1
|
Ohki T, Kunii N, Chao ZC. Efficient, continual, and generalized learning in the brain - neural mechanism of Mental Schema 2.0. Rev Neurosci 2023; 34:839-868. [PMID: 36960579 DOI: 10.1515/revneuro-2022-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/26/2023] [Indexed: 03/25/2023]
Abstract
There has been tremendous progress in artificial neural networks (ANNs) over the past decade; however, the gap between ANNs and the biological brain as a learning device remains large. With the goal of closing this gap, this paper reviews learning mechanisms in the brain by focusing on three important issues in ANN research: efficiency, continuity, and generalization. We first discuss the method by which the brain utilizes a variety of self-organizing mechanisms to maximize learning efficiency, with a focus on the role of spontaneous activity of the brain in shaping synaptic connections to facilitate spatiotemporal learning and numerical processing. Then, we examined the neuronal mechanisms that enable lifelong continual learning, with a focus on memory replay during sleep and its implementation in brain-inspired ANNs. Finally, we explored the method by which the brain generalizes learned knowledge in new situations, particularly from the mathematical generalization perspective of topology. Besides a systematic comparison in learning mechanisms between the brain and ANNs, we propose "Mental Schema 2.0," a new computational property underlying the brain's unique learning ability that can be implemented in ANNs.
Collapse
Affiliation(s)
- Takefumi Ohki
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naoto Kunii
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0033, Japan
| | - Zenas C Chao
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Kastellakis G, Tasciotti S, Pandi I, Poirazi P. The dendritic engram. Front Behav Neurosci 2023; 17:1212139. [PMID: 37576932 PMCID: PMC10412934 DOI: 10.3389/fnbeh.2023.1212139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 08/15/2023] Open
Abstract
Accumulating evidence from a wide range of studies, including behavioral, cellular, molecular and computational findings, support a key role of dendrites in the encoding and recall of new memories. Dendrites can integrate synaptic inputs in non-linear ways, provide the substrate for local protein synthesis and facilitate the orchestration of signaling pathways that regulate local synaptic plasticity. These capabilities allow them to act as a second layer of computation within the neuron and serve as the fundamental unit of plasticity. As such, dendrites are integral parts of the memory engram, namely the physical representation of memories in the brain and are increasingly studied during learning tasks. Here, we review experimental and computational studies that support a novel, dendritic view of the memory engram that is centered on non-linear dendritic branches as elementary memory units. We highlight the potential implications of dendritic engrams for the learning and memory field and discuss future research directions.
Collapse
Affiliation(s)
- George Kastellakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
| | - Simone Tasciotti
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Ioanna Pandi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
| |
Collapse
|
3
|
Riquelme JL, Hemberger M, Laurent G, Gjorgjieva J. Single spikes drive sequential propagation and routing of activity in a cortical network. eLife 2023; 12:e79928. [PMID: 36780217 PMCID: PMC9925052 DOI: 10.7554/elife.79928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 12/19/2022] [Indexed: 02/14/2023] Open
Abstract
Single spikes can trigger repeatable firing sequences in cortical networks. The mechanisms that support reliable propagation of activity from such small events and their functional consequences remain unclear. By constraining a recurrent network model with experimental statistics from turtle cortex, we generate reliable and temporally precise sequences from single spike triggers. We find that rare strong connections support sequence propagation, while dense weak connections modulate propagation reliability. We identify sections of sequences corresponding to divergent branches of strongly connected neurons which can be selectively gated. Applying external inputs to specific neurons in the sparse backbone of strong connections can effectively control propagation and route activity within the network. Finally, we demonstrate that concurrent sequences interact reliably, generating a highly combinatorial space of sequence activations. Our results reveal the impact of individual spikes in cortical circuits, detailing how repeatable sequences of activity can be triggered, sustained, and controlled during cortical computations.
