1
|
Pustogow A, Kawasugi Y, Sakurakoji H, Tajima N. Chasing the spin gap through the phase diagram of a frustrated Mott insulator. Nat Commun 2023; 14:1960. [PMID: 37029139 PMCID: PMC10082190 DOI: 10.1038/s41467-023-37491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/16/2023] [Indexed: 04/09/2023] Open
Abstract
The quest for entangled spin excitations has stimulated intense research on frustrated magnetic systems. For almost two decades, the triangular-lattice Mott insulator κ-(BEDT-TTF)2Cu2(CN)3 has been one of the hottest candidates for a gapless quantum spin liquid with itinerant spinons. Very recently, however, this scenario was overturned as electron-spin-resonance (ESR) studies unveiled a spin gap, calling for reevaluation of the magnetic ground state. Here we achieve a precise mapping of this spin-gapped phase through the Mott transition by ultrahigh-resolution strain tuning. Our transport experiments reveal a reentrance of charge localization below T⋆ = 6 K associated with a gap size of 30-50 K. The negative slope of the insulator-metal boundary, dT⋆/dp < 0, evidences the low-entropy nature of the spin-singlet ground state. By tuning the enigmatic '6K anomaly' through the phase diagram of κ-(BEDT-TTF)2Cu2(CN)3, we identify it as the transition to a valence-bond-solid phase, in agreement with previous thermal expansion and magnetic resonance studies. This spin-gapped insulating state persists at T → 0 until unconventional superconductivity and metallic transport proliferate.
Collapse
Affiliation(s)
- A Pustogow
- Institute of Solid State Physics, TU Wien, 1040, Vienna, Austria.
| | - Y Kawasugi
- Department of Physics, Toho University, Funabashi, 274-8510, Chiba, Japan
- Condensed Molecular Materials Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan
| | - H Sakurakoji
- Department of Physics, Toho University, Funabashi, 274-8510, Chiba, Japan
| | - N Tajima
- Department of Physics, Toho University, Funabashi, 274-8510, Chiba, Japan
- Condensed Molecular Materials Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
2
|
Huang Y, Mitchell T, Zheng Y, Hu Y, Benedict JB, Seo JH, Ren S. Switching charge states in quasi-2D molecular conductors. PNAS NEXUS 2022; 1:pgac089. [PMID: 36741426 PMCID: PMC9896912 DOI: 10.1093/pnasnexus/pgac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/08/2022] [Indexed: 06/18/2023]
Abstract
2D molecular entities build next-generation electronic devices, where abundant elements of organic molecules are attractive due to the modern synthetic and stimuli control through chemical, conformational, and electronic modifications in electronics. Despite its promising potential, the insufficient control over charge states and electronic stabilities must be overcome in molecular electronic devices. Here, we show the reversible switching of modulated charge states in an exfoliatable 2D-layered molecular conductor based on bis(ethylenedithio)tetrathiafulvalene molecular dimers. The multiple stimuli application of cooling rate, current, voltage, and laser irradiation in a concurrent manner facilitates the controllable manipulation of charge crystal, glass, liquid, and metal phases. The four orders of magnitude switching of electric resistance are triggered by stimuli-responsive charge distribution among molecular dimers. The tunable charge transport in 2D molecular conductors reveals the kinetic process of charge configurations under stimuli, promising to add electric functions in molecular circuitry.
