1
|
Herzig AF, Rubinacci S, Marenne G, Perdry H, Deleuze JF, Dina C, Barc J, Redon R, Delaneau O, Génin E. SURFBAT: a surrogate family based association test building on large imputation reference panels. G3 (BETHESDA, MD.) 2025; 15:jkae287. [PMID: 39657733 PMCID: PMC12005154 DOI: 10.1093/g3journal/jkae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/07/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024]
Abstract
Genotype-phenotype association tests are typically adjusted for population stratification using principal components that are estimated genome-wide. This lacks resolution when analyzing populations with fine structure and/or individuals with fine levels of admixture. This can affect power and precision, and is a particularly relevant consideration when control individuals are recruited using geographic selection criteria. Such is the case in France where we have recently created reference panels of individuals anchored to different geographic regions. To make correct comparisons against case groups, who would likely be gathered from large urban areas, new methods are needed. We present SURFBAT (a surrogate family based association test), which performs an approximation of the transmission-disequilibrium test. Our method hinges on the application of genotype imputation algorithms to match similar haplotypes between the case and control groups. This permits us to approximate local ancestry informed posterior probabilities of un-transmitted parental alleles of each case individual. This is achieved by assuming haplotypes from the imputation panel are well-matched for ancestry with the case individuals. When the first haplotype of an individual from the imputation panel matches that of a case individual, it is assumed that the second haplotype of the same reference individual can be used as a locally ancestry matched control haplotype and to approximately impute un-transmitted parental alleles. SURFBAT provides an association test that is inherently robust to fine-scale population stratification and opens up the possibility of efficiently using large imputation reference panels as control groups for association testing. In contrast to other methods for association testing that incorporate local-ancestry inference, SURFBAT does not require a set of ancestry groups to be defined, nor for local ancestry to be explicitly estimated. We demonstrate the interest of our tool on simulated datasets, as well as on a real-data example for a group of case individuals affected by Brugada syndrome.
Collapse
Affiliation(s)
- Anthony F Herzig
- Inserm, Université de Bretagne-Occidentale, EFS, UMR 1078, GGB, Brest F-29200, France
| | - Simone Rubinacci
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00290, Finland
| | - Gaëlle Marenne
- Inserm, Université de Bretagne-Occidentale, EFS, UMR 1078, GGB, Brest F-29200, France
| | - Hervé Perdry
- CESP Inserm U1018, Université Paris-Saclay, Villejuif F-94807, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry F-91000, France
- CEPH, Fondation Jean Dausset, Paris F-75010, France
| | - Christian Dina
- Nantes Université, CNRS, INSERM UMR 1087, L’Institut du Thorax, Nantes F-44000, France
| | - Julien Barc
- Nantes Université, CNRS, INSERM UMR 1087, L’Institut du Thorax, Nantes F-44000, France
| | - Richard Redon
- Nantes Université, CNRS, INSERM UMR 1087, L’Institut du Thorax, Nantes F-44000, France
| | | | - Emmanuelle Génin
- Inserm, Université de Bretagne-Occidentale, EFS, UMR 1078, GGB, Brest F-29200, France
- CHU Brest, Brest F-29200, France
| |
Collapse
|
2
|
Leu C, Avbersek A, Stevelink R, Custodio HM, Chen S, Speed D, Bennett CA, Jonsson L, Unnsteinsdóttir U, Jorgensen AL, Cavalleri GL, Delanty N, Craig JJ, Depondt C, Johnson MR, Koeleman BPC, Hassanin E, Omidvar ME, Krause R, Lerche H, Marson AG, O'Brien TJ, Sander JW, Sills GJ, Striano P, Zara F, Stefansson H, Stefansson K, May P, Neale BM, Lal D, Berkovic SF, Sisodiya SM. Genome-wide association meta-analyses of drug-resistant epilepsy. EBioMedicine 2025:105675. [PMID: 40240269 DOI: 10.1016/j.ebiom.2025.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Epilepsy is one of the most common neurological disorders, affecting over 50 million people worldwide. One-third of people with epilepsy do not respond to currently available anti-seizure medications, constituting one of the most important problems in epilepsy. Little is known about the molecular pathology of drug resistance in epilepsy, in particular, possible underlying genetic factors are largely unknown. METHODS We performed a genome-wide association study (GWAS) in two epilepsy cohorts of European ancestry, comparing drug-resistant (N = 4208) to drug-responsive individuals (N = 2618) followed by meta-analyses across the studies. Next, we performed subanalyses split into two broad subtypes: acquired or non-acquired focal and genetic generalized epilepsy. FINDINGS Our drug-resistant versus drug-responsive epilepsy GWAS meta-analysis showed no significant loci when combining all epilepsy types. Sub-analyses on individuals with focal epilepsy (FE) identified a significant locus on chromosome 1q42.11-q42.12 (lead SNP: rs35915186, P = 1·51 × 10-8, OR[C] = 0·74). This locus was not associated with any epilepsy subtype in the latest epilepsy GWAS (lowest uncorrected P = 0·009 for FE vs. healthy controls), and drug resistance in FE was not genetically correlated with susceptibility to FE itself. Seven genome-wide significant SNPs within this locus, encompassing the genes CNIH4, WDR26, and CNIH3, were identified to protect against drug-resistant FE. Further transcriptome-wide association studies (TWAS) imply significantly higher expression levels of CNIH3 and WDR26 in drug-resistant FE than in drug-responsive FE. CNIH3 is implicated in AMPA receptor assembly and function, while WDR26 haploinsufficiency is linked to intellectual disability and seizures. These findings suggest that CNIH3 and WDR26 may play a role in mediating drug response in focal epilepsy. INTERPRETATION We identified a contribution of common genetic variation to drug-resistant focal epilepsy. These findings provide insights into possible mechanisms underlying drug response variability in epilepsy, offering potential targets for personalised treatment approaches. FUNDING This work is part of the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 279062 (EpiPGX) and the Centers for Common Disease Genomics (CCDG) program, funded by the National Human Genome Research Institute (NHGRI) and the National Heart, Lung, and Blood Institute (NHLBI).
Collapse
Affiliation(s)
- Costin Leu
- Department of Neurology, McGovern Medical School, UTHealth Houston, Houston, TX, USA; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Andreja Avbersek
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire, UK
| | - Remi Stevelink
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Child Neurology, UMC Utrecht Brain Centers, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Helena Martins Custodio
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire, UK
| | - Siwei Chen
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Doug Speed
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Caitlin A Bennett
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Melbourne, Australia
| | - Lina Jonsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Andrea L Jorgensen
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland; FutureNeuro Research Centre, Science Foundation Ireland, Dublin, Ireland
| | - Norman Delanty
- FutureNeuro Research Centre, Science Foundation Ireland, Dublin, Ireland; Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - John J Craig
- Department of Neurology, Belfast Health and Social Care Trust, Belfast, UK
| | - Chantal Depondt
- Department of Neurology, CUB Erasmus Hospital, Free University of Brussels, University Hospital Brussels, Brussels, Belgium
| | - Michael R Johnson
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Bobby P C Koeleman
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Emadeldin Hassanin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg
| | - Maryam Erfanian Omidvar
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Roland Krause
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Anthony G Marson
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK; The Walton Centre NHS Foundation Trust, Liverpool, UK; Liverpool Health Partners, Liverpool, UK
| | - Terence J O'Brien
- Departments of Medicine and Neurology, Royal Melbourne Hospital, University of Melbourne, Parkville, Australia; Departments of Neuroscience and Neurology, The School of Translational Medicine, Monash University and the Alfred Hospital, Melbourne, Australia
| | - Josemir W Sander
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire, UK; Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands; Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Graeme J Sills
- School of Life Sciences, University of Glasgow, Glasgow, UK
| | - Pasquale Striano
- Paediatric Neurology and Muscular Diseases Unit, IRCCS "G. Gaslini" Institute, Genova, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy; Laboratory of Neurogenetics and Neuroscience, IRCCS "G. Gaslini" Institute, Genova, Italy
| | | | - Kari Stefansson
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Luxembourg
| | - Benjamin M Neale
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Dennis Lal
- Department of Neurology, McGovern Medical School, UTHealth Houston, Houston, TX, USA; Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Center of Neurogenetics, UTHealth Houston, TX, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA, USA
| | - Samuel F Berkovic
- Department of Medicine, Epilepsy Research Centre, Austin Health, University of Melbourne, Melbourne, Australia; Department of Neurology, Austin Health, Heidelberg, Australia
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Chalfont Centre for Epilepsy, Chalfont-St-Peter, Buckinghamshire, UK.
| |
Collapse
|
3
|
Sarno S, Piccini F, Abondio P, Cilli E, Kuyumdjian EM, Dimitrov NA, Dilov CD, De Fanti S, Ciani G, Gentilini D, Boattini A, Sazzini M, Pettener D, Luiselli D. The Genetic Variability of Present-Day Bulgarians Captures Ancient and Recent Ancestral Contributions. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 186:e70037. [PMID: 40202136 PMCID: PMC11980028 DOI: 10.1002/ajpa.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/14/2025] [Accepted: 03/09/2025] [Indexed: 04/10/2025]
Abstract
OBJECTIVES Thanks to its pivotal crossroad position, Bulgaria played a fundamental key role during all the migration processes that interested the continent through time. While the genetic variability of the country has been deeply investigated using uniparental markers, previous genome-wide autosomal-based surveys mainly consisted of wider-range analyzes on Europe and the whole Balkan Peninsula. Here, we specifically focused on the Bulgarian population to recapitulate the main patterns of genomic variation and the major events that shaped the present-day genetic landscape. METHODS A total of 112 samples from seven highly representative areas of present-day Bulgaria were collected and genotyped for approximately 720 K genome-wide SNPs, and integrated with previously generated genomic data from wide modern and ancient reference panels to explore fine-scale relationship patterns and detail ancestral contributions. RESULTS In addition to the combination of ancient ancestries related to the early Mesolithic hunter-gatherers, Neolithic farmers, and Bronze Age Steppe pastoralists, both haplotype-based analyzes on modern populations and the comparisons with ancient genomes suggest the contribution of population processes that have occurred after the Roman rule and during the Medieval period in shaping the current Bulgarian genetic pool. CONCLUSIONS Our results align with previous evidence highlighting the impact that some historical events may have had not only in contributing to the ethnical and socio-cultural richness of present-day populations, but also in participating in the formation of the current genomic landscape. By providing new data from modern highly-representative samples, this study integrates further research to provide a comprehensive overview of the genetic history of Bulgaria.
Collapse
Affiliation(s)
- Stefania Sarno
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Fedora Piccini
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Paolo Abondio
- Laboratory of Ancient DNA, Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Elisabetta Cilli
- Laboratory of Ancient DNA, Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | | | | | | | - Sara De Fanti
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Graziella Ciani
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Davide Gentilini
- Bioinformatics and Statistical Genetics Unit, Istituto Auxologico Italiano IRCCSMilanItaly
- Medical Statistics and Genetic Epidemiology Unit, Department of Brain and Behavioral SciencesUniversity of PaviaPaviaItaly
| | - Alessio Boattini
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Marco Sazzini
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
- Interdepartmental Centre Alma Mater Research Institute on Global Changes and Climate Change, University of BolognaBolognaItaly
| | - Davide Pettener
- Laboratory of Molecular Anthropology & Centre for Genome Biology, Department of Biological, Geological and Environmental SciencesUniversity of BolognaBolognaItaly
| | - Donata Luiselli
- Laboratory of Ancient DNA, Department of Cultural HeritageUniversity of BolognaRavennaItaly
| |
Collapse
|
4
|
de Gennaro L, Molinaro L, Raveane A, Santonastaso F, Saponetti SS, Massi MC, Pagani L, Metspalu M, Hellenthal G, Kivisild T, Ventura M, Montinaro F. PANE: fast and reliable ancestral reconstruction on ancient genotype data with non-negative least square and principal component analysis. Genome Biol 2025; 26:29. [PMID: 39934833 PMCID: PMC11818073 DOI: 10.1186/s13059-025-03491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
The history of human populations has been strongly shaped by admixture events, contributing to patterns of observed genetic diversity across populations. In this study, we introduce the Principal component Ancestry proportions using NNLS Estimation (PANE) method that leverages principal component analysis and non-negative least squares to assess the ancestral compositions of admixed individuals given a large set of populations. Our results show its ability to reliably estimate ancestry across several scenarios, even those with a significant proportion of missing genotypes, in a fraction of the time required when using other tools.
Collapse
Affiliation(s)
- Luciana de Gennaro
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy.
| | | | | | | | | | | | - Luca Pagani
- Department of Biology, University of Padova, Padua, Italy
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mait Metspalu
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Garrett Hellenthal
- Department of Genetics, Evolution & Environment, University College of London, London, UK
| | - Toomas Kivisild
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mario Ventura
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy.
| | - Francesco Montinaro
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy.
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| |
Collapse
|
5
|
Sorrentino R, Pietrobelli A, Mameli D, Nicolosi T, Belcastro MG. The extent of the hip bone sexual dimorphism in two Italian coeval modern skeletal samples. Sci Rep 2025; 15:2439. [PMID: 39828803 PMCID: PMC11743771 DOI: 10.1038/s41598-025-86197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
The rate of sexual dimorphism in the human hip bone is primarily due to the structural demands of childbirth. Genetic, environmental, and socio-cultural factors can also influence pelvic shape variations across populations. This study examines intra-population sex variation within the Italian population based on regional differences of 280 coxal bones from two documented human osteological collections (Bologna and Sassari) coming from different geographical areas, the northern continental and island regions. Nineteen metric variables were used to evaluate sexual dimorphism and population differences. Most of the variables showed sexual dimorphism, particularly the hip height and ischio-pubic measures within both populations, and accurately predicted sex for each population (Bologna: 100%; Sassari: 91.2%). Results show the Bologna sample have larger dimensions for most of the measurements than the Sassari one, especially when considering the longitudinal ones. Some female traits of the Bologna sample are larger than the correspondent ones in the Sassari males. The rate of sexual dimorphism between the populations shows significant differences, with better sex distinction for Bologna than Sassari. This study aims at interpreting these intra-population differences, considering the effect of environmental (physical and social milieu) and genetic factors, underscoring the importance of this local differences for accurate diagnostic criteria.
Collapse
Affiliation(s)
- Rita Sorrentino
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, Bologna, 40126, Italy.
| | - Annalisa Pietrobelli
- Department of Human Origins, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany.
| | - Davide Mameli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, Bologna, 40126, Italy
| | - Teresa Nicolosi
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Maria Giovanna Belcastro
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, Bologna, 40126, Italy
| |
Collapse
|
6
|
de Barros Rodrigues ML, Rodrigues MP, Norton HL, Mendes-Junior CT, Simões AL, Lawson DJ. Large-scale selection of highly informative microhaplotypes for ancestry inference and population specific informativeness. Forensic Sci Int Genet 2025; 74:103153. [PMID: 39378714 DOI: 10.1016/j.fsigen.2024.103153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Microhaplotypes (MHs) describe physically close genetic markers that are inherited together and are gaining prominence due to their efficiency in forensic, clinical, and population studies. They excel in kinship analysis, DNA mixture detection, and ancestry inference, offering advantages in precision over individual SNPs and STRs. In this study, a pipeline was developed to efficiently select highly informative MHs from large-scale genomic datasets. Over 120,000 MHs were identified from almost a million markers, which allow this non-independent information to be efficiently used for inference. The MHs were compared to SNPs in terms of their informativeness and performance of their subsets in ancestry inference and all the results consistently favored MHs. A method for ranking markers by specific population informativeness was also introduced, which showed improvement in the accuracy of Native American ancestry estimation, overcoming the challenges of its underrepresentation in datasets. In conclusion, this study presents a comprehensive way for selecting highly informative MHs for accurate ancestry inference. The proposed approach and the subsets selected by specific population informativeness offer valuable tools for improving ancestry inference accuracy, particularly for admixed populations as demonstrated for a Brazilian dataset.