Collapse
Affiliation(s)
- Juan Luis Riquelme
- Max Planck Institute for Brain ResearchFrankfurt am MainGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| | - Mike Hemberger
- Max Planck Institute for Brain ResearchFrankfurt am MainGermany
| | - Gilles Laurent
- Max Planck Institute for Brain ResearchFrankfurt am MainGermany
| | - Julijana Gjorgjieva
- Max Planck Institute for Brain ResearchFrankfurt am MainGermany
- School of Life Sciences, Technical University of MunichFreisingGermany
| |
Collapse
|
4
|
Dendrocentric learning for synthetic intelligence. Nature 2022; 612:43-50. [DOI: 10.1038/s41586-022-05340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/12/2022] [Indexed: 12/02/2022]
|
5
|
Wilmerding LK, Yazdanbakhsh A, Hasselmo ME. Impact of optogenetic pulse design on CA3 learning and replay: A neural model. CELL REPORTS METHODS 2022; 2:100208. [PMID: 35637904 PMCID: PMC9142690 DOI: 10.1016/j.crmeth.2022.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 10/22/2021] [Accepted: 04/11/2022] [Indexed: 11/23/2022]
Abstract
Optogenetic manipulation of hippocampal circuitry is an important tool for investigating learning in vivo. Numerous approaches to pulse design have been employed to elicit desirable circuit and behavioral outcomes. Here, we systematically test the outcome of different single-pulse waveforms in a rate-based model of hippocampal memory function at the level of mnemonic replay extension and de novo synaptic weight formation in CA3 and CA1. Lower-power waveforms with long forward or forward and backward ramps yield more natural sequence replay dynamics and induce synaptic plasticity that allows for more natural memory replay timing, in contrast to square or backward ramps. These differences between waveform shape and amplitude are preserved with the addition of noise in membrane potential, light scattering, and protein expression, improving the potential validity of predictions for in vivo work. These results inform future optogenetic experimental design choices in the field of learning and memory.
Collapse
Affiliation(s)
- Lucius K. Wilmerding
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Arash Yazdanbakhsh
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| | - Michael E. Hasselmo
- Department of Psychological and Brain Sciences, Boston University, Boston, MA 02215, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, USA
| |
Collapse
|
6
|
Okada M, Kono R, Sato Y, Kobayashi C, Koyama R, Ikegaya Y. Highly active neurons emerging in vitro. J Neurophysiol 2021; 125:1322-1329. [PMID: 33656933 DOI: 10.1152/jn.00663.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mean firing rates vary across neurons in a neuronal network. Although most neurons infrequently emit spikes, a small fraction of neurons exhibit extremely high frequencies of spikes; this fraction of neurons plays a pivotal role in information processing, however, little is known about how these outliers emerge and whether they are maintained over time. In primary cultures of mouse hippocampal neurons, we traced highly active neurons every 24 h for 7 wk by optically observing the fluorescent protein dVenus; the expression of dVenus was controlled by the promoter of Arc, an immediate early gene that is induced by neuronal activity. Under default-mode conditions, 0.3%-0.4% of neurons were spontaneously Arc-dVenus positive, exhibiting high firing rates. These neurons were spatially clustered, exhibited intermittently repeated dVenus expression, and often continued to express Arc-dVenus for approximately 2 wk. Thus, highly active neurons constitute a few select functional subpopulations in the neuronal network.NEW & NOTEWORTHY The overdispersion of neuronal activity levels can often be attributed to very few neurons exhibiting extremely high firing rates, but due to technical difficulty, no studies have examined how these outliers are selected during development and whether they are maintained over time. We optically monitored highly active neurons for as long as 7 wk in vitro and found that they constituted a unique population that was different from other "mediocre" neurons with normal firing rates.