Collapse
Affiliation(s)
- Yulong Huang
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Travis Mitchell
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yixiong Zheng
- Department of Materials Design and Innovation, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yong Hu
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Jason B Benedict
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Jung-Hun Seo
- Department of Materials Design and Innovation, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | | |
Collapse
|
3
|
He T, Frisbie CD. Sub-Band Filling, Mott-like Transitions, and Ion Size Effects in C 60 Single Crystal Electric Double Layer Transistors. ACS NANO 2022; 16:4823-4830. [PMID: 35243860 DOI: 10.1021/acsnano.2c00222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electric double layer transistors (EDLTs) based on C60 single crystals and ionic liquid gates display pronounced peaks in sheet conductance versus gate-induced charge. Sheet conductance is maximized at electron densities near 0.5 e/C60 and is suppressed near 1 e/C60. The conductance suppression depends markedly on the choice of ionic liquid cation, with small cations favoring activated transport and essentially a complete shutdown of conductance at ∼1 e/C60 and larger cations favoring band-like transport, higher overall conductances at all charge densities up to 1.7 e/C60, and weaker suppression at 1 e/C60. Displacement current measurements on C60 EDLTs with small cations show clear evidence of sub-band filling at 1 e/C60, which correlates very well with the minimum in the C60 sheet conductance. Overall, the data suggest a significant Mott-Hubbard-like energy gap opens up in the surface density of states for C60 crystals gated with small cations. The causes of this energy gap may include both electron-electron repulsion and electron-cation attraction at the crystal/ionic liquid interface. The energy gap suppresses the insulator-to-metal transition in C60 EDLTs, but it can be manipulated by choice of electrolyte.
Collapse
Affiliation(s)
- Tao He
- State Key Laboratory of Crystal Materials, Shandong University, 250100, Jinan, Shandong, People's Republic of China
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Simultaneous Control of Bandfilling and Bandwidth in Electric Double-Layer Transistor Based on Organic Mott Insulator κ-(BEDT-TTF)2Cu[N(CN)2]Cl. CRYSTALS 2021. [DOI: 10.3390/cryst12010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The physics of quantum many-body systems have been studied using bulk correlated materials, and recently, moiré superlattices formed by atomic bilayers have appeared as a novel platform in which the carrier concentration and the band structures are highly tunable. In this brief review, we introduce an intermediate platform between those systems, namely, a band-filling- and bandwidth-tunable electric double-layer transistor based on a real organic Mott insulator κ-(BEDT-TTF)2Cu[N(CN)2]Cl. In the proximity of the bandwidth-control Mott transition at half filling, both electron and hole doping induced superconductivity (with almost identical transition temperatures) in the same sample. The normal state under electric double-layer doping exhibited non-Fermi liquid behaviors as in many correlated materials. The doping levels for the superconductivity and the non-Fermi liquid behaviors were highly doping-asymmetric. Model calculations based on the anisotropic triangular lattice explained many phenomena and the doping asymmetry, implying the importance of the noninteracting band structure (particularly the flat part of the band).
Collapse
|
5
|
Topological Doping and Superconductivity in Cuprates: An Experimental Perspective. Symmetry (Basel) 2021. [DOI: 10.3390/sym13122365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hole doping into a correlated antiferromagnet leads to topological stripe correlations, involving charge stripes that separate antiferromagnetic spin stripes of opposite phases. The topological spin stripe order causes the spin degrees of freedom within the charge stripes to feel a geometric frustration with their environment. In the case of cuprates, where the charge stripes have the character of a hole-doped two-leg spin ladder, with corresponding pairing correlations, anti-phase Josephson coupling across the spin stripes can lead to a pair-density-wave order in which the broken translation symmetry of the superconducting wave function is accommodated by pairs with finite momentum. This scenario is now experimentally verified by recently reported measurements on La2−xBaxCuO4 with x=1/8. While pair-density-wave order is not common as a cuprate ground state, it provides a basis for understanding the uniform d-wave order that is more typical in superconducting cuprates.