Collapse
Affiliation(s)
- Maria Luisa de Barros Rodrigues
- Programa de Pós-Graduação em Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil.
| | | | - Heather L Norton
- Department of Anthropology, University of Cincinnati, Cincinnati, OH 45221, United States
| | - Celso Teixeira Mendes-Junior
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Aguinaldo Luiz Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Daniel John Lawson
- Institute of Statistical Sciences, School of Mathematics, Woodland Road, University of Bristol, Bristol BS8 1UG, UK; MRC Integrative Epidemiology Unit, School of Medicine, Oakfield Grove, University of Bristol, Bristol BS8 2BN, UK.
| |
Collapse
|
7
|
Ravasini F, Kabral H, Solnik A, de Gennaro L, Montinaro F, Hui R, Delpino C, Finocchi S, Giroldini P, Mei O, Beck De Lotto MA, Cilli E, Hajiesmaeil M, Pistacchia L, Risi F, Giacometti C, Scheib CL, Tambets K, Metspalu M, Cruciani F, D'Atanasio E, Trombetta B. The genomic portrait of the Picene culture provides new insights into the Italic Iron Age and the legacy of the Roman Empire in Central Italy. Genome Biol 2024; 25:292. [PMID: 39567978 PMCID: PMC11580440 DOI: 10.1186/s13059-024-03430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND The Italic Iron Age is characterized by the presence of various ethnic groups partially examined from a genomic perspective. To explore the evolution of Iron Age Italic populations and the genetic impact of Romanization, we focus on the Picenes, one of the most fascinating pre-Roman civilizations, who flourished on the Middle Adriatic side of Central Italy between the 9th and the 3rd century BCE, until the Roman colonization. RESULTS More than 50 samples are reported, spanning more than 1000 years of history from the Iron Age to Late Antiquity. Despite cultural diversity, our analysis reveals no major differences between the Picenes and other coeval populations, suggesting a shared genetic history of the Central Italian Iron Age ethnic groups. Nevertheless, a slight genetic differentiation between populations along the Adriatic and Tyrrhenian coasts can be observed, possibly due to different population dynamics in the two sides of Italy and/or genetic contacts across the Adriatic Sea. Additionally, we identify several individuals with ancestries deviating from their general population. Lastly, in our Late Antiquity site, we observe a drastic change in the genetic landscape of the Middle Adriatic region, indicating a relevant influx from the Near East, possibly as a consequence of Romanization. CONCLUSIONS Our findings, consistently with archeological hypotheses, suggest genetic interactions across the Adriatic Sea during the Bronze/Iron Age and a high level of individual mobility typical of cosmopolitan societies. Finally, we highlight the role of the Roman Empire in shaping genetic and phenotypic changes that greatly impact the Italian peninsula.
Collapse
Affiliation(s)
- Francesco Ravasini
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Helja Kabral
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Anu Solnik
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Luciana de Gennaro
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
| | - Francesco Montinaro
- Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biosciences, Biotechnology and Environment, University of Bari, Bari, Italy
| | - Ruoyun Hui
- Alan Turing Institute, London, UK
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Chiara Delpino
- Superintendence Archaeology, Fine Arts and Landscape for the Provinces of Frosinone and Latina, Ministry of Cultural Heritage, Rome, Italy
| | - Stefano Finocchi
- Superintendence Archaeology, Fine Arts and Landscape of Ancona, Ministry of Cultural Heritage, Ancona, Italy
| | - Pierluigi Giroldini
- Superintendence Archaeology, Fine Arts and Landscape for the Metropolitan City of Florence and the Provinces of Pistoia and Prato, Ministry of Cultural Heritage, Florence, Italy
| | - Oscar Mei
- Department of Communication Sciences, Humanities and International Studies, University of Urbino, Urbino, Italy
| | | | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Mogge Hajiesmaeil
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Letizia Pistacchia
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Flavia Risi
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Chiara Giacometti
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Christiana Lyn Scheib
- Department of Zoology, University of Cambridge and St John's College, University of Cambridge, Cambridge, UK
| | | | - Mait Metspalu
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Fulvio Cruciani
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
- Institute of Molecular Biology and Pathology, CNR, Rome, Italy
| | | | - Beniamino Trombetta
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
8
|
Debernardi C, Savoca A, De Gregorio A, Casalone E, Rosselli M, Herman EJ, Di Primio C, Tumino R, Sieri S, Vineis P, Panico S, Sacerdote C, Ardissino D, Asselta R, Matullo G. Population Heterogeneity and Selection of Coronary Artery Disease Polygenic Scores. J Pers Med 2024; 14:1025. [PMID: 39452533 PMCID: PMC11508882 DOI: 10.3390/jpm14101025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES The identification of coronary artery disease (CAD) high-risk individuals is a major clinical need for timely diagnosis and intervention. Many different polygenic scores (PGSs) for CAD risk are available today to estimate the genetic risk. It is necessary to carefully choose the score to use, in particular for studies on populations, which are not adequately represented in the large datasets of European biobanks, such as the Italian one. This work aimed to analyze which PGS had the best performance within the Italian population. METHODS We used two Italian independent cohorts: the EPICOR case-control study (576 individuals) and the Atherosclerosis, Thrombosis, and Vascular Biology (ATVB) Italian study (3359 individuals). We evaluated 266 PGS for cardiovascular disease risk from the PGS Catalog, selecting 51 for CAD. RESULTS Distributions between patients and controls were significantly different for 49 scores (p-value < 0.01). Only five PGS have been trained and tested for the European population specifically. PGS003727 demonstrated to be the most accurate when evaluated independently (EPICOR AUC = 0.68; ATVB AUC = 0.80). Taking into account the conventional CAD risk factors further enhanced the performance of the model, particularly in the ATVB study (p-value = 0.0003). CONCLUSIONS European CAD PGS could have different risk estimates in peculiar populations, such as the Italian one, as well as in various geographical macro areas. Therefore, further evaluation is recommended for clinical applicability.
Collapse
Affiliation(s)
- Carla Debernardi
- Genomic Variation, Complex Diseases and Population Medicine Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (C.D.); (A.S.); (A.D.G.); (E.C.); (M.R.); (E.J.H.); (C.D.P.)
| | - Angelo Savoca
- Genomic Variation, Complex Diseases and Population Medicine Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (C.D.); (A.S.); (A.D.G.); (E.C.); (M.R.); (E.J.H.); (C.D.P.)
| | - Alessandro De Gregorio
- Genomic Variation, Complex Diseases and Population Medicine Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (C.D.); (A.S.); (A.D.G.); (E.C.); (M.R.); (E.J.H.); (C.D.P.)
| | - Elisabetta Casalone
- Genomic Variation, Complex Diseases and Population Medicine Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (C.D.); (A.S.); (A.D.G.); (E.C.); (M.R.); (E.J.H.); (C.D.P.)
| | - Miriam Rosselli
- Genomic Variation, Complex Diseases and Population Medicine Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (C.D.); (A.S.); (A.D.G.); (E.C.); (M.R.); (E.J.H.); (C.D.P.)
| | - Elton Jalis Herman
- Genomic Variation, Complex Diseases and Population Medicine Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (C.D.); (A.S.); (A.D.G.); (E.C.); (M.R.); (E.J.H.); (C.D.P.)
| | - Cecilia Di Primio
- Genomic Variation, Complex Diseases and Population Medicine Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (C.D.); (A.S.); (A.D.G.); (E.C.); (M.R.); (E.J.H.); (C.D.P.)
| | - Rosario Tumino
- Cancer Registry and Histopathology Unit, Azienda Ospedaliera “Civile-M.P. Arezzo”, 97100 Ragusa, Italy;
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20100 Milan, Italy;
| | - Paolo Vineis
- MRC-PHE Centre for Environment and Health, Imperial College London, London W12 0BZ, UK;
| | - Salvatore Panico
- Department of Clinical and Experimental Medicine, University Federico II, 80100 Naples, Italy;
| | - Carlotta Sacerdote
- Piedmont Reference Centre for Epidemiology and Cancer Prevention (CPO Piemonte), 10126 Turin, Italy;
| | - Diego Ardissino
- Cardiology Department, Azienda Ospedaliero-Universitaria of Parma, 43100 Parma, Italy;
- Department of Medicine and Surgery, University of Parma, 43100 Parma, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
- IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| | - Giuseppe Matullo
- Genomic Variation, Complex Diseases and Population Medicine Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (C.D.); (A.S.); (A.D.G.); (E.C.); (M.R.); (E.J.H.); (C.D.P.)
- Medical Genetic Service, Città della Salute e della Scienza, 10126 Turin, Italy
| |
Collapse
|
9
|
Wang K, Prüfer K, Krause-Kyora B, Childebayeva A, Schuenemann VJ, Coia V, Maixner F, Zink A, Schiffels S, Krause J. High-coverage genome of the Tyrolean Iceman reveals unusually high Anatolian farmer ancestry. CELL GENOMICS 2023; 3:100377. [PMID: 37719142 PMCID: PMC10504632 DOI: 10.1016/j.xgen.2023.100377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/10/2023] [Accepted: 07/13/2023] [Indexed: 09/19/2023]
Abstract
The Tyrolean Iceman is known as one of the oldest human glacier mummies, directly dated to 3350-3120 calibrated BCE. A previously published low-coverage genome provided novel insights into European prehistory, despite high present-day DNA contamination. Here, we generate a high-coverage genome with low contamination (15.3×) to gain further insights into the genetic history and phenotype of this individual. Contrary to previous studies, we found no detectable Steppe-related ancestry in the Iceman. Instead, he retained the highest Anatolian-farmer-related ancestry among contemporaneous European populations, indicating a rather isolated Alpine population with limited gene flow from hunter-gatherer-ancestry-related populations. Phenotypic analysis revealed that the Iceman likely had darker skin than present-day Europeans and carried risk alleles associated with male-pattern baldness, type 2 diabetes, and obesity-related metabolic syndrome. These results corroborate phenotypic observations of the preserved mummified body, such as high pigmentation of his skin and the absence of hair on his head.
Collapse
Affiliation(s)
- Ke Wang
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai 200438, China
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Center of Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Kay Prüfer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, 24118 Kiel, Germany
| | | | - Verena J. Schuenemann
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
- Institute of Evolutionary Medicine, University of Zurich, 8057 Zurich, Switzerland
- Human Evolution and Archaeological Sciences, University of Vienna, 1030 Vienna, Austria
| | - Valentina Coia
- Eurac Research - Institute for Mummy Studies, Viale Druso 1, 39100 Bolzano, Italy
| | - Frank Maixner
- Eurac Research - Institute for Mummy Studies, Viale Druso 1, 39100 Bolzano, Italy
| | - Albert Zink
- Eurac Research - Institute for Mummy Studies, Viale Druso 1, 39100 Bolzano, Italy
| | - Stephan Schiffels
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
10
|
Fontani F, Boano R, Cinti A, Demarchi B, Sandron S, Rampelli S, Candela M, Traversari M, Latorre A, Iacovera R, Abondio P, Sarno S, Mackie M, Collins M, Radini A, Milani C, Petrella E, Giampalma E, Minelli A, Larocca F, Cilli E, Luiselli D. Bioarchaeological and paleogenomic profiling of the unusual Neolithic burial from Grotta di Pietra Sant'Angelo (Calabria, Italy). Sci Rep 2023; 13:11978. [PMID: 37488251 PMCID: PMC10366206 DOI: 10.1038/s41598-023-39250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023] Open
Abstract
The Neolithic burial of Grotta di Pietra Sant'Angelo (CS) represents a unique archaeological finding for the prehistory of Southern Italy. The unusual placement of the inhumation at a rather high altitude and far from inhabited areas, the lack of funerary equipment and the prone deposition of the body find limited similarities in coeval Italian sites. These elements have prompted wider questions on mortuary customs during the prehistory of Southern Italy. This atypical case requires an interdisciplinary approach aimed to build an integrated bioarchaeological profile of the individual. The paleopathological investigation of the skeletal remains revealed the presence of numerous markers that could be associated with craft activities, suggesting possible interpretations of the individual's lifestyle. CT analyses, carried out on the maxillary bones, showed the presence of a peculiar type of dental wear, but also a good density of the bone matrix. Biomolecular and micromorphological analyses of dental calculus highlight the presence of a rich Neolithic-like oral microbiome, the composition of which is consistent with the presence pathologies. Finally, paleogenomic data obtained from the individual were compared with ancient and modern Mediterranean populations, including unpublished high-resolution genome-wide data for 20 modern inhabitants of the nearby village of San Lorenzo Bellizzi, which provided interesting insights into the biodemographic landscape of the Neolithic in Southern Italy.
Collapse
Affiliation(s)
- Francesco Fontani
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy.
| | - Rosa Boano
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Alessandra Cinti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Beatrice Demarchi
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Sarah Sandron
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Mirko Traversari
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy
| | - Adriana Latorre
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy
| | - Rocco Iacovera
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy
| | - Paolo Abondio
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Stefania Sarno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Meaghan Mackie
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Torino, Italy
- Faculty of Health and Medical Sciences, The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3B, 2200, København, Denmark
- Faculty of Health and Medical Sciences, The Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353, København, Denmark
- School of Archeology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Matthew Collins
- Faculty of Health and Medical Sciences, The Globe Institute, University of Copenhagen, Øster Farimagsgade 5, 1353, København, Denmark
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge, CB2 3ER, UK
| | - Anita Radini
- School of Archeology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Chantal Milani
- SIOF - Italian Society of Forensic Odontology, Strada Degli Schiocchi 12, 41124, Modena, Italy
| | - Enrico Petrella
- Radiology Unit, Morgagni-Pierantoni Hospital, AUSL Romagna, Via Carlo Forlanini 34, 47121, Forlì, Italy
| | - Emanuela Giampalma
- Radiology Unit, Morgagni-Pierantoni Hospital, AUSL Romagna, Via Carlo Forlanini 34, 47121, Forlì, Italy
| | - Antonella Minelli
- Department of Humanities, Education and Social Sciences, University of Molise, Via Francesco De Sanctis, 86100, Campobasso, Italy
| | - Felice Larocca
- Speleo-Archaeological Research Group, University of Bari, Piazza Umberto I 1, 70121, Bari, Italy
- Speleo-Archaeological Research Centre "Enzo dei Medici", Via Lucania 3, 87070, Roseto Capo Spulico (CS), Italy
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Via Degli Ariani 1, 48121, Ravenna, Italy.
| |
Collapse
|
11
|
Tancredi D, Cardinali I. Being a Dog: A Review of the Domestication Process. Genes (Basel) 2023; 14:genes14050992. [PMID: 37239352 DOI: 10.3390/genes14050992] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The process of canine domestication represents certainly one of the most interesting questions that evolutionary biology aims to address. A "multiphase" view of this process is now accepted, with a first phase during which different groups of wolves were attracted by the anthropogenic niche and a second phase characterized by the gradual establishment of mutual relationships between wolves and humans. Here, we provide a review of dog (Canis familiaris) domestication, highlighting the ecological differences between dogs and wolves, analyzing the molecular mechanisms which seem to have influenced the affiliative behaviors first observed in Belyaev's foxes, and describing the genetics of ancient European dogs. Then, we focus on three Mediterranean peninsulas (Balkan, Iberian and Italian), which together represent the main geographic area for studying canine domestication dynamics, as it has shaped the current genetic variability of dog populations, and where a well-defined European genetic structure was pinpointed through the analysis of uniparental genetic markers and their phylogeny.
Collapse
Affiliation(s)
- Domenico Tancredi
- Department of Chemistry, Biology and Biotechnology, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, Università degli Studi di Perugia, 06123 Perugia, Italy
| |
Collapse
|
12
|
Ciesielski TH, Zhang X, Tacconelli A, Lutsar I, de Cabre VM, Roilides E, Ciccacci C, Borgiani P, Scott WK, Williams SM, Sirugo G. Late-onset neonatal sepsis: genetic differences by sex and involvement of the NOTCH pathway. Pediatr Res 2023; 93:1085-1095. [PMID: 35835848 DOI: 10.1038/s41390-022-02114-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/10/2022] [Accepted: 04/27/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Late-Onset Neonatal Sepsis (LOS) is a rare condition, involving widespread infection, immune disruption, organ dysfunction, and often death. Because exposure to pathogens is not completely preventable, identifying susceptibility factors is critical to characterizing the pathophysiology and developing interventions. Prior studies demonstrated both genetics and infant sex influence susceptibility. Our study was designed to identify LOS associated genetic variants. METHODS We performed an exploratory genome wide association study (GWAS) with 224 LOS cases and 273 controls from six European countries. LOS was defined as sepsis presenting from 3 to 90 days of age; diagnosis was established by clinical criteria consensus guidelines. We tested for association with both autosomal and X-chromosome variants in the total sample and in sex-stratified analyses. RESULTS In total, 71 SNPs associated with neonatal sepsis at p < 1 × 10-4 in at least one analysis. Most importantly, sex-stratified analyses revealed associations with multiple SNPs (28 in males and 16 in females), but no variants from single-sex analyses associated with sepsis in the other sex. Pathway analyses showed NOTCH signaling is over-represented among genes linked to these SNPS. CONCLUSION Our results indicate genetic susceptibility to LOS is sexually dimorphic and corroborate that NOTCH signaling plays a role in determining risk. IMPACT Genes associate with late onset neonatal sepsis. Notch pathway genes are overrepresented in associations with sepsis. Genes associating with sepsis do not overlap between males and females. Sexual dimorphism can lead to sex specific treatment of sepsis.
