelew, Chubut, Argentina
| | - Mónica R Buono
- Instituto Patagónico de Geología y Paleontología, CCT CONICET-CENPAT, Bvd. Brown 2915, U9120ACD Puerto Madryn, Chubut, Argentina
| | - Lucia Alzugaray
- Instituto Patagónico de Geología y Paleontología, CCT CONICET-CENPAT, Bvd. Brown 2915, U9120ACD Puerto Madryn, Chubut, Argentina
| | - Lisandro Campos
- CONICET - División Paleontología Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, B1900AVW La Plata, Argentina
| | - Juliana Sterli
- CONICET - Museo Paleontológico Egidio Feruglio, Av. Fontana 140, 9100 Trelew, Chubut, Argentina
| | - Yanina Herrera
- CONICET - División Paleontología Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, B1900AVW La Plata, Argentina
| | - Florencia Paolucci
- CONICET - División Paleontología Vertebrados, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, B1900AVW La Plata, Argentina
| |
Collapse
|
17
|
Plateau O, Foth C. Birds have peramorphic skulls, too: anatomical network analyses reveal oppositional heterochronies in avian skull evolution. Commun Biol 2020; 3:195. [PMID: 32332847 PMCID: PMC7181600 DOI: 10.1038/s42003-020-0914-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
In contrast to the vast majority of reptiles, the skulls of adult crown birds are characterized by a high degree of integration due to bone fusion, e.g., an ontogenetic event generating a net reduction in the number of bones. To understand this process in an evolutionary context, we investigate postnatal ontogenetic changes in the skulls of crown bird and non-avian theropods using anatomical network analysis (AnNA). Due to the greater number of bones and bone contacts, early juvenile crown birds have less integrated skulls, resembling their non-avian theropod ancestors, including Archaeopteryx lithographica and Ichthyornis dispars. Phylogenetic comparisons indicate that skull bone fusion and the resulting modular integration represent a peramorphosis (developmental exaggeration of the ancestral adult trait) that evolved late during avialan evolution, at the origin of crown-birds. Succeeding the general paedomorphic shape trend, the occurrence of an additional peramorphosis reflects the mosaic complexity of the avian skull evolution. Plateau and Foth use anatomical network analysis to study the evolution of avian skull anatomy. They report that the ontogenetic changes in the morphology and modularity of the avian skulls is comparable to evolutionary transformations from non-avian theropods to modern birds. Their work highlights the complexity of avian skull evolution.
Collapse
Affiliation(s)
- Olivia Plateau
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, CH-1700, Fribourg, Switzerland
| | - Christian Foth
- Department of Geosciences, University of Fribourg, Chemin du Musée 6, CH-1700, Fribourg, Switzerland.
| |
Collapse
|