Collapse
Affiliation(s)
- Mami Okada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Rena Kono
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yu Sato
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Chiaki Kobayashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuta Koyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita, Japan.,Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Ishikawa T, Kobayashi C, Takahashi N, Ikegaya Y. Functional Multiple-Spine Calcium Imaging from Brain Slices. STAR Protoc 2020; 1:100121. [PMID: 33377015 PMCID: PMC7756976 DOI: 10.1016/j.xpro.2020.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Most excitatory inputs arrive at dendritic spines in a postsynaptic neuron. To understand dendritic information processing, it is critical to scrutinize the spatiotemporal dynamics of synaptic inputs along dendrites. This protocol combines spinning-disk confocal imaging with whole-cell patch-clamp recording to perform wide-field, high-speed optical recording of synaptic inputs in a neuron loaded with a calcium indicator in ex vivo cultured networks. Our protocol enables simultaneous detection of synaptic inputs as calcium signals from hundreds of spines in multiple dendritic branches. For complete details on the use and execution of this protocol, please refer to Takahashi et al. (2012, 2016), Kobayashi et al. (2019), and Ishikawa and Ikegaya (2020). Simultaneous calcium imaging of synaptic activity from hundreds of spines in vitro Whole-cell voltage clamping for dye loading and signal improvement Photobleaching-free and photodamage-free imaging of synaptic activity by spinning-disk confocal system A modified median filter for effective denoising of optical signals
Collapse
Affiliation(s)
- Tomoe Ishikawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Chiaki Kobayashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naoya Takahashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| |
Collapse
|
8
|
Evans AM. On a Magical Mystery Tour with 8-Bromo-Cyclic ADP-Ribose: From All-or-None Block to Nanojunctions and the Cell-Wide Web. Molecules 2020; 25:E4768. [PMID: 33081414 PMCID: PMC7587525 DOI: 10.3390/molecules25204768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/08/2020] [Indexed: 11/16/2022] Open
Abstract
A plethora of cellular functions are controlled by calcium signals, that are greatly coordinated by calcium release from intracellular stores, the principal component of which is the sarco/endooplasmic reticulum (S/ER). In 1997 it was generally accepted that activation of various G protein-coupled receptors facilitated inositol-1,4,5-trisphosphate (IP3) production, activation of IP3 receptors and thus calcium release from S/ER. Adding to this, it was evident that S/ER resident ryanodine receptors (RyRs) could support two opposing cellular functions by delivering either highly localised calcium signals, such as calcium sparks, or by carrying propagating, global calcium waves. Coincidentally, it was reported that RyRs in mammalian cardiac myocytes might be regulated by a novel calcium mobilising messenger, cyclic adenosine diphosphate-ribose (cADPR), that had recently been discovered by HC Lee in sea urchin eggs. A reputedly selective and competitive cADPR antagonist, 8-bromo-cADPR, had been developed and was made available to us. We used 8-bromo-cADPR to further explore our observation that S/ER calcium release via RyRs could mediate two opposing functions, namely pulmonary artery dilation and constriction, in a manner seemingly independent of IP3Rs or calcium influx pathways. Importantly, the work of others had shown that, unlike skeletal and cardiac muscles, smooth muscles might express all three RyR subtypes. If this were the case in our experimental system and cADPR played a role, then 8-bromo-cADPR would surely block one of the opposing RyR-dependent functions identified, or the other, but certainly not both. The latter seemingly implausible scenario was confirmed. How could this be, do cells hold multiple, segregated SR stores that incorporate different RyR subtypes in receipt of spatially segregated signals carried by cADPR? The pharmacological profile of 8-bromo-cADPR action supported not only this, but also indicated that intracellular calcium signals were delivered across intracellular junctions formed by the S/ER. Not just one, at least two. This article retraces the steps along this journey, from the curious pharmacological profile of 8-bromo-cADPR to the discovery of the cell-wide web, a diverse network of cytoplasmic nanocourses demarcated by S/ER nanojunctions, which direct site-specific calcium flux and may thus coordinate the full panoply of cellular processes.
Collapse
Grants
- 01/A/S/07453 Biotechnology and Biological Sciences Research Council
- WT046374 , WT056423, WT070772, WT074434, WT081195AIA, WT212923, WT093147 Wellcome Trust
- PG/10/95/28657 British Heart Foundation
- FS/03/033/15432, FS/05/050, PG/05/128/19884, RG/12/14/29885, PG/10/95/28657 British Heart Foundation
- RG/12/14/29885 British Heart Foundation
Collapse
Affiliation(s)
- A Mark Evans
- Centre for Discovery Brain Sciences and Cardiovascular Science, Edinburgh Medical School, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| |
Collapse
|