Collapse
Affiliation(s)
- Timothy H Ciesielski
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Mary Ann Swetland Center for Environmental Health at Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Xueyi Zhang
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Irja Lutsar
- Department of Microbiology, School of Medicine, University of Tartu, Tartu, Estonia
| | | | - Emmanuel Roilides
- Laboratory of Infectious Diseases, 3rd Department of Paediatrics, School of Medicine, Aristotle University, Thessaloniki, Greece
| | - Cinzia Ciccacci
- Dipartimento di Biomedicina e Prevenzione, Facolta' di Medicina e Chirurgia, Universita' di Tor Vergata, Rome, Italy
- Unicamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Paola Borgiani
- Dipartimento di Biomedicina e Prevenzione, Facolta' di Medicina e Chirurgia, Universita' di Tor Vergata, Rome, Italy
| | - William K Scott
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | | | - Scott M Williams
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, USA.
- 10900 Euclid Ave, Cleveland Institute for Computational Biology, Cleveland, USA.
| | - Giorgio Sirugo
- Institute of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
- Division of Translational Medicine and Human Genetics, Perelman SPerelman School of Medicine, University of Pennsylvaniachool of Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
13
|
Fibla J, Maceda I, Laplana M, Guerrero M, Álvarez MM, Burgueño J, Camps A, Fàbrega J, Felisart J, Grané J, Remón JL, Serra J, Moral P, Lao O. The power of geohistorical boundaries for modeling the genetic background of human populations: The case of the rural catalan Pyrenees. Front Genet 2023; 13:1100440. [PMID: 36704333 PMCID: PMC9871830 DOI: 10.3389/fgene.2022.1100440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
The genetic variation of the European population at a macro-geographic scale follows genetic gradients which reflect main migration events. However, less is known about factors affecting mating patterns at a micro-geographic scale. In this study we have analyzed 726,718 autosomal single nucleotide variants in 435 individuals from the catalan Pyrenees covering around 200 km of a vast and abrupt region in the north of the Iberian Peninsula, for which we have information about the geographic origin of all grand-parents and parents. At a macro-geographic scale, our analyses recapitulate the genetic gradient observed in Spain. However, we also identified the presence of micro-population substructure among the sampled individuals. Such micro-population substructure does not correlate with geographic barriers such as the expected by the orography of the considered region, but by the bishoprics present in the covered geographic area. These results support that, on top of main human migrations, long ongoing socio-cultural factors have also shaped the genetic diversity observed at rural populations.
Collapse
Affiliation(s)
- Joan Fibla
- Department of Basic Medical Sciences, University of Lleida, Lleida, Spain,Institute of Biomedical Research of Lleida (IRBLleida), Lleida, Spain,*Correspondence: Joan Fibla, ; Oscar Lao,
| | - Iago Maceda
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marina Laplana
- Department of Basic Medical Sciences, University of Lleida, Lleida, Spain
| | - Montserrat Guerrero
- Department of Geography and Sociology, University of Lleida. Pl. Víctor Siurana, Lleida, Spain
| | - Miguel Martín Álvarez
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Jesús Burgueño
- Department of Geography and Sociology, University of Lleida. Pl. Víctor Siurana, Lleida, Spain
| | | | - Jordi Fàbrega
- Fundació Sant Hospital La Seu d’Urgell, La Seu d'Urgell, Spain
| | | | - Joan Grané
- Hospital de Campdevànol, Campdevànol, Girona, Spain
| | - José Luis Remón
- Servei d’atenció primària Lleida Nord, Gerència Territorial Alt Pirineu i Aran, Institut Català de la Salut, Tremp, Spain
| | - Jordi Serra
- Laboratori d’Anàlisis Clíniques, Hospital Comarcal del Pallars, Tremp, Spain
| | - Pedro Moral
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Biodiversity Research Institute, University of Barcelona, Barcelona, Spain
| | - Oscar Lao
- CNAG-CRG, Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain,*Correspondence: Joan Fibla, ; Oscar Lao,
| |
Collapse
|
14
|
Rodríguez-Varela R, Moore KHS, Ebenesersdóttir SS, Kilinc GM, Kjellström A, Papmehl-Dufay L, Alfsdotter C, Berglund B, Alrawi L, Kashuba N, Sobrado V, Lagerholm VK, Gilbert E, Cavalleri GL, Hovig E, Kockum I, Olsson T, Alfredsson L, Hansen TF, Werge T, Munters AR, Bernhardsson C, Skar B, Christophersen A, Turner-Walker G, Gopalakrishnan S, Daskalaki E, Omrak A, Pérez-Ramallo P, Skoglund P, Girdland-Flink L, Gunnarsson F, Hedenstierna-Jonson C, Gilbert MTP, Lidén K, Jakobsson M, Einarsson L, Victor H, Krzewińska M, Zachrisson T, Storå J, Stefánsson K, Helgason A, Götherström A. The genetic history of Scandinavia from the Roman Iron Age to the present. Cell 2023; 186:32-46.e19. [PMID: 36608656 DOI: 10.1016/j.cell.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/14/2022] [Accepted: 11/22/2022] [Indexed: 01/07/2023]
Abstract
We investigate a 2,000-year genetic transect through Scandinavia spanning the Iron Age to the present, based on 48 new and 249 published ancient genomes and genotypes from 16,638 modern individuals. We find regional variation in the timing and magnitude of gene flow from three sources: the eastern Baltic, the British-Irish Isles, and southern Europe. British-Irish ancestry was widespread in Scandinavia from the Viking period, whereas eastern Baltic ancestry is more localized to Gotland and central Sweden. In some regions, a drop in current levels of external ancestry suggests that ancient immigrants contributed proportionately less to the modern Scandinavian gene pool than indicated by the ancestry of genomes from the Viking and Medieval periods. Finally, we show that a north-south genetic cline that characterizes modern Scandinavians is mainly due to the differential levels of Uralic ancestry and that this cline existed in the Viking Age and possibly earlier.
Collapse
Affiliation(s)
- Ricardo Rodríguez-Varela
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden.
| | | | - S Sunna Ebenesersdóttir
- deCODE Genetics/AMGEN, Inc., 102 Reykjavik, Iceland; Department of Anthropology, University of Iceland, 102 Reykjavik, Iceland
| | - Gulsah Merve Kilinc
- Department of Bioinformatics, Graduate School of Health Sciences, Hacettepe University, 06100 Ankara, Turkey
| | - Anna Kjellström
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | | | - Clara Alfsdotter
- Department of Archaeology, Bohusläns Museum, Museigatan 1, 451 19 Udevalla, Sweden
| | - Birgitta Berglund
- Department of Archaeology and Cultural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Loey Alrawi
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Natalija Kashuba
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden; Department of Archaeology and Ancient History, Archaeology, Uppsala University, 752 38 Uppsala, Sweden; Department of Organismal Biology, Human Evolution, and SciLife Lab, Uppsala University, 75236 Uppsala, Sweden
| | - Verónica Sobrado
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Vendela Kempe Lagerholm
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Edmund Gilbert
- School of Pharmacy and Biomolecular Sciences, RCSI, D02 YN77 Dublin, Ireland; FutureNeuro SFI Research Centre, RCSI, D02 YN77 Dublin, Ireland
| | - Gianpiero L Cavalleri
- School of Pharmacy and Biomolecular Sciences, RCSI, D02 YN77 Dublin, Ireland; FutureNeuro SFI Research Centre, RCSI, D02 YN77 Dublin, Ireland
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway; Centre for Bioinformatics, Department of Informatics, University of Oslo, 166 0450 Oslo, Norway
| | - Ingrid Kockum
- Center for Molecular Medicine, Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Tomas Olsson
- Center for Molecular Medicine, Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Thomas F Hansen
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, 4000 Roskilde, Denmark; Danish Headache Center, Department of Neurology, Copenhagen University Hospital, 2600 Glostrup, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Copenhagen Mental Health Services, 4000 Roskilde, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen 2200, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210 Aarhus, Denmark
| | - Arielle R Munters
- Department of Organismal Biology, Human Evolution, and SciLife Lab, Uppsala University, 75236 Uppsala, Sweden
| | - Carolina Bernhardsson
- Department of Organismal Biology, Human Evolution, and SciLife Lab, Uppsala University, 75236 Uppsala, Sweden
| | - Birgitte Skar
- Department of Archaeology and Cultural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Axel Christophersen
- Department of Archaeology and Cultural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Gordon Turner-Walker
- Department of Archaeology and Anthropology National Museum of Natural Science, 404023 Taichung City, Taiwan
| | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, the GLOBE Institute, University of Copenhagen, 1353 Copenhagen, Denmark
| | - Eva Daskalaki
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Ayça Omrak
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Patxi Pérez-Ramallo
- isoTROPIC Research Group, Department of Archaeology, Max Planck Institute for Geoanthropology, 07745 Jena, Germany; Department of Medical and Surgical Specialities, Faculty of Medicine and Nursing, University of the Basque Country (EHU), Donostia-San Sebastián 20014, Spain
| | | | - Linus Girdland-Flink
- Department of Archaeology, School of Geosciences, University of Aberdeen, AB24 3FX Aberdeen, UK; School of Biological and Environmental Sciences, Liverpool John Moores University, L3 3AF Liverpool, UK
| | - Fredrik Gunnarsson
- Department of Museum Archaeology, Kalmar County Museum, Box 104, Kalmar 39121, Sweden
| | | | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, the GLOBE Institute, University of Copenhagen, 1353 Copenhagen, Denmark; Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Kerstin Lidén
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Mattias Jakobsson
- Department of Organismal Biology, Human Evolution, and SciLife Lab, Uppsala University, 75236 Uppsala, Sweden
| | - Lars Einarsson
- Kronan, Marine Archaeological Department, Kalmar County Museum, Box 104, Kalmar S-39121, Sweden
| | - Helena Victor
- Department of Museum Archaeology, Kalmar County Museum, Box 104, Kalmar 39121, Sweden
| | - Maja Krzewińska
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | | | - Jan Storå
- Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden
| | - Kári Stefánsson
- deCODE Genetics/AMGEN, Inc., 102 Reykjavik, Iceland; Faculty of Medicine, University of Iceland, Reykjavik 101, Iceland
| | - Agnar Helgason
- deCODE Genetics/AMGEN, Inc., 102 Reykjavik, Iceland; Department of Anthropology, University of Iceland, 102 Reykjavik, Iceland.
| | - Anders Götherström
- Centre for Palaeogenetics, 106 91 Stockholm, Sweden; Department of Archaeology and Classical Studies, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
15
|
Genome-wide data from medieval German Jews show that the Ashkenazi founder event pre-dated the 14 th century. Cell 2022; 185:4703-4716.e16. [PMID: 36455558 PMCID: PMC9793425 DOI: 10.1016/j.cell.2022.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/26/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022]
Abstract
We report genome-wide data from 33 Ashkenazi Jews (AJ), dated to the 14th century, obtained following a salvage excavation at the medieval Jewish cemetery of Erfurt, Germany. The Erfurt individuals are genetically similar to modern AJ, but they show more variability in Eastern European-related ancestry than modern AJ. A third of the Erfurt individuals carried a mitochondrial lineage common in modern AJ and eight carried pathogenic variants known to affect AJ today. These observations, together with high levels of runs of homozygosity, suggest that the Erfurt community had already experienced the major reduction in size that affected modern AJ. The Erfurt bottleneck was more severe, implying substructure in medieval AJ. Overall, our results suggest that the AJ founder event and the acquisition of the main sources of ancestry pre-dated the 14th century and highlight late medieval genetic heterogeneity no longer present in modern AJ.
Collapse
|
16
|
Reitsema LJ, Mittnik A, Kyle B, Catalano G, Fabbri PF, Kazmi ACS, Reinberger KL, Sineo L, Vassallo S, Bernardos R, Broomandkhoshbacht N, Callan K, Candilio F, Cheronet O, Curtis E, Fernandes D, Lari M, Lawson AM, Mah M, Mallick S, Mandl K, Micco A, Modi A, Oppenheimer J, Özdogan KT, Rohland N, Stewardson K, Vai S, Vergata C, Workman JN, Zalzala F, Zaro V, Achilli A, Anagnostopoulos A, Capelli C, Constantinou V, Lancioni H, Olivieri A, Papadopoulou A, Psatha N, Semino O, Stamatoyannopoulos J, Valliannou I, Yannaki E, Lazaridis I, Patterson N, Ringbauer H, Caramelli D, Pinhasi R, Reich D. The diverse genetic origins of a Classical period Greek army. Proc Natl Acad Sci U S A 2022; 119:e2205272119. [PMID: 36191217 PMCID: PMC9564095 DOI: 10.1073/pnas.2205272119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/16/2022] [Indexed: 12/22/2022] Open
Abstract
Trade and colonization caused an unprecedented increase in Mediterranean human mobility in the first millennium BCE. Often seen as a dividing force, warfare is in fact another catalyst of culture contact. We provide insight into the demographic dynamics of ancient warfare by reporting genome-wide data from fifth-century soldiers who fought for the army of the Greek Sicilian colony of Himera, along with representatives of the civilian population, nearby indigenous settlements, and 96 present-day individuals from Italy and Greece. Unlike the rest of the sample, many soldiers had ancestral origins in northern Europe, the Steppe, and the Caucasus. Integrating genetic, archaeological, isotopic, and historical data, these results illustrate the significant role mercenaries played in ancient Greek armies and highlight how participation in war contributed to continental-scale human mobility in the Classical world.