Collapse
|
6
|
Yamamoto HM. Phase-Transition Devices Based on Organic Mott Insulators. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hiroshi M. Yamamoto
- Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
- RIKEN, Wako, Saitama 351-0198, Japan
| |
Collapse
|
7
|
Electric Double Layer Doping of Charge-Ordered Insulators α-(BEDT-TTF)2I3 and α-(BETS)2I3. CRYSTALS 2021. [DOI: 10.3390/cryst11070791] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Field-effect transistors based on strongly correlated insulators are an excellent platform for studying the electronic phase transition and simultaneously developing phase transition transistors. Molecular conductors are suitable for phase transition transistors owing to the high tunability of the electronic states. Molecular Mott transistors show field-induced phase transitions including superconducting transitions. However, their application to charge-ordered insulators is limited. In this study, we fabricated electric double layer transistors based on quarter-filled charge-ordered insulators α-(BEDT-TTF)2I3 and α-(BETS)2I3. We observed ambipolar field effects in both compounds where both electron and hole doping (up to the order of 1013 cm−2) reduces the resistance by the band filling shift from the commensurate value. The maximum field-effect mobilities are approximately 10 and 55 cm2/Vs, and the gate-induced conductivities are 0.96 and 3.6 e2/h in α-(BEDT-TTF)2I3 and α-(BETS)2I3, respectively. However, gate-induced metallic conduction does not emerge. The gate voltage dependence of the activation energy in α-(BEDT-TTF)2I3 and the Hall resistance in α-(BETS)2I3 imply that the electric double layer doping in the present experimental setup induces hopping transport rather than band-like two-dimensional transport.
Collapse
|
8
|
Guo R, You L, Lin W, Abdelsamie A, Shu X, Zhou G, Chen S, Liu L, Yan X, Wang J, Chen J. Continuously controllable photoconductance in freestanding BiFeO 3 by the macroscopic flexoelectric effect. Nat Commun 2020; 11:2571. [PMID: 32444607 PMCID: PMC7244550 DOI: 10.1038/s41467-020-16465-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 05/05/2020] [Indexed: 11/09/2022] Open
Abstract
Flexoelectricity induced by the strain gradient is attracting much attention due to its potential applications in electronic devices. Here, by combining a tunable flexoelectric effect and the ferroelectric photovoltaic effect, we demonstrate the continuous tunability of photoconductance in BiFeO3 films. The BiFeO3 film epitaxially grown on SrTiO3 is transferred to a flexible substrate by dissolving a sacrificing layer. The tunable flexoelectricity is achieved by bending the flexible substrate which induces a nonuniform lattice distortion in BiFeO3 and thus influences the inversion asymmetry of the film. Multilevel conductance is thus realized through the coupling between flexoelectric and ferroelectric photovoltaic effect in freestanding BiFeO3. The strain gradient induced multilevel photoconductance shows very good reproducibility by bending the flexible BiFeO3 device. This control strategy offers an alternative degree of freedom to tailor the physical properties of flexible devices and thus provides a compelling toolbox for flexible materials in a wide range of applications.
Collapse
Affiliation(s)
- Rui Guo
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
- College of Electron and Information Engineering, Hebei University, Baoding, 071002, China
| | - Lu You
- Jiangsu Key Laboratory of Thin Films, School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
| | - Weinan Lin
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Amr Abdelsamie
- Department of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xinyu Shu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Guowei Zhou
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Shaohai Chen
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Liang Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Xiaobing Yan
- College of Electron and Information Engineering, Hebei University, Baoding, 071002, China.
| | - Junling Wang
- Department of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Jingsheng Chen
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore.
| |
Collapse
|
9
|
Abstract
A new superconducting field-effect transistor (FET) in the vicinity of bandwidth-controlled Mott transition was developed using molecular strongly correlated system κ-(BEDT-TTF)2Cu[N(CN)2]Br [BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene] laminated on CaF2 substrate. This device exhibited significant cooling-rate dependence of resistance below about 80 K, associated with glass transition of terminal ethylene group of BEDT-TTF molecule, where more rapid cooling through glass transition temperature leads to the decrease in bandwidth. We demonstrated that the FET properties such as ON/OFF ratio and polarity can be controlled by utilizing cooling rate. Our result may give a novel insight into the design of molecule-based functional devices.
Collapse
|