Collapse
Affiliation(s)
| | - Alissa Mittnik
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, 04103 Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Cambridge, MA 02138
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Britney Kyle
- Department of Anthropology, University of Northern Colorado, Greeley, CO 80639
| | - Giulio Catalano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, 90123 Italy
| | | | - Adam C S Kazmi
- Department of Anthropology, University of Georgia, Athens, GA 30602
| | | | - Luca Sineo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Università degli Studi di Palermo, Palermo, 90123 Italy
| | - Stefano Vassallo
- Soprintendenza per i Beni Culturali e Ambientali di Palermo, 90143 Palermo, Italy
| | | | - Nasreen Broomandkhoshbacht
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute (HHMI), Harvard Medical School, Boston, MA 02115
| | - Kim Callan
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Soprintendenza per i Beni Culturali e Ambientali di Palermo, 90143 Palermo, Italy
| | | | - Olivia Cheronet
- Department of Evolutionary Anthropology, Universität Wien, 1090 Vienna, Austria
| | - Elizabeth Curtis
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute (HHMI), Harvard Medical School, Boston, MA 02115
| | - Daniel Fernandes
- Department of Evolutionary Anthropology, Universität Wien, 1090 Vienna, Austria
- CIAS, Department of Life Sciences, Universidade de Coimbra, 3000-456 Coimbra, Portugal
| | - Martina Lari
- Dipartimento di Biologia, Università degli Studi di Firenze, Florence, 50122 Italy
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute (HHMI), Harvard Medical School, Boston, MA 02115
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute (HHMI), Harvard Medical School, Boston, MA 02115
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute (HHMI), Harvard Medical School, Boston, MA 02115
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Kirsten Mandl
- Department of Evolutionary Anthropology, Universität Wien, 1090 Vienna, Austria
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute (HHMI), Harvard Medical School, Boston, MA 02115
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Alessandra Modi
- Dipartimento di Biologia, Università degli Studi di Firenze, Florence, 50122 Italy
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute (HHMI), Harvard Medical School, Boston, MA 02115
| | | | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute (HHMI), Harvard Medical School, Boston, MA 02115
| | - Stefania Vai
- Dipartimento di Biologia, Università degli Studi di Firenze, Florence, 50122 Italy
| | - Chiara Vergata
- Dipartimento di Biologia, Università degli Studi di Firenze, Florence, 50122 Italy
| | - J Noah Workman
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute (HHMI), Harvard Medical School, Boston, MA 02115
| | - Valentina Zaro
- Dipartimento di Biologia, Università degli Studi di Firenze, Florence, 50122 Italy
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani," Università di Pavia, Pavia 27100, Italy
| | - Achilles Anagnostopoulos
- Gene and Cell Therapy Center, Hematology-HCT Unit, General Hospital of Thessaloniki "George Papanikolaou", 55710 Thessaloniki, Greece
| | - Cristian Capelli
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, United Kingdom
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, 43124 Parma, Italy
| | - Varnavas Constantinou
- Gene and Cell Therapy Center, Hematology-HCT Unit, General Hospital of Thessaloniki "George Papanikolaou", 55710 Thessaloniki, Greece
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology "L. Spallanzani," Università di Pavia, Pavia 27100, Italy
| | - Anastasia Papadopoulou
- Gene and Cell Therapy Center, Hematology-HCT Unit, General Hospital of Thessaloniki "George Papanikolaou", 55710 Thessaloniki, Greece
| | - Nikoleta Psatha
- Gene and Cell Therapy Center, Hematology-HCT Unit, General Hospital of Thessaloniki "George Papanikolaou", 55710 Thessaloniki, Greece
| | - Ornella Semino
- Department of Biology and Biotechnology "L. Spallanzani," Università di Pavia, Pavia 27100, Italy
| | - John Stamatoyannopoulos
- Department of Medicine, University of Washington, Seattle, WA 98195
- Department of Genome Sciences, University of Washington, Seattle, WA 98195
| | - Ioanna Valliannou
- Gene and Cell Therapy Center, Hematology-HCT Unit, General Hospital of Thessaloniki "George Papanikolaou", 55710 Thessaloniki, Greece
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology-HCT Unit, General Hospital of Thessaloniki "George Papanikolaou", 55710 Thessaloniki, Greece
| | - Iosif Lazaridis
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Nick Patterson
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Harald Ringbauer
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, 04103 Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Cambridge, MA 02138
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - David Caramelli
- Dipartimento di Biologia, Università degli Studi di Firenze, Florence, 50122 Italy
| | - Ron Pinhasi
- Dipartimento di Biologia, Università degli Studi di Firenze, Florence, 50122 Italy
- Human Evolution and Archaeological Sciences, Universität Wien, A-1030 Vienna, Austria
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, 04103 Leipzig, Germany
- Max Planck-Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Cambridge, MA 02138
- Howard Hughes Medical Institute (HHMI), Harvard Medical School, Boston, MA 02115
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| |
Collapse
|
17
|
Wangkumhang P, Greenfield M, Hellenthal G. An efficient method to identify, date, and describe admixture events using haplotype information. Genome Res 2022; 32:1553-1564. [PMID: 35794007 PMCID: PMC9435750 DOI: 10.1101/gr.275994.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 06/28/2022] [Indexed: 11/24/2022]
Abstract
We present fastGLOBETROTTER, an efficient new haplotype-based technique to identify, date, and describe admixture events using genome-wide autosomal data. With simulations, we show how fastGLOBETROTTER reduces computation time by an order of magnitude relative to the related technique GLOBETROTTER without suffering loss of accuracy. We apply fastGLOBETROTTER to a cohort of more than 6000 Europeans from 10 countries, revealing previously unreported admixture signals. In particular, we infer multiple periods of admixture related to East Asian or Siberian-like sources, starting >2000 yr ago, in people living in countries north of the Baltic Sea. In contrast, we infer admixture related to West Asian, North African, and/or Southern European sources in populations south of the Baltic Sea, including admixture dated to ∼300-700 CE, overlapping the fall of the Roman Empire, in people from Belgium, France, and parts of Germany. Our new approach scales to analyzing hundreds to thousands of individuals from a putatively admixed population and, hence, is applicable to emerging large-scale cohorts of genetically homogeneous populations.
Collapse
Affiliation(s)
- Pongsakorn Wangkumhang
- University College London Genetics Institute (UGI), Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom
- National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani 12120, Thailand
| | - Matthew Greenfield
- University College London Genetics Institute (UGI), Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom
| | - Garrett Hellenthal
- University College London Genetics Institute (UGI), Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
18
|
Revealing the recent demographic history of Europe via haplotype sharing in the UK Biobank. Proc Natl Acad Sci U S A 2022; 119:e2119281119. [PMID: 35696575 PMCID: PMC9233301 DOI: 10.1073/pnas.2119281119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Haplotype-based analyses have recently been leveraged to interrogate the fine-scale structure in specific geographic regions, notably in Europe, although an equivalent haplotype-based understanding across the whole of Europe with these tools is lacking. Furthermore, study of identity-by-descent (IBD) sharing in a large sample of haplotypes across Europe would allow a direct comparison between different demographic histories of different regions. The UK Biobank (UKBB) is a population-scale dataset of genotype and phenotype data collected from the United Kingdom, with established sampling of worldwide ancestries. The exact content of these non-UK ancestries is largely uncharacterized, where study could highlight valuable intracontinental ancestry references with deep phenotyping within the UKBB. In this context, we sought to investigate the sample of European ancestry captured in the UKBB. We studied the haplotypes of 5,500 UKBB individuals with a European birthplace; investigated the population structure and demographic history in Europe, showing in parallel the variety of footprints of demographic history in different genetic regions around Europe; and expand knowledge of the genetic landscape of the east and southeast of Europe. Providing an updated map of European genetics, we leverage IBD-segment sharing to explore the extent of population isolation and size across the continent. In addition to building and expanding upon previous knowledge in Europe, our results show the UKBB as a source of diverse ancestries beyond Britain. These worldwide ancestries sampled in the UKBB may complement and inform researchers interested in specific communities or regions not limited to Britain.
Collapse
|
19
|
Helena's Many Daughters: More Mitogenome Diversity behind the Most Common West Eurasian mtDNA Control Region Haplotype in an Extended Italian Population Sample. Int J Mol Sci 2022; 23:ijms23126725. [PMID: 35743173 PMCID: PMC9223851 DOI: 10.3390/ijms23126725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/27/2023] Open
Abstract
The high number of matching haplotypes of the most common mitochondrial (mt)DNA lineages are considered to be the greatest limitation for forensic applications. This study investigates the potential to solve this constraint by massively parallel sequencing a large number of mitogenomes that share the most common West Eurasian mtDNA control region (CR) haplotype motif (263G 315.1C 16519C). We augmented a pilot study on 29 to a total of 216 Italian mitogenomes that represents the largest set of the most common CR haplotype compiled from a single country. The extended population sample confirmed and extended the huge coding region diversity behind the most common CR motif. Complete mitogenome sequencing allowed for the detection of 163 distinct haplotypes, raising the power of discrimination from 0 (CR) to 99.6% (mitogenome). The mtDNAs were clustered into 61 named clades of haplogroup H and did not reveal phylogeographic trends within Italy. Rapid individualization approaches for investigative purposes are limited to the most frequent H clades of the dataset, viz. H1, H3, and H7.
Collapse
|
20
|
Assessing temporal and geographic contacts across the Adriatic Sea through the analysis of genome-wide data from Southern Italy. Genomics 2022; 114:110405. [PMID: 35709925 DOI: 10.1016/j.ygeno.2022.110405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022]
Abstract
Southern Italy was characterised by a complex prehistory that started with different Palaeolithic cultures, later followed by the Neolithization and the demic dispersal from the Pontic-Caspian Steppe during the Bronze Age. Archaeological and historical evidences point to a link between Southern Italians and the Balkans still present in modern times. To shed light on these dynamics, we analysed around 700 South Mediterranean genomes combined with informative ancient DNAs. Our findings revealed high affinities of South-Eastern Italians with modern Eastern Peloponnesians, and a closer affinity of ancient Greek genomes with those from specific regions of South Italy than modern Greek genomes. The higher similarity could be associated with a Bronze Age component ultimately originating from the Caucasus with high Iranian and Anatolian Neolithic ancestries. Furthermore, extremely differentiated allele frequencies among Northern and Southern Italy revealed putatively adapted SNPs in genes involved in alcohol metabolism, nevi features and immunological traits.
Collapse
|
21
|
Aneli S, Saupe T, Montinaro F, Solnik A, Molinaro L, Scaggion C, Carrara N, Raveane A, Kivisild T, Metspalu M, Scheib CL, Pagani L. The Genetic Origin of Daunians and the Pan-Mediterranean Southern Italian Iron Age Context. Mol Biol Evol 2022; 39:msac014. [PMID: 35038748 PMCID: PMC8826970 DOI: 10.1093/molbev/msac014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The geographical location and shape of Apulia, a narrow land stretching out in the sea at the South of Italy, made this region a Mediterranean crossroads connecting Western Europe and the Balkans. Such movements culminated at the beginning of the Iron Age with the Iapygian civilization which consisted of three cultures: Peucetians, Messapians, and Daunians. Among them, the Daunians left a peculiar cultural heritage, with one-of-a-kind stelae and pottery, but, despite the extensive archaeological literature, their origin has been lost to time. In order to shed light on this and to provide a genetic picture of Iron Age Southern Italy, we collected and sequenced human remains from three archaeological sites geographically located in Northern Apulia (the area historically inhabited by Daunians) and radiocarbon dated between 1157 and 275 calBCE. We find that Iron Age Apulian samples are still distant from the genetic variability of modern-day Apulians, they show a degree of genetic heterogeneity comparable with the cosmopolitan Republican and Imperial Roman civilization, even though a few kilometers and centuries separate them, and they are well inserted into the Iron Age Pan-Mediterranean genetic landscape. Our study provides for the first time a window on the genetic make-up of pre-Roman Apulia, whose increasing connectivity within the Mediterranean landscape, would have contributed to laying the foundation for modern genetic variability. In this light, the genetic profile of Daunians may be compatible with an at least partial autochthonous origin, with plausible contributions from the Balkan peninsula.
Collapse
Affiliation(s)
- Serena Aneli
- Department of Biology, University of Padua, Padova, Italy
| | - Tina Saupe
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biology-Genetics, University of Bari, Bari, Italy
| | - Anu Solnik
- Core Facility, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Ludovica Molinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Cinzia Scaggion
- Department of Geosciences, University of Padua, Padova, Italy
| | - Nicola Carrara
- Anthropology Museum, University of Padova, Padova, Italy
| | - Alessandro Raveane
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christiana L Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- St John’s College, Cambridge, United Kingdom
| | - Luca Pagani
- Department of Biology, University of Padua, Padova, Italy
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
22
|
Scapoli C, Ziliotto N, Lunghi B, Menegatti E, Salvi F, Zamboni P, Baroni M, Mascoli F, Bernardi F, Marchetti G. Combination of Genomic and Transcriptomic Approaches Highlights Vascular and Circadian Clock Components in Multiple Sclerosis. Int J Mol Sci 2021; 23:ijms23010310. [PMID: 35008743 PMCID: PMC8745220 DOI: 10.3390/ijms23010310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 12/17/2022] Open
Abstract
Aiming at exploring vascular components in multiple sclerosis (MS) with brain outflow disturbance, we combined transcriptome analysis in MS internal jugular vein (IJV) wall with WES in MS families with vertical transmission of disease. Main results were the differential expression in IJV wall of 16 MS-GWAS genes and of seven genes (GRIN2A, GRIN2B, IL20RB, IL26, PER3, PITX2, and PPARGC1A) not previously indicated by GWAS but encoding for proteins functionally interacting with MS candidate gene products. Strikingly, 22/23 genes have been previously associated with vascular or neuronal traits/diseases, nine encoded for transcriptional factors/regulators and six (CAMK2G, GRIN2A, GRIN2B, N1RD1, PER3, PPARGC1A) for circadian entrainment/rhythm components. Among the WES low-frequency (MAF ≤ 0.04) SNPs (n = 7) filtered in the 16 genes, the NR1D1 rs17616365 showed significantly different MAF in the Network for Italian Genomes affected cohort than in the 1000 Genome Project Tuscany samples. This pattern was also detected in five nonintronic variants (GRIN2B rs1805482, PER3 rs2640909, PPARGC1A rs2970847, rs8192678, and rs3755863) in genes coding for functional partners. Overall, the study proposes specific markers and low-frequency variants that might help (i) to understand perturbed biological processes in vascular tissues contributing to MS disease, and (ii) to characterize MS susceptibility genes for functional association with disease-pathways.
Collapse
Affiliation(s)
- Chiara Scapoli
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.S.); (B.L.); (M.B.)
| | - Nicole Ziliotto
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy;
| | - Barbara Lunghi
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.S.); (B.L.); (M.B.)
| | - Erica Menegatti
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (P.Z.)
| | - Fabrizio Salvi
- Center for Immunological and Rare Neurological Diseases, IRCCS of Neurological Sciences, Bellaria Hospital, 40139 Bologna, Italy;
| | - Paolo Zamboni
- Department of Translational Medicine and for Romagna, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (P.Z.)
| | - Marcello Baroni
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.S.); (B.L.); (M.B.)
| | - Francesco Mascoli
- Unit of Vascular and Endovascular Surgery, S. Anna University-Hospital, 44124 Ferrara, Italy;
| | - Francesco Bernardi
- Department of Life Science and Biotechnology, University of Ferrara, 44121 Ferrara, Italy; (C.S.); (B.L.); (M.B.)
- Correspondence: ; Tel.: +39-0532-974425
| | - Giovanna Marchetti
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
23
|
Posth C, Zaro V, Spyrou MA, Vai S, Gnecchi-Ruscone GA, Modi A, Peltzer A, Mötsch A, Nägele K, Vågene ÅJ, Nelson EA, Radzevičiūtė R, Freund C, Bondioli LM, Cappuccini L, Frenzel H, Pacciani E, Boschin F, Capecchi G, Martini I, Moroni A, Ricci S, Sperduti A, Turchetti MA, Riga A, Zavattaro M, Zifferero A, Heyne HO, Fernández-Domínguez E, Kroonen GJ, McCormick M, Haak W, Lari M, Barbujani G, Bondioli L, Bos KI, Caramelli D, Krause J. The origin and legacy of the Etruscans through a 2000-year archeogenomic time transect. SCIENCE ADVANCES 2021; 7:eabi7673. [PMID: 34559560 PMCID: PMC8462907 DOI: 10.1126/sciadv.abi7673] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The origin, development, and legacy of the enigmatic Etruscan civilization from the central region of the Italian peninsula known as Etruria have been debated for centuries. Here we report a genomic time transect of 82 individuals spanning almost two millennia (800 BCE to 1000 CE) across Etruria and southern Italy. During the Iron Age, we detect a component of Indo-European–associated steppe ancestry and the lack of recent Anatolian-related admixture among the putative non–Indo-European–speaking Etruscans. Despite comprising diverse individuals of central European, northern African, and Near Eastern ancestry, the local gene pool is largely maintained across the first millennium BCE. This drastically changes during the Roman Imperial period where we report an abrupt population-wide shift to ~50% admixture with eastern Mediterranean ancestry. Last, we identify northern European components appearing in central Italy during the Early Middle Ages, which thus formed the genetic landscape of present-day Italian populations.
Collapse
Affiliation(s)
- Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
- Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen 72074, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen 72074, Germany
| | - Valentina Zaro
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
- Department of Biology, University of Florence, Florence 50122, Italy
| | - Maria A. Spyrou
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
- Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen 72074, Germany
| | - Stefania Vai
- Department of Biology, University of Florence, Florence 50122, Italy
| | - Guido A. Gnecchi-Ruscone
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Alessandra Modi
- Department of Biology, University of Florence, Florence 50122, Italy
| | - Alexander Peltzer
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Angela Mötsch
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Kathrin Nägele
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Åshild J. Vågene
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen 1350, Denmark
| | - Elizabeth A. Nelson
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
- Department of Anthropology, University of Connecticut, Storrs, CT 06269, USA
| | - Rita Radzevičiūtė
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Cäcilia Freund
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | | | - Luca Cappuccini
- Department of History, Archeology, Geography, Art and Entertainment, University of Florence, Firenze 50121, Italy
| | - Hannah Frenzel
- Anatomy Institute, University of Leipzig, Leipzig 04103, Germany
| | - Elsa Pacciani
- Superintendence of Archaeology, Fine Arts and Landscape for Firenze, Pistoia and Prato, Italy
| | - Francesco Boschin
- Department of Physical Sciences, Earth and Environment, Research Unit Prehistory and Anthropology, University of Siena, Siena 53100, Italy
| | - Giulia Capecchi
- Department of Physical Sciences, Earth and Environment, Research Unit Prehistory and Anthropology, University of Siena, Siena 53100, Italy
| | - Ivan Martini
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena 53100, Italy
| | - Adriana Moroni
- Department of Physical Sciences, Earth and Environment, Research Unit Prehistory and Anthropology, University of Siena, Siena 53100, Italy
| | - Stefano Ricci
- Department of Physical Sciences, Earth and Environment, Research Unit Prehistory and Anthropology, University of Siena, Siena 53100, Italy
| | - Alessandra Sperduti
- Bioarchaeology Service, Museum of Civilizations, Rome 00144, Italy
- Asia, Africa and Mediterranean Department, University of Naples, Naples 80134, Italy
| | | | - Alessandro Riga
- Department of Biology, University of Florence, Florence 50122, Italy
| | - Monica Zavattaro
- Museum of Anthropology and Ethnology, Museum System of the University of Florence, Florence 50122, Italy
| | - Andrea Zifferero
- Department of History and Cultural Heritage, University of Siena, Siena 53100, Italy
| | - Henrike O. Heyne
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
- Program for Medical and Population Genetics/Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Guus J. Kroonen
- Department of Nordic Studies and Linguistics, University of Copenhagen, Copenhagen 2300, Denmark
- Leiden University Center for Linguistics, Leiden 2311 BE, Netherlands
| | - Michael McCormick
- Initiative for the Science of the Human Past, Department of History-Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Harvard University, Cambridge, MA 02138, USA
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Martina Lari
- Department of Biology, University of Florence, Florence 50122, Italy
| | - Guido Barbujani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara 44121, Italy
| | - Luca Bondioli
- Bioarchaeology Service, Museum of Civilizations, Rome 00144, Italy
- Department of Cultural Heritage, University of Padua, Padua 35139, Italy
| | - Kirsten I. Bos
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - David Caramelli
- Department of Biology, University of Florence, Florence 50122, Italy
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| |
Collapse
|
24
|
Pinheiro FC, Sperb-Ludwig F, Schwartz IVD. Epidemiological aspects of hereditary fructose intolerance: A database study. Hum Mutat 2021; 42:1548-1566. [PMID: 34524712 DOI: 10.1002/humu.24282] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 09/05/2021] [Accepted: 09/11/2021] [Indexed: 12/11/2022]
Abstract
Hereditary fructose intolerance (HFI) is an inborn error of fructose metabolism of autosomal recessive inheritance caused by pathogenic variants in the ALDOB gene that lead to aldolase B deficiency in the liver, kidneys, and intestine. Patients manifest symptoms, such as ketotic hypoglycemia, vomiting, nausea, in addition to hepatomegaly and other liver and kidney dysfunctions. The treatment consists of a fructose-restricted diet, which results in a good prognosis. To analyze the distribution of ALDOB variants described in patients and to estimate the prevalence of HFI based on carrier frequency in the gnomAD database, a systematic review was conducted to assess ALDOB gene variants among patients with HFI. The prevalence of HFI was estimated from the carrier frequency of variants described in patients, as well as rare variants predicted as pathogenic by in silico tools. The p.(Ala150Pro) and p.(Ala175Asp) variants are the most frequent and are distributed worldwide. However, these variants have particular distribution patterns in Europe. The analysis of the prevalence of HFI showed that the inclusion of rare alleles predicted as pathogenic is a more informative approach for populations with few patients. The data show that HFI has a wide distribution and an estimated prevalence of ~1:10,000.
Collapse
Affiliation(s)
- Franciele C Pinheiro
- Post-Graduate Program in Genetics and Molecular Biology, Federal University of do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,BRAIN Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,Federal University of Pampa, Itaqui, Rio Grande do Sul, Brazil
| | - Fernanda Sperb-Ludwig
- Post-Graduate Program in Genetics and Molecular Biology, Federal University of do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,BRAIN Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ida V D Schwartz
- Post-Graduate Program in Genetics and Molecular Biology, Federal University of do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,BRAIN Laboratory, Center of Experimental Research, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil.,Department of Genetics, Bioscience Institute, Federal University of do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
25
|
The genetic structure of the Turkish population reveals high levels of variation and admixture. Proc Natl Acad Sci U S A 2021; 118:2026076118. [PMID: 34426522 DOI: 10.1073/pnas.2026076118] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The construction of population-based variomes has contributed substantially to our understanding of the genetic basis of human inherited disease. Here, we investigated the genetic structure of Turkey from 3,362 unrelated subjects whose whole exomes (n = 2,589) or whole genomes (n = 773) were sequenced to generate a Turkish (TR) Variome that should serve to facilitate disease gene discovery in Turkey. Consistent with the history of present-day Turkey as a crossroads between Europe and Asia, we found extensive admixture between Balkan, Caucasus, Middle Eastern, and European populations with a closer genetic relationship of the TR population to Europeans than hitherto appreciated. We determined that 50% of TR individuals had high inbreeding coefficients (≥0.0156) with runs of homozygosity longer than 4 Mb being found exclusively in the TR population when compared to 1000 Genomes Project populations. We also found that 28% of exome and 49% of genome variants in the very rare range (allele frequency < 0.005) are unique to the modern TR population. We annotated these variants based on their functional consequences to establish a TR Variome containing alleles of potential medical relevance, a repository of homozygous loss-of-function variants and a TR reference panel for genotype imputation using high-quality haplotypes, to facilitate genome-wide association studies. In addition to providing information on the genetic structure of the modern TR population, these data provide an invaluable resource for future studies to identify variants that are associated with specific phenotypes as well as establishing the phenotypic consequences of mutations in specific genes.
Collapse
|
26
|
Ferreira JC, Alshamali F, Montinaro F, Cavadas B, Torroni A, Pereira L, Raveane A, Fernandes V. Projecting Ancient Ancestry in Modern-Day Arabians and Iranians: A Key Role of the Past Exposed Arabo-Persian Gulf on Human Migrations. Genome Biol Evol 2021; 13:6364187. [PMID: 34480555 PMCID: PMC8435661 DOI: 10.1093/gbe/evab194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
The Arabian Peninsula is strategic for investigations centered on the early structuring of modern humans in the wake of the out-of-Africa migration. Despite its poor climatic conditions for the recovery of ancient human DNA evidence, the availability of both genomic data from neighboring ancient specimens and informative statistical tools allow modeling the ancestry of local modern populations. We applied this approach to a data set of 741,000 variants screened in 291 Arabians and 78 Iranians, and obtained insightful evidence. The west-east axis was a strong forcer of population structure in the Peninsula, and, more importantly, there were clear continuums throughout time linking western Arabia with the Levant, and eastern Arabia with Iran and the Caucasus. Eastern Arabians also displayed the highest levels of the basal Eurasian lineage of all tested modern-day populations, a signal that was maintained even after correcting for a possible bias due to a recent sub-Saharan African input in their genomes. Not surprisingly, eastern Arabians were also the ones with highest similarity with Iberomaurusians, who were, so far, the best proxy for the basal Eurasians amongst the known ancient specimens. The basal Eurasian lineage is the signature of ancient non-Africans who diverged from the common European-eastern Asian pool before 50,000 years ago, prior to the later interbred with Neanderthals. Our results appear to indicate that the exposed basin of the Arabo-Persian Gulf was the possible home of basal Eurasians, a scenario to be further investigated by searching ancient Arabian human specimens.
Collapse
Affiliation(s)
- Joana C Ferreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Portugal.,ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Farida Alshamali
- Department of Forensic Sciences and Criminology, Dubai Police General Headquarters, Dubai, United Arab Emirates
| | - Francesco Montinaro
- Department of Biology-Genetics, University of Bari, Italy.,Estonian Biocentre, Institute of Genomics, University of Tartu, Estonia
| | - Bruno Cavadas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Portugal
| | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Italy
| | - Luisa Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Portugal
| | - Alessandro Raveane
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Italy.,Laboratory of Haematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Veronica Fernandes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Portugal
| |
Collapse
|
27
|
Aneli S, Caldon M, Saupe T, Montinaro F, Pagani L. Through 40,000 years of human presence in Southern Europe: the Italian case study. Hum Genet 2021; 140:1417-1431. [PMID: 34410492 PMCID: PMC8460580 DOI: 10.1007/s00439-021-02328-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022]
Abstract
The Italian Peninsula, a natural pier across the Mediterranean Sea, witnessed intricate population events since the very beginning of the human occupation in Europe. In the last few years, an increasing number of modern and ancient genomes from the area have been published by the international research community. This genomic perspective started unveiling the relevance of Italy to understand the post-Last Glacial Maximum (LGM) re-peopling of Europe, the earlier phase of the Neolithic westward migrations, and its linking role between Eastern and Western Mediterranean areas after the Iron Age. However, many open questions are still waiting for more data to be addressed in full. With this review, we summarize the current knowledge emerging from the available ancient Italian individuals and, by re-analysing them all at once, we try to shed light on the avenues future research in the area should cover. In particular, open questions concern (1) the fate of pre-Villabruna Europeans and to what extent their genomic components were absorbed by the post-LGM hunter-gatherers; (2) the role of Sicily and Sardinia before LGM; (3) to what degree the documented genetic structure within the Early Neolithic settlers can be described as two separate migrations; (4) what are the population events behind the marked presence of an Iranian Neolithic-like component in Bronze Age and Iron Age Italian and Southern European samples.
Collapse
Affiliation(s)
- Serena Aneli
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy.
| | - Matteo Caldon
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy
| | - Tina Saupe
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia.,Department of Biology-Genetics, University of Bari, Via Edoardo Orabona 4, 70125, Bari, Italy
| | - Luca Pagani
- Department of Biology, University of Padova, Via Ugo Bassi, 58/B, 35131, Padova, Italy.,Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23b, 51010, Tartu, Estonia
| |
Collapse
|
28
|
Saupe T, Montinaro F, Scaggion C, Carrara N, Kivisild T, D'Atanasio E, Hui R, Solnik A, Lebrasseur O, Larson G, Alessandri L, Arienzo I, De Angelis F, Rolfo MF, Skeates R, Silvestri L, Beckett J, Talamo S, Dolfini A, Miari M, Metspalu M, Benazzi S, Capelli C, Pagani L, Scheib CL. Ancient genomes reveal structural shifts after the arrival of Steppe-related ancestry in the Italian Peninsula. Curr Biol 2021; 31:2576-2591.e12. [PMID: 33974848 DOI: 10.1016/j.cub.2021.04.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/28/2020] [Accepted: 04/09/2021] [Indexed: 12/30/2022]
Abstract
Across Europe, the genetics of the Chalcolithic/Bronze Age transition is increasingly characterized in terms of an influx of Steppe-related ancestry. The effect of this major shift on the genetic structure of populations in the Italian Peninsula remains underexplored. Here, genome-wide shotgun data for 22 individuals from commingled cave and single burials in Northeastern and Central Italy dated between 3200 and 1500 BCE provide the first genomic characterization of Bronze Age individuals (n = 8; 0.001-1.2× coverage) from the central Italian Peninsula, filling a gap in the literature between 1950 and 1500 BCE. Our study confirms a diversity of ancestry components during the Chalcolithic and the arrival of Steppe-related ancestry in the central Italian Peninsula as early as 1600 BCE, with this ancestry component increasing through time. We detect close patrilineal kinship in the burial patterns of Chalcolithic commingled cave burials and a shift away from this in the Bronze Age (2200-900 BCE) along with lowered runs of homozygosity, which may reflect larger changes in population structure. Finally, we find no evidence that the arrival of Steppe-related ancestry in Central Italy directly led to changes in frequency of 115 phenotypes present in the dataset, rather that the post-Roman Imperial period had a stronger influence, particularly on the frequency of variants associated with protection against Hansen's disease (leprosy). Our study provides a closer look at local dynamics of demography and phenotypic shifts as they occurred as part of a broader phenomenon of widespread admixture during the Chalcolithic/Bronze Age transition.
Collapse
Affiliation(s)
- Tina Saupe
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia.
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia; Department of Biology-Genetics, University of Bari, Via E. Orabona, 4, Bari 70124, Italy
| | - Cinzia Scaggion
- Department of Geosciences, University of Padova, Via Gradenigo 6, Padova 35131, Italy
| | - Nicola Carrara
- Museum of Anthropology, University of Padova, Palazzo Cavalli, via Giotto 1, Padova 35121, Italy
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia; Department of Human Genetics, KU Leuven, Leuven, Herestraat 49 3000, Belgium
| | - Eugenia D'Atanasio
- Institute of Molecular Biology and Pathology, CNR, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Ruoyun Hui
- McDonald Institute for Archaeological Research, University of Cambridge, Downing Street, Cambridge CB2 3ER, UK
| | - Anu Solnik
- Core Facility, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia
| | - Ophélie Lebrasseur
- Department of Archaeology, Classics and Egyptology, University of Liverpool, 12-14 Abercromby Square, Liverpool L69 7WZ, UK; Palaeogenomics & Bio-Archaeology Research Network, School of Archaeology, University of Oxford, 1 South Parks Road, Oxford OX1 3TG, UK
| | - Greger Larson
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Via Diocleziano 328, Naples 80125, Italy
| | - Luca Alessandri
- Groningen Institute of Archaeology, University of Groningen, Poststraat 6, Groningen 9712, the Netherlands
| | - Ilenia Arienzo
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Via Diocleziano 328, Naples 80125, Italy
| | - Flavio De Angelis
- Centre of Molecular Anthropology for Ancient DNA Studies, Department of Biology, University of Rome "Tor Vergata," Via della Ricerca Scientifica 1, Rome 00133, Italy
| | - Mario Federico Rolfo
- Department of History, Culture and Society, University of Rome "Tor Vergata," Via Columbia 1, Rome 00133, Italy
| | - Robin Skeates
- Department of Archaeology, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, UK
| | - Letizia Silvestri
- Department of History, Culture and Society, University of Rome "Tor Vergata," Via Columbia 1, Rome 00133, Italy
| | | | - Sahra Talamo
- Department of Chemistry "Giacomo Ciamician," University of Bologna, Via Selmi 2, Bologna 40126, Italy; Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig 04103, Germany
| | - Andrea Dolfini
- School of History, Classics and Archaeology, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Monica Miari
- Superintendency of Archeology, Fine Arts and Landscape for the metropolitan city of Bologna and the provinces of Modena, Reggio Emilia and Ferrara, Comune di Bologna, Sede Via Belle Arti n. 52, Bologna 40126, Italy
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Via degli Ariani, 1, Ravenna 40126, Italy
| | - Cristian Capelli
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK; Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, University of Parma, Parco Area delle Scienze 17/A, Parma 43124, Italy
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia; Department of Biology, University of Padova, Via U. Bassi, 58/B, Padova 35122, Italy
| | - Christiana L Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, Riia 23B, Tartu 51010, Estonia; St. John's College, University of Cambridge, St. John's Street, Cambridge CB2 1TP, UK.
| |
Collapse
|
29
|
Garagnani P, Marquis J, Delledonne M, Pirazzini C, Marasco E, Kwiatkowska KM, Iannuzzi V, Bacalini MG, Valsesia A, Carayol J, Raymond F, Ferrarini A, Xumerle L, Collino S, Mari D, Arosio B, Casati M, Ferri E, Monti D, Nacmias B, Sorbi S, Luiselli D, Pettener D, Castellani G, Sala C, Passarino G, De Rango F, D'Aquila P, Bertamini L, Martinelli N, Girelli D, Olivieri O, Giuliani C, Descombes P, Franceschi C. Whole-genome sequencing analysis of semi-supercentenarians. eLife 2021; 10:57849. [PMID: 33941312 PMCID: PMC8096429 DOI: 10.7554/elife.57849] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Extreme longevity is the paradigm of healthy aging as individuals who reached the extreme decades of human life avoided or largely postponed all major age-related diseases. In this study, we sequenced at high coverage (90X) the whole genome of 81 semi-supercentenarians and supercentenarians [105+/110+] (mean age: 106.6 ± 1.6) and of 36 healthy unrelated geographically matched controls (mean age 68.0 ± 5.9) recruited in Italy. The results showed that 105+/110+ are characterized by a peculiar genetic background associated with efficient DNA repair mechanisms, as evidenced by both germline data (common and rare variants) and somatic mutations patterns (lower mutation load if compared to younger healthy controls). Results were replicated in a second independent cohort of 333 Italian centenarians and 358 geographically matched controls. The genetics of 105+/110+ identified DNA repair and clonal haematopoiesis as crucial players for healthy aging and for the protection from cardiovascular events.
Collapse
Affiliation(s)
- Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden.,Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | - Julien Marquis
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Massimo Delledonne
- Functional Genomics Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Chiara Pirazzini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Elena Marasco
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, Bologna, Italy
| | | | - Vincenzo Iannuzzi
- Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna, Italy
| | | | - Armand Valsesia
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Jerome Carayol
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Frederic Raymond
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Alberto Ferrarini
- Functional Genomics Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Luciano Xumerle
- Functional Genomics Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Daniela Mari
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Beatrice Arosio
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy.,Geriatric Unit, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Martina Casati
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Evelyn Ferri
- Fondazione Ca' Granda, IRCCS Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Firenze, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Firenze, Italy
| | - Donata Luiselli
- Department for the Cultural Heritage (DBC), University of Bologna, Ravenna, Italy
| | - Davide Pettener
- Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Bologna, Italy
| | - Gastone Castellani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Claudia Sala
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Francesco De Rango
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Patrizia D'Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Luca Bertamini
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Nicola Martinelli
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Domenico Girelli
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Oliviero Olivieri
- Department of Medicine, Unit of Internal Medicine, University of Verona, Verona, Italy
| | - Cristina Giuliani
- Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Bologna, Italy.,School of Anthropology and Museum Ethnography, University of Oxford, Oxford, United Kingdom
| | - Patrick Descombes
- Nestlé Research, Société des Produits Nestlé SA, Lausanne, Switzerland
| | - Claudio Franceschi
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Applied Mathematics and Laboratory of Systems Biology of Aging, Lobachevsky University, Nizhny Novgorod, Russian Federation
| |
Collapse
|
30
|
First Bronze Age Human Mitogenomes from Calabria (Grotta Della Monaca, Southern Italy). Genes (Basel) 2021; 12:genes12050636. [PMID: 33922908 PMCID: PMC8146030 DOI: 10.3390/genes12050636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/02/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022] Open
Abstract
The Italian peninsula was host to a strong history of migration processes that shaped its genomic variability since prehistoric times. During the Metal Age, Sicily and Southern Italy were the protagonists of intense trade networks and settlements along the Mediterranean. Nonetheless, ancient DNA studies in Southern Italy are, at present, still limited to prehistoric and Roman Apulia. Here, we present the first mitogenomes from a Middle Bronze Age cave burial in Calabria to address this knowledge gap. We adopted a hybridization capture approach, which enabled the recovery of one complete and one partial mitochondrial genome. Phylogenetic analysis assigned these two individuals to the H1e and H5 subhaplogroups, respectively. This preliminary phylogenetic analysis supports affinities with coeval Sicilian populations, along with Linearbandkeramik and Bell Beaker cultures maternal lineages from Central Europe and Iberia. Our work represents a starting point which contributes to the comprehension of migrations and population dynamics in Southern Italy, and highlights this knowledge gap yet to be filled by genomic studies.
Collapse
|
31
|
Capodiferro MR, Aram B, Raveane A, Rambaldi Migliore N, Colombo G, Ongaro L, Rivera J, Mendizábal T, Hernández-Mora I, Tribaldos M, Perego UA, Li H, Scheib CL, Modi A, Gòmez-Carballa A, Grugni V, Lombardo G, Hellenthal G, Pascale JM, Bertolini F, Grieco GS, Cereda C, Lari M, Caramelli D, Pagani L, Metspalu M, Friedrich R, Knipper C, Olivieri A, Salas A, Cooke R, Montinaro F, Motta J, Torroni A, Martín JG, Semino O, Malhi RS, Achilli A. Archaeogenomic distinctiveness of the Isthmo-Colombian area. Cell 2021; 184:1706-1723.e24. [PMID: 33761327 PMCID: PMC8024902 DOI: 10.1016/j.cell.2021.02.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/20/2020] [Accepted: 02/18/2021] [Indexed: 01/09/2023]
Abstract
The recently enriched genomic history of Indigenous groups in the Americas is still meager concerning continental Central America. Here, we report ten pre-Hispanic (plus two early colonial) genomes and 84 genome-wide profiles from seven groups presently living in Panama. Our analyses reveal that pre-Hispanic demographic events contributed to the extensive genetic structure currently seen in the area, which is also characterized by a distinctive Isthmo-Colombian Indigenous component. This component drives these populations on a specific variability axis and derives from the local admixture of different ancestries of northern North American origin(s). Two of these ancestries were differentially associated to Pleistocene Indigenous groups that also moved into South America, leaving heterogenous genetic footprints. An additional Pleistocene ancestry was brought by a still unsampled population of the Isthmus (UPopI) that remained restricted to the Isthmian area, expanded locally during the early Holocene, and left genomic traces up to the present day.
Collapse
Affiliation(s)
| | - Bethany Aram
- Department of Geography, History and Philosophy, the Pablo de Olavide University of Seville, Seville 41013, Spain
| | - Alessandro Raveane
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy; Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Nicola Rambaldi Migliore
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Giulia Colombo
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Linda Ongaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Javier Rivera
- Department of History and Social Sciences, Universidad del Norte, Barranquilla 080001, Colombia
| | - Tomás Mendizábal
- Patronato Panamá Viejo, Panama City 0823-05096, Panama; Coiba Scientific Station (COIBA AIP), City of Knowledge, Clayton 0843-03081, Panama
| | - Iosvany Hernández-Mora
- Department of History and Social Sciences, Universidad del Norte, Barranquilla 080001, Colombia
| | - Maribel Tribaldos
- Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama
| | - Ugo Alessandro Perego
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Hongjie Li
- Department of Anthropology, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Christiana Lyn Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Alessandra Modi
- Department of Biology, University of Florence, Florence 50122, Italy
| | - Alberto Gòmez-Carballa
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; GenPoB Research Group, Instituto de Investigación Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), 15706 Galicia, Spain
| | - Viola Grugni
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Gianluca Lombardo
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Garrett Hellenthal
- UCL Genetics Institute (UGI), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Juan Miguel Pascale
- Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan 20141, Italy
| | | | - Cristina Cereda
- Genomic and Post-Genomic Center, National Neurological Institute C. Mondino, Pavia 27100, Italy
| | - Martina Lari
- Department of Biology, University of Florence, Florence 50122, Italy
| | - David Caramelli
- Department of Biology, University of Florence, Florence 50122, Italy
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia; Department of Biology, University of Padua, Padua 35121, Italy
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Ronny Friedrich
- Curt Engelhorn Center Archaeometry (CEZA), Mannheim 68159, Germany
| | - Corina Knipper
- Curt Engelhorn Center Archaeometry (CEZA), Mannheim 68159, Germany
| | - Anna Olivieri
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Antonio Salas
- Unidade de Xenética, Instituto de Ciencias Forenses (INCIFOR), Facultade de Medicina, Universidade de Santiago de Compostela, 15782 Galicia, Spain; GenPoB Research Group, Instituto de Investigación Sanitarias (IDIS), Hospital Clínico Universitario de Santiago de Compostela (SERGAS), 15706 Galicia, Spain
| | - Richard Cooke
- Smithsonian Tropical Research Institute, Panama City 0843-03092, Panama; Sistema Nacional de Investigadores, Secretaría Nacional de Ciencia y Tecnología, Ciudad del Saber, Clayton 0816-02852, Panama
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia; Department of Biology-Genetics, University of Bari, Bari 70125, Italy
| | - Jorge Motta
- Gorgas Memorial Institute for Health Studies, Panama City 0816-02593, Panama
| | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Juan Guillermo Martín
- Department of History and Social Sciences, Universidad del Norte, Barranquilla 080001, Colombia; Coiba Scientific Station (COIBA AIP), City of Knowledge, Clayton 0843-03081, Panama
| | - Ornella Semino
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Ripan Singh Malhi
- Department of Anthropology, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani," University of Pavia, Pavia 27100, Italy.
| |
Collapse
|
32
|
Kerminen S, Cerioli N, Pacauskas D, Havulinna AS, Perola M, Jousilahti P, Salomaa V, Daly MJ, Vyas R, Ripatti S, Pirinen M. Changes in the fine-scale genetic structure of Finland through the 20th century. PLoS Genet 2021; 17:e1009347. [PMID: 33661898 PMCID: PMC7932171 DOI: 10.1371/journal.pgen.1009347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/06/2021] [Indexed: 11/18/2022] Open
Abstract
Information about individual-level genetic ancestry is central to population genetics, forensics and genomic medicine. So far, studies have typically considered genetic ancestry on a broad continental level, and there is much less understanding of how more detailed genetic ancestry profiles can be generated and how accurate and reliable they are. Here, we assess these questions by developing a framework for individual-level ancestry estimation within a single European country, Finland, and we apply the framework to track changes in the fine-scale genetic structure throughout the 20th century. We estimate the genetic ancestry for 18,463 individuals from the National FINRISK Study with respect to up to 10 genetically and geographically motivated Finnish reference groups and illustrate the annual changes in the fine-scale genetic structure over the decades from 1920s to 1980s for 12 geographic regions of Finland. We detected major changes after a sudden, internal migration related to World War II from the region of ceded Karelia to the other parts of the country as well as the effect of urbanization starting from the 1950s. We also show that while the level of genetic heterogeneity in general increases towards the present day, its rate of change has considerable differences between the regions. To our knowledge, this is the first study that estimates annual changes in the fine-scale ancestry profiles within a relatively homogeneous European country and demonstrates how such information captures a detailed spatial and temporal history of a population. We provide an interactive website for the general public to examine our results. We have inherited our genomes from our parents, who, in turn, inherited their genomes from their parents, etc. Hence, a comparison between genomes of present day individuals reveals genetic population structure due to the varying levels of genetic relatedness among the individuals. We have utilized over 18,000 Finnish samples to characterize the fine-scale genetic population structure in Finland starting from a binary East-West division and ending up with 10 Finnish source populations. Furthermore, we have applied the resulting ancestry information to generate records of how the population structure has evolved each year between 1923 and 1987 in 12 geographical regions of Finland. For example, the war-related evacuation of Karelians from Southeast Finland to other parts of the country show up as a clear, sudden increase in the Evacuated ancestry elsewhere in Finland between 1939 and 1945. Additionally, different regions of Finland show very different levels of genetic mixing in 1900s, from little mixed regions like Ostrobothnia to highly mixed regions like Southwestern Finland. To distribute the results among general public, we provide an interactive website for browsing the municipality and region-level genetic ancestry profiles at https://geneviz.aalto.fi/genetic_ancestry_finland/
Collapse
Affiliation(s)
- Sini Kerminen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Nicola Cerioli
- Department of Media Design, School of Arts, Design and Architecture, Aalto University, Espoo, Finland
| | - Darius Pacauskas
- Department of Media Design, School of Arts, Design and Architecture, Aalto University, Espoo, Finland
- Autovista Group, Helsinki, Finland
| | - Aki S. Havulinna
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Markus Perola
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Veikko Salomaa
- Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Mark J. Daly
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, United States of America
| | - Rupesh Vyas
- Department of Media Design, School of Arts, Design and Architecture, Aalto University, Espoo, Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard University, Cambridge, Massachusetts, United States of America
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Matti Pirinen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
33
|
Sarno S, Petrilli R, Abondio P, De Giovanni A, Boattini A, Sazzini M, De Fanti S, Cilli E, Ciani G, Gentilini D, Pettener D, Romeo G, Giuliani C, Luiselli D. Genetic history of Calabrian Greeks reveals ancient events and long term isolation in the Aspromonte area of Southern Italy. Sci Rep 2021; 11:3045. [PMID: 33542324 PMCID: PMC7862261 DOI: 10.1038/s41598-021-82591-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/15/2021] [Indexed: 01/30/2023] Open
Abstract
Calabrian Greeks are an enigmatic population that have preserved and evolved a unique variety of language, Greco, survived in the isolated Aspromonte mountain area of Southern Italy. To understand their genetic ancestry and explore possible effects of geographic and cultural isolation, we genome-wide genotyped a large set of South Italian samples including both communities that still speak Greco nowadays and those that lost the use of this language earlier in time. Comparisons with modern and ancient populations highlighted ancient, long-lasting genetic links with Eastern Mediterranean and Caucasian/Near-Eastern groups as ancestral sources of Southern Italians. Our results suggest that the Aspromonte communities might be interpreted as genetically drifted remnants that departed from such ancient genetic background as a consequence of long-term isolation. Specific patterns of population structuring and higher levels of genetic drift were indeed observed in these populations, reflecting geographic isolation amplified by cultural differences in the groups that still conserve the Greco language. Isolation and drift also affected the current genetic differentiation at specific gene pathways, prompting for future genome-wide association studies aimed at exploring trait-related loci that have drifted up in frequency in these isolated groups.
Collapse
Affiliation(s)
- Stefania Sarno
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Rosalba Petrilli
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Paolo Abondio
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Andrea De Giovanni
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy ,grid.6292.f0000 0004 1757 1758Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Alessio Boattini
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Sazzini
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy ,grid.6292.f0000 0004 1757 1758Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | - Sara De Fanti
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy ,grid.6292.f0000 0004 1757 1758Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | - Elisabetta Cilli
- grid.6292.f0000 0004 1757 1758Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| | - Graziella Ciani
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Davide Gentilini
- grid.8982.b0000 0004 1762 5736Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy ,Italian Auxologic Institute IRCCS, Cusano Milanino, Milan, Italy
| | - Davide Pettener
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Romeo
- grid.412311.4Medical Genetics Unit, Sant’Orsola-Malpighi University Hospital, Bologna, Italy ,European School of Genetic Medicine, Bologna, Italy
| | - Cristina Giuliani
- grid.6292.f0000 0004 1757 1758Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy ,grid.6292.f0000 0004 1757 1758Interdepartmental Centre Alma Mater Research Institute on Global Challenges and Climate Change, University of Bologna, Bologna, Italy
| | - Donata Luiselli
- grid.6292.f0000 0004 1757 1758Department of Cultural Heritage, University of Bologna, Ravenna, Italy
| |
Collapse
|
34
|
Birolo G, Aneli S, Di Gaetano C, Cugliari G, Russo A, Allione A, Casalone E, Giorgio E, Paraboschi EM, Ardissino D, Duga S, Asselta R, Matullo G. Functional and clinical implications of genetic structure in 1686 Italian exomes. Hum Mutat 2021; 42:272-289. [PMID: 33326653 DOI: 10.1002/humu.24156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 11/13/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
To reconstruct the phenotypical and clinical implications of the Italian genetic structure, we thoroughly analyzed a whole-exome sequencing data set comprised of 1686 healthy Italian individuals. We found six previously unreported variants with remarkable frequency differences between Northern and Southern Italy in the HERC2, OR52R1, ADH1B, and THBS4 genes. We reported 36 clinically relevant variants (submitted as pathogenic, risk factors, or drug response in ClinVar) with significant frequency differences between Italy and Europe. We then explored putatively pathogenic variants in the Italian exome. On average, our Italian individuals carried 16.6 protein-truncating variants (PTVs), with 2.5% of the population having a PTV in one of the 59 American College of Medical Genetics (ACMG) actionable genes. Lastly, we looked for PTVs that are likely to cause Mendelian diseases. We found four heterozygous PTVs in haploinsufficient genes (KAT6A, PTCH1, and STXBP1) and three homozygous PTVs in genes causing recessive diseases (DPYD, FLG, and PYGM). Comparing frequencies from our data set to other public databases, like gnomAD, we showed the importance of population-specific databases for a more accurate assessment of variant pathogenicity. For this reason, we made aggregated frequencies from our data set publicly available as a tool for both clinicians and researchers (http://nigdb.cineca.it; NIG-ExIT).
Collapse
Affiliation(s)
- Giovanni Birolo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Serena Aneli
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | - Alessia Russo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | - Elisa Giorgio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elvezia M Paraboschi
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Diego Ardissino
- Division of Cardiology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
35
|
Analysis of Italian BRCA1/2 Pathogenic Variants Identifies a Private Spectrum in the Population from the Bergamo Province in Northern Italy. Cancers (Basel) 2021; 13:cancers13030532. [PMID: 33573335 PMCID: PMC7866799 DOI: 10.3390/cancers13030532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The Italian population is characterized by a high genetic heterogeneity mostly due to its long history of migration and colonization and to its geographical conformation. Consistently, several BRCA1/2 pathogenic variants (PVs) have been reported to be recurrent or even founder in defined geographical areas including the Bergamo province in Northern Italy. In this study, we retrospectively analyzed the data from 1019 women affected with breast cancer with BRCA1/2 PVs. We compared the BRCA1/2 PVs spectrum found in the carrier individuals from the Bergamo province (BGP) with that of the general Italian population. We found that the majority of the BGP PVs had a local origin and remained confined to the BGP or to the surrounding Lombardy region. We also observed that the BGP BRCA1/2 PV spectrum is private and conserved comprising a smaller number of variants with an average higher frequency with respect to that of carrier individuals from the rest of Italy. Abstract Germline pathogenic variants (PVs) in the BRCA1 or BRCA2 genes cause high breast cancer risk. Recurrent or founder PVs have been described worldwide including some in the Bergamo province in Northern Italy. The aim of this study was to compare the BRCA1/2 PV spectra of the Bergamo and of the general Italian populations. We retrospectively identified at five Italian centers 1019 BRCA1/2 PVs carrier individuals affected with breast cancer and representative of the heterogeneous national population. Each individual was assigned to the Bergamo or non-Bergamo cohort based on self-reported birthplace. Our data indicate that the Bergamo BRCA1/2 PV spectrum shows less heterogeneity with fewer different variants and an average higher frequency compared to that of the rest of Italy. Consistently, four PVs explained about 60% of all carriers. The majority of the Bergamo PVs originated locally with only two PVs clearly imported. The Bergamo BRCA1/2 PV spectrum appears to be private. Hence, the Bergamo population would be ideal to study the disease risk associated with local PVs in breast cancer and other disease-causing genes. Finally, our data suggest that the Bergamo population is a genetic isolate and further analyses are warranted to prove this notion.
Collapse
|
36
|
Saag L, Vasilyev SV, Varul L, Kosorukova NV, Gerasimov DV, Oshibkina SV, Griffith SJ, Solnik A, Saag L, D'Atanasio E, Metspalu E, Reidla M, Rootsi S, Kivisild T, Scheib CL, Tambets K, Kriiska A, Metspalu M. Genetic ancestry changes in Stone to Bronze Age transition in the East European plain. SCIENCE ADVANCES 2021; 7:7/4/eabd6535. [PMID: 33523926 PMCID: PMC7817100 DOI: 10.1126/sciadv.abd6535] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 12/01/2020] [Indexed: 05/11/2023]
Abstract
The transition from Stone to Bronze Age in Central and Western Europe was a period of major population movements originating from the Ponto-Caspian Steppe. Here, we report new genome-wide sequence data from 30 individuals north of this area, from the understudied western part of present-day Russia, including 3 Stone Age hunter-gatherers (10,800 to 4250 cal BCE) and 26 Bronze Age farmers from the Corded Ware complex Fatyanovo Culture (2900 to 2050 cal BCE). We show that Eastern hunter-gatherer ancestry was present in northwestern Russia already from around 10,000 BCE. Furthermore, we see a change in ancestry with the arrival of farming-Fatyanovo Culture individuals were genetically similar to other Corded Ware cultures, carrying a mixture of Steppe and European early farmer ancestry. Thus, they likely originate from a fast migration toward the northeast from somewhere near modern-day Ukraine-the closest area where these ancestries coexisted from around 3000 BCE.
Collapse
Affiliation(s)
- Lehti Saag
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia.
| | - Sergey V Vasilyev
- Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Liivi Varul
- Archaeological Research Collection, School of Humanities, Tallinn University, Tallinn 10130, Estonia
| | - Natalia V Kosorukova
- Cherepovets State University and Cherepovets Museum Association, Cherepovets 162600, Russia
| | - Dmitri V Gerasimov
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, St. Petersburg 199034, Russia
| | | | - Samuel J Griffith
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Anu Solnik
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Lauri Saag
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Eugenia D'Atanasio
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | - Ene Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Maere Reidla
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Siiri Rootsi
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
- Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Christiana Lyn Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
- St. John's College, University of Cambridge, Cambridge CB2 1TP, UK
| | - Kristiina Tambets
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Aivar Kriiska
- Department of Archaeology, Institute of History and Archaeology, University of Tartu, Tartu 51014, Estonia.
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia.
| |
Collapse
|
37
|
Zaidi AA, Mathieson I. Demographic history mediates the effect of stratification on polygenic scores. eLife 2020; 9:e61548. [PMID: 33200985 PMCID: PMC7758063 DOI: 10.7554/elife.61548] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Population stratification continues to bias the results of genome-wide association studies (GWAS). When these results are used to construct polygenic scores, even subtle biases can cumulatively lead to large errors. To study the effect of residual stratification, we simulated GWAS under realistic models of demographic history. We show that when population structure is recent, it cannot be corrected using principal components of common variants because they are uninformative about recent history. Consequently, polygenic scores are biased in that they recapitulate environmental structure. Principal components calculated from rare variants or identity-by-descent segments can correct this stratification for some types of environmental effects. While family-based studies are immune to stratification, the hybrid approach of ascertaining variants in GWAS but reestimating effect sizes in siblings reduces but does not eliminate stratification. We show that the effect of population stratification depends not only on allele frequencies and environmental structure but also on demographic history.
Collapse
Affiliation(s)
- Arslan A Zaidi
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
38
|
Scarioni M, Arighi A, Fenoglio C, Sorrentino F, Serpente M, Rotondo E, Mercurio M, Marotta G, Dijkstra AA, Pijnenburg YAL, Scarpini E, Galimberti D. Late-onset presentation and phenotypic heterogeneity of the rare R377W PSEN1 mutation. Eur J Neurol 2020; 27:2630-2634. [PMID: 32894632 DOI: 10.1111/ene.14506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/31/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND PURPOSE Mutations in the PSEN1 gene are the most common cause of autosomal-dominant Alzheimer's disease and have been associated with the earliest disease onset. We describe an unusual presentation of the rare R377W PSEN1 mutation with a late age of onset, and we provide for the first time in vivo pathological evidence for this mutation. METHODS A 71-year-old female patient with progressive cognitive decline in the past 3 years and positive family history for dementia underwent neurological evaluation, neuropsychological testing, lumbar puncture, conventional brain imaging, amyloid-positron emission tomography (PET) and extensive genetic screening with a next-generation sequencing technique. RESULTS The diagnostic workup revealed mixed behavioural and amnestic disease features on neuropsychological tests, magnetic resonance imaging, and 18-fluorodeoxyglucose (FDG)-PET. Amyloid-PET detected amyloid deposition in the frontal areas, in the parietal lobes and the precunei. The genetic screening revealed the presence of the rare R377W mutation in the PSEN1 gene. CONCLUSIONS Extensive genetic screening is also advisable for late-onset presentations of Alzheimer's disease, especially in the presence of a positive family history or atypical clinical features.
Collapse
Affiliation(s)
- M Scarioni
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy.,Dino Ferrari Center, University of Milan, Milan, Italy.,Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Department of Neurology, Alzheimer Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - A Arighi
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy.,Dino Ferrari Center, University of Milan, Milan, Italy
| | - C Fenoglio
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy.,Dino Ferrari Center, University of Milan, Milan, Italy
| | - F Sorrentino
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy.,Dino Ferrari Center, University of Milan, Milan, Italy
| | - M Serpente
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy.,Dino Ferrari Center, University of Milan, Milan, Italy
| | - E Rotondo
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy.,Dino Ferrari Center, University of Milan, Milan, Italy
| | - M Mercurio
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy.,Dino Ferrari Center, University of Milan, Milan, Italy
| | - G Marotta
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy
| | - A A Dijkstra
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Y A L Pijnenburg
- Department of Neurology, Alzheimer Center, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - E Scarpini
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy.,Dino Ferrari Center, University of Milan, Milan, Italy
| | - D Galimberti
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Neurodegenerative Diseases Unit, Milan, Italy.,Dino Ferrari Center, University of Milan, Milan, Italy
| |
Collapse
|
39
|
Dutch population structure across space, time and GWAS design. Nat Commun 2020; 11:4556. [PMID: 32917883 PMCID: PMC7486932 DOI: 10.1038/s41467-020-18418-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/21/2020] [Indexed: 11/09/2022] Open
Abstract
Previous genetic studies have identified local population structure within the Netherlands; however their resolution is limited by use of unlinked markers and absence of external reference data. Here we apply advanced haplotype sharing methods (ChromoPainter/fineSTRUCTURE) to study fine-grained population genetic structure and demographic change across the Netherlands using genome-wide single nucleotide polymorphism data (1,626 individuals) with associated geography (1,422 individuals). We identify 40 haplotypic clusters exhibiting strong north/south variation and fine-scale differentiation within provinces. Clustering is tied to country-wide ancestry gradients from neighbouring lands and to locally restricted gene flow across major Dutch rivers. North-south structure is temporally stable, with west-east differentiation more transient, potentially influenced by migrations during the middle ages. Despite superexponential population growth, regional demographic estimates reveal population crashes contemporaneous with the Black Death. Within Dutch and international data, GWAS incorporating fine-grained haplotypic covariates are less confounded than standard methods.
Collapse
|
40
|
Biagini SA, Ramos-Luis E, Comas D, Calafell F. The place of metropolitan France in the European genomic landscape. Hum Genet 2020; 139:1091-1105. [DOI: 10.1007/s00439-020-02158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
|
41
|
Differences in local population history at the finest level: the case of the Estonian population. Eur J Hum Genet 2020; 28:1580-1591. [PMID: 32712624 PMCID: PMC7575549 DOI: 10.1038/s41431-020-0699-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/24/2020] [Accepted: 07/14/2020] [Indexed: 12/16/2022] Open
Abstract
Several recent studies detected fine-scale genetic structure in human populations. Hence, groups conventionally treated as single populations harbour significant variation in terms of allele frequencies and patterns of haplotype sharing. It has been shown that these findings should be considered when performing studies of genetic associations and natural selection, especially when dealing with polygenic phenotypes. However, there is little understanding of the practical effects of such genetic structure on demography reconstructions and selection scans when focusing on recent population history. Here we tested the impact of population structure on such inferences using high-coverage (~30×) genome sequences of 2305 Estonians. We show that different regions of Estonia differ in both effective population size dynamics and signatures of natural selection. By analyzing identity-by-descent segments we also reveal that some Estonian regions exhibit evidence of a bottleneck 10-15 generations ago reflecting sequential episodes of wars, plague and famine, although this signal is virtually undetected when treating Estonia as a single population. Besides that, we provide a framework for relating effective population size estimated from genetic data to actual census size and validate it on the Estonian population. This approach may be widely used both to cross-check estimates based on historical sources as well as to get insight into times and/or regions with no other information available. Our results suggest that the history of human populations within the last few millennia can be highly region specific and cannot be properly studied without taking local genetic structure into account.
Collapse
|
42
|
Modi A, Lancioni H, Cardinali I, Capodiferro MR, Rambaldi Migliore N, Hussein A, Strobl C, Bodner M, Schnaller L, Xavier C, Rizzi E, Bonomi Ponzi L, Vai S, Raveane A, Cavadas B, Semino O, Torroni A, Olivieri A, Lari M, Pereira L, Parson W, Caramelli D, Achilli A. The mitogenome portrait of Umbria in Central Italy as depicted by contemporary inhabitants and pre-Roman remains. Sci Rep 2020; 10:10700. [PMID: 32612271 PMCID: PMC7329865 DOI: 10.1038/s41598-020-67445-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022] Open
Abstract
Umbria is located in Central Italy and took the name from its ancient inhabitants, the Umbri, whose origins are still debated. Here, we investigated the mitochondrial DNA (mtDNA) variation of 545 present-day Umbrians (with 198 entire mitogenomes) and 28 pre-Roman individuals (obtaining 19 ancient mtDNAs) excavated from the necropolis of Plestia. We found a rather homogeneous distribution of western Eurasian lineages across the region, with few notable exceptions. Contemporary inhabitants of the eastern part, delimited by the Tiber River and the Apennine Mountains, manifest a peculiar mitochondrial proximity to central-eastern Europeans, mainly due to haplogroups U4 and U5a, and an overrepresentation of J (30%) similar to the pre-Roman remains, also excavated in East Umbria. Local genetic continuities are further attested to by six terminal branches (H1e1, J1c3, J2b1, U2e2a, U8b1b1 and K1a4a) shared between ancient and modern mitogenomes. Eventually, we identified multiple inputs from various population sources that likely shaped the mitochondrial gene pool of ancient Umbri over time, since early Neolithic, including gene flows with central-eastern Europe. This diachronic mtDNA portrait of Umbria fits well with the genome-wide population structure identified on the entire peninsula and with historical sources that list the Umbri among the most ancient Italic populations.
Collapse
Affiliation(s)
- Alessandra Modi
- Department of Biology, University of Florence, 50122, Florence, Italy
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy
| | - Marco R Capodiferro
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Nicola Rambaldi Migliore
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Abir Hussein
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Christina Strobl
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Lisa Schnaller
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Catarina Xavier
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Ermanno Rizzi
- Istituto di Tecnologie Biomediche, CNR, Segrate, 20090, Milan, Italy
| | | | - Stefania Vai
- Department of Biology, University of Florence, 50122, Florence, Italy
| | - Alessandro Raveane
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Bruno Cavadas
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Porto, Portugal.,i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), 4200-135, Porto, Portugal
| | - Ornella Semino
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy
| | - Martina Lari
- Department of Biology, University of Florence, 50122, Florence, Italy
| | - Luisa Pereira
- IPATIMUP (Instituto de Patologia e Imunologia Molecular da Universidade do Porto), Porto, Portugal.,i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto), 4200-135, Porto, Portugal
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, 6020, Innsbruck, Austria.,Forensic Science Program, The Pennsylvania State University, University Park, PA, 16801, USA
| | - David Caramelli
- Department of Biology, University of Florence, 50122, Florence, Italy
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100, Pavia, Italy.
| |
Collapse
|
43
|
The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean. Nat Ecol Evol 2020; 4:334-345. [PMID: 32094539 PMCID: PMC7080320 DOI: 10.1038/s41559-020-1102-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 01/08/2020] [Indexed: 11/08/2022]
Abstract
Steppe-pastoralist-related ancestry reached Central Europe by at least 2500 BC, whereas Iranian farmer-related ancestry was present in Aegean Europe by at least 1900 BC. However, the spread of these ancestries into the western Mediterranean, where they have contributed to many populations that live today, remains poorly understood. Here, we generated genome-wide ancient-DNA data from the Balearic Islands, Sicily and Sardinia, increasing the number of individuals with reported data from 5 to 66. The oldest individual from the Balearic Islands (~2400 BC) carried ancestry from steppe pastoralists that probably derived from west-to-east migration from Iberia, although two later Balearic individuals had less ancestry from steppe pastoralists. In Sicily, steppe pastoralist ancestry arrived by ~2200 BC, in part from Iberia; Iranian-related ancestry arrived by the mid-second millennium BC, contemporary to its previously documented spread to the Aegean; and there was large-scale population replacement after the Bronze Age. In Sardinia, nearly all ancestry derived from the island's early farmers until the first millennium BC, with the exception of an outlier from the third millennium BC, who had primarily North African ancestry and who-along with an approximately contemporary Iberian-documents widespread Africa-to-Europe gene flow in the Chalcolithic. Major immigration into Sardinia began in the first millennium BC and, at present, no more than 56-62% of Sardinian ancestry is from its first farmers. This value is lower than previous estimates, highlighting that Sardinia, similar to every other region in Europe, has been a stage for major movement and mixtures of people.
Collapse
|
44
|
Grugni V, Raveane A, Colombo G, Nici C, Crobu F, Ongaro L, Battaglia V, Sanna D, Al-Zahery N, Fiorani O, Lisa A, Ferretti L, Achilli A, Olivieri A, Francalacci P, Piazza A, Torroni A, Semino O. Y-chromosome and Surname Analyses for Reconstructing Past Population Structures: The Sardinian Population as a Test Case. Int J Mol Sci 2019; 20:E5763. [PMID: 31744094 PMCID: PMC6888588 DOI: 10.3390/ijms20225763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 11/17/2022] Open
Abstract
Many anthropological, linguistic, genetic and genomic analyses have been carried out to evaluate the potential impact that evolutionary forces had in shaping the present-day Sardinian gene pool, the main outlier in the genetic landscape of Europe. However, due to the homogenizing effect of internal movements, which have intensified over the past fifty years, only partial information has been obtained about the main demographic events. To overcome this limitation, we analyzed the male-specific region of the Y chromosome in three population samples obtained by reallocating a large number of Sardinian subjects to the place of origin of their monophyletic surnames, which are paternally transmitted through generations in most of the populations, much like the Y chromosome. Three Y-chromosome founding lineages, G2-L91, I2-M26 and R1b-V88, were identified as strongly contributing to the definition of the outlying position of Sardinians in the European genetic context and marking a significant differentiation within the island. The present distribution of these lineages does not always mirror that detected in ancient DNAs. Our results show that the analysis of the Y-chromosome gene pool coupled with a sampling method based on the origin of the family name, is an efficient approach to unravelling past heterogeneity, often hidden by recent movements, in the gene pool of modern populations. Furthermore, the reconstruction and comparison of past genetic isolates represent a starting point to better assess the genetic information deriving from the increasing number of available ancient DNA samples.
Collapse
Affiliation(s)
- Viola Grugni
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Alessandro Raveane
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Giulia Colombo
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Carmen Nici
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Francesca Crobu
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Italy
| | - Linda Ongaro
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
- Estonian Biocentre, Institute of Genomics, Riia 23, 51010 Tartu, Estonia
- Department of Evolutionary Biology, Institute of Molecular and Cell Biology, Riia 23, 51010 Tartu, Estonia
| | - Vincenza Battaglia
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Daria Sanna
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
- Dipartimento di Scienze Biomediche, Università di Sassari, 07100 Sassari, Italy
| | - Nadia Al-Zahery
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Ornella Fiorani
- Istituto di Genetica Molecolare “L.L. Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), 27100 Pavia, Italy; (O.F.); (A.L.)
| | - Antonella Lisa
- Istituto di Genetica Molecolare “L.L. Cavalli-Sforza”, Consiglio Nazionale delle Ricerche (CNR), 27100 Pavia, Italy; (O.F.); (A.L.)
| | - Luca Ferretti
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Alessandro Achilli
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Anna Olivieri
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Paolo Francalacci
- Dipartimento di Scienza della Vita e dell’Ambiente, Università di Cagliari, 09123 Cagliari, Italy;
| | - Alberto Piazza
- Dipartimento di Scienze Mediche, Scuola di Medicina, Università di Torino, 10124 Torino, Italy;
| | - Antonio Torroni
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie “L. Spallanzani”, Università di Pavia, 27100 Pavia, Italy; (V.G.); (A.R.); (G.C.); (C.N.); (F.C.); (L.O.); (V.B.); (D.S.); (N.A.-Z.); (L.F.); (A.A.); (A.O.); (A.T.)
| |
Collapse
|
45
|
Ongaro L, Scliar MO, Flores R, Raveane A, Marnetto D, Sarno S, Gnecchi-Ruscone GA, Alarcón-Riquelme ME, Patin E, Wangkumhang P, Hellenthal G, Gonzalez-Santos M, King RJ, Kouvatsi A, Balanovsky O, Balanovska E, Atramentova L, Turdikulova S, Mastana S, Marjanovic D, Mulahasanovic L, Leskovac A, Lima-Costa MF, Pereira AC, Barreto ML, Horta BL, Mabunda N, May CA, Moreno-Estrada A, Achilli A, Olivieri A, Semino O, Tambets K, Kivisild T, Luiselli D, Torroni A, Capelli C, Tarazona-Santos E, Metspalu M, Pagani L, Montinaro F. The Genomic Impact of European Colonization of the Americas. Curr Biol 2019; 29:3974-3986.e4. [PMID: 31735679 DOI: 10.1016/j.cub.2019.09.076] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/06/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022]
Abstract
The human genetic diversity of the Americas has been affected by several events of gene flow that have continued since the colonial era and the Atlantic slave trade. Moreover, multiple waves of migration followed by local admixture occurred in the last two centuries, the impact of which has been largely unexplored. Here, we compiled a genome-wide dataset of ∼12,000 individuals from twelve American countries and ∼6,000 individuals from worldwide populations and applied haplotype-based methods to investigate how historical movements from outside the New World affected (1) the genetic structure, (2) the admixture profile, (3) the demographic history, and (4) sex-biased gene-flow dynamics of the Americas. We revealed a high degree of complexity underlying the genetic contribution of European and African populations in North and South America, from both geographic and temporal perspectives, identifying previously unreported sources related to Italy, the Middle East, and to specific regions of Africa.
Collapse
Affiliation(s)
- Linda Ongaro
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia; Department of Evolutionary Biology, Institute of Molecular and Cell Biology, Riia 23, Tartu 51010, Estonia.
| | - Marilia O Scliar
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, SP 05508-090, Brazil; Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Rodrigo Flores
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia
| | - Alessandro Raveane
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Davide Marnetto
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia
| | - Stefania Sarno
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna 40100, Italy
| | - Guido A Gnecchi-Ruscone
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna 40100, Italy; Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Marta E Alarcón-Riquelme
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Granada 18016, Spain
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Pasteur Institute, UMR2000, CNRS, Paris 75015, France
| | - Pongsakorn Wangkumhang
- Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Garrett Hellenthal
- Department of Genetics, Evolution and Environment and UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | | | - Roy J King
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305-5101, USA
| | - Anastasia Kouvatsi
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Oleg Balanovsky
- Vavilov Institute of General Genetics, Ulitsa Gubkina, 3, Moscow 117971, Russia; Research Centre for Medical Genetics, Moskvorech'ye Ulitsa, 1, Moscow 115478, Russia; Biobank of North Eurasia, Kotlyakovskaya Ulitsa, 3 строение 12, Moscow 115201, Russia
| | - Elena Balanovska
- Vavilov Institute of General Genetics, Ulitsa Gubkina, 3, Moscow 117971, Russia; Research Centre for Medical Genetics, Moskvorech'ye Ulitsa, 1, Moscow 115478, Russia; Biobank of North Eurasia, Kotlyakovskaya Ulitsa, 3 строение 12, Moscow 115201, Russia
| | - Lubov Atramentova
- Department of Genetics and Cytology, V.N. Karazin Kharkiv National University, Kharkiv 61022, Ukraine
| | - Shahlo Turdikulova
- Laboratory of Genomics, Institute of Bioorganic Chemistry, Academy of Sciences Republic of Uzbekistan, Tashkent 100047, Uzbekistan
| | - Sarabjit Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK
| | - Damir Marjanovic
- Department of Genetics and Bioengineering, Faculty of Engineering and Information Technologies, International Burch University, Sarajevo 71000, Bosnia and Herzegovina; Institute for Anthropological Researches, Zagreb, Croatia
| | | | - Andreja Leskovac
- Vinca Institute of Nuclear Sciences, University of Belgrade, M. Petrovica Alasa 12-14, Belgrade 11001, Serbia
| | - Maria F Lima-Costa
- Instituto de Pesquisa Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG 30190-002, Brazil
| | - Alexandre C Pereira
- Instituto do Coração, Universidade de São Paulo, São Paulo, SP 05403-900, Brazil
| | - Mauricio L Barreto
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, BA 0110-040, Brazil; Center of Data and Knowledge Integration for Health (CIDACS), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, BA 41745-715, Brazil
| | - Bernardo L Horta
- Programa de Pós-Graduação em Epidemiologia, Universidade Federal de Pelotas, 464, Pelotas, RS 96001-970, Brazil
| | - Nédio Mabunda
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N 1, Província de Maputo, Maputo 1120, Mozambique
| | - Celia A May
- Department of Genetics & Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Andrés Moreno-Estrada
- National Laboratory of Genomics for Biodiversity (LANGEBIO), CINVESTAV, Irapuato, Guanajuato 36821, Mexico
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Anna Olivieri
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Ornella Semino
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | - Kristiina Tambets
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia
| | - Toomas Kivisild
- Department of Human Genetics, KU Leuven, Herestraat 49 - box 602, Leuven 3000, Belgium
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, Ravenna Campus, Ravenna 48100, Italy
| | - Antonio Torroni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia 27100, Italy
| | | | - Eduardo Tarazona-Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia
| | - Luca Pagani
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia; Department of Biology, University of Padua, Via Ugo Bassi 58B, Padua 35100, Italy
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, Riia 23, Tartu 51010, Estonia; Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK.
| |
Collapse
|
46
|
Antonio ML, Gao Z, Moots HM, Lucci M, Candilio F, Sawyer S, Oberreiter V, Calderon D, Devitofranceschi K, Aikens RC, Aneli S, Bartoli F, Bedini A, Cheronet O, Cotter DJ, Fernandes DM, Gasperetti G, Grifoni R, Guidi A, La Pastina F, Loreti E, Manacorda D, Matullo G, Morretta S, Nava A, Fiocchi Nicolai V, Nomi F, Pavolini C, Pentiricci M, Pergola P, Piranomonte M, Schmidt R, Spinola G, Sperduti A, Rubini M, Bondioli L, Coppa A, Pinhasi R, Pritchard JK. Ancient Rome: A genetic crossroads of Europe and the Mediterranean. Science 2019; 366:708-714. [PMID: 31699931 PMCID: PMC7093155 DOI: 10.1126/science.aay6826] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/04/2019] [Indexed: 12/22/2022]
Abstract
Ancient Rome was the capital of an empire of ~70 million inhabitants, but little is known about the genetics of ancient Romans. Here we present 127 genomes from 29 archaeological sites in and around Rome, spanning the past 12,000 years. We observe two major prehistoric ancestry transitions: one with the introduction of farming and another prior to the Iron Age. By the founding of Rome, the genetic composition of the region approximated that of modern Mediterranean populations. During the Imperial period, Rome's population received net immigration from the Near East, followed by an increase in genetic contributions from Europe. These ancestry shifts mirrored the geopolitical affiliations of Rome and were accompanied by marked interindividual diversity, reflecting gene flow from across the Mediterranean, Europe, and North Africa.
Collapse
Affiliation(s)
- Margaret L Antonio
- Program in Biomedical Informatics, Stanford University, Stanford, CA, USA
| | - Ziyue Gao
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Hannah M Moots
- Stanford University, Department of Anthropology, Stanford, CA, USA
| | - Michaela Lucci
- DANTE Laboratory for the study of Diet and Ancient Technology, Sapienza Università di Roma, Rome, Italy
| | - Francesca Candilio
- School of Archaeology, University College Dublin, Dublin, Ireland
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Diego Calderon
- Program in Biomedical Informatics, Stanford University, Stanford, CA, USA
| | | | - Rachael C Aikens
- Program in Biomedical Informatics, Stanford University, Stanford, CA, USA
| | - Serena Aneli
- Dipartimento di Scienze Mediche, Università di Torino, Torino, Italy
| | - Fulvio Bartoli
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Alessandro Bedini
- Ministero dei Beni e delle Attività Culturali (retired), Rome, Italy
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Daniel J Cotter
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- CIAS, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Gabriella Gasperetti
- Soprintendenza Archeologia, belle arti e paesaggio per le province di Sassari e Nuoro, Sassari, Italy
| | - Renata Grifoni
- Dipartimento di Civiltà e Forme del Sapere, Università di Pisa, Pisa, Italy
| | - Alessandro Guidi
- Dipartimento di Studi Umanistici, Università degli Studi di Roma Tre, Rome, Italy
| | | | - Ersilia Loreti
- Curatore beni culturali presso la Sovrintendenza Capitolina, Rome, Italy
| | - Daniele Manacorda
- Dipartimento di Studi Umanistici Università degli Studi di Roma Tre, Rome, Italy
| | - Giuseppe Matullo
- Dipartimento di Scienze Mediche, Università di Torino, Torino, Italy
| | - Simona Morretta
- Soprintendenza Speciale Archeologia Belle Arti e Paesaggio di Roma, Rome, Italy
| | - Alessia Nava
- DANTE Laboratory for the study of Diet and Ancient Technology, Sapienza Università di Roma, Rome, Italy
- Servizio di Bioarcheologia, Museo delle Civiltà, Rome, Italy
| | | | - Federico Nomi
- Dipartimento di Studi Umanistici, Università degli Studi di Roma Tre, Rome, Italy
| | - Carlo Pavolini
- Università della Tuscia, DISUCOM Dipartimento di Scienze Umanistiche, della Comunicazione e del Turismo, Viterbo, Italy
| | - Massimo Pentiricci
- Curatore beni culturali presso la Sovrintendenza Capitolina, Rome, Italy
| | | | - Marina Piranomonte
- Soprintendenza speciale Archeologia Belle arti e paesaggio di Roma, Rome, Italy
| | | | | | - Alessandra Sperduti
- Servizio di Bioarcheologia, Museo delle Civiltà, Rome, Italy
- Dipartimento di Archeologia, Università di Foggia, Foggia, Italy
| | - Mauro Rubini
- SABAP-LAZ Ministero dei Beni e delle Attività Culturali, Rome, Italy
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Luca Bondioli
- Servizio di Bioarcheologia, Museo delle Civiltà, Rome, Italy
| | - Alfredo Coppa
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
| | - Jonathan K Pritchard
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
47
|
Tamm E, Di Cristofaro J, Mazières S, Pennarun E, Kushniarevich A, Raveane A, Semino O, Chiaroni J, Pereira L, Metspalu M, Montinaro F. Genome-wide analysis of Corsican population reveals a close affinity with Northern and Central Italy. Sci Rep 2019; 9:13581. [PMID: 31537848 PMCID: PMC6753063 DOI: 10.1038/s41598-019-49901-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/31/2019] [Indexed: 01/13/2023] Open
Abstract
Despite being the fourth largest island in the Mediterranean basin, the genetic variation of Corsica has not been explored as exhaustively as Sardinia, which is situated only 11 km South. However, it is likely that the populations of the two islands shared, at least in part, similar demographic histories. Moreover, the relative small size of the Corsica may have caused genetic isolation, which, in turn, might be relevant under medical and translational perspectives. Here we analysed genome wide data of 16 Corsicans, and integrated with newly (33 individuals) and previously generated samples from West Eurasia and North Africa. Allele frequency, haplotype-based, and ancient genome analyses suggest that although Sardinia and Corsica may have witnessed similar isolation and migration events, the latter is genetically closer to populations from continental Europe, such as Northern and Central Italians.
Collapse
Affiliation(s)
- Erika Tamm
- Institute of Genomics, University of Tartu, Tartu, Estonia.
| | - Julie Di Cristofaro
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France.,Etablissement Français du Sang PACA Corse, Biologie des Groupes Sanguins, Marseille, France
| | | | - Erwan Pennarun
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Alena Kushniarevich
- Institute of Genomics, University of Tartu, Tartu, Estonia.,Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, 220072, Belarus
| | - Alessandro Raveane
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani" Università di Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Ornella Semino
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani" Università di Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Jacques Chiaroni
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France.,Etablissement Français du Sang PACA Corse, Biologie des Groupes Sanguins, Marseille, France
| | - Luisa Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135, Porto, Portugal
| | - Mait Metspalu
- Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Francesco Montinaro
- Institute of Genomics, University of Tartu, Tartu, Estonia. .,Department of Zoology, University of Oxford, Oxford, UK.
| |
Collapse
|