1
|
Tino CJ, Stüeken EE, Gregory DD, Lyons TW. Elevated δ 15N Linked to Inhibited Nitrification Coupled to Ammonia Volatilization in Sediments of Shallow Alkaline-Hypersaline Lakes. GEOBIOLOGY 2025; 23:e70018. [PMID: 40184035 PMCID: PMC11970551 DOI: 10.1111/gbi.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/18/2025] [Accepted: 03/22/2025] [Indexed: 04/05/2025]
Abstract
Alkaline lakes are among the most bioproductive aquatic ecosystems on Earth. The factors that ultimately limit productivity in these systems can vary, but nitrogen (N) cycling in particular has been shown to be adversely affected by high salinity, evidently due to the inhibition of nitrifying bacteria (i.e., those that convert ammonic species to nitrogen oxides). The coastal plain of Coorong National Park in South Australia, which hosts several alkaline lakes along 130 km of coastline, provides an ideal natural laboratory for examining how fine-scale differences in the geochemistry of such environments can lead to broad variations in nitrogen cycling through time, as manifest in sedimentary δ15N. Moreover, the lakes provide a gradient of aqueous conditions that allows us to assess the effects of pH, salinity, and carbonate chemistry on the sedimentary record. We report a wide range of δ15N values (3.8‰-18.6‰) measured in the sediments (0-35 cm depth) of five lakes of the Coorong region. Additional data include major element abundances, carbonate δ13C and δ18O values, and the results of principal component analyses. Stable nitrogen isotopes and wt% sodium (Na) display positive correlation (R2 = 0.59, p < 0.001) across all lake systems. Principal component analyses further support the notion that salinity has historically impacted nitrogen cycling. We propose that the inhibition of nitrification at elevated salinity may lead to the accumulation of ammonic species, which, when exposed to the water column, are prone to ammonia volatilization facilitated by intervals of elevated pH. This process is accompanied by a significant isotope fractionation effect, isotopically enriching the nitrogen that remains in the lake water. This nitrogen is eventually buried in the sediments, preserving a record of these combined processes. Analogous enrichments in the rock record may provide important constraints on past chemical conditions and their associated microbial ecologies. Specifically, ancient terrestrial aquatic systems with high δ15N values attributed to denitrification and thus oxygen deficiency may warrant re-evaluation within the framework of this alternative. Constraints on pH as provided by elevated δ15N via ammonia volatilization may also inform critical aspects of closed-basin paleoenvironments and their suitability for a de novo origin of life.
Collapse
Affiliation(s)
- Christopher J. Tino
- Department of Earth and Planetary SciencesUniversity of CaliforniaRiversideCaliforniaUSA
- Department of Earth, Energy, and EnvironmentUniversity of CalgaryCalgaryAlbertaCanada
| | - Eva E. Stüeken
- School of Earth and Environmental SciencesUniversity of St. AndrewsSt. AndrewsUK
- Virtual Planetary LaboratoryUniversity of WashingtonSeattleWashingtonUSA
| | - Daniel D. Gregory
- Department of Earth SciencesUniversity of TorontoTorontoOntarioCanada
| | - Timothy W. Lyons
- Department of Earth and Planetary SciencesUniversity of CaliforniaRiversideCaliforniaUSA
- Virtual Planetary LaboratoryUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
2
|
Motomura K, Bekker A, Ikehara M, Sano T, Lin Y, Kiyokawa S. Lateral redox variability in ca. 1.9 Ga marine environments indicated by organic carbon and nitrogen isotope compositions. GEOBIOLOGY 2024; 22:e12614. [PMID: 39129173 DOI: 10.1111/gbi.12614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/13/2024]
Abstract
The stepwise oxygenation of Earth's surficial environment is thought to have shaped the evolutionary history of life. Microfossil records and molecular clocks suggest eukaryotes appeared during the Paleoproterozoic, perhaps shortly after the Great Oxidation Episode at ca. 2.43 Ga. The mildly oxygenated atmosphere and surface oceans likely contributed to the early evolution of eukaryotes. However, the principal trigger for the eukaryote appearance and a potential factor for their delayed expansion (i.e., intermediate ocean redox conditions until the Neoproterozoic) remain poorly understood, largely owing to a lack of constraints on marine and terrestrial nutrient cycling. Here, we analyzed redox-sensitive element contents and organic carbon and nitrogen isotope compositions of relatively low metamorphic-grade (greenschist facies) black shales preserved in the Flin Flon Belt of central Canada to examine open-marine redox conditions and biological activity around the ca. 1.9 Ga Flin Flon oceanic island arc. The black shale samples were collected from the Reed Lake area in the eastern part of the Flin Flon Belt, and the depositional site was likely distal from the Archean cratons. The black shales have low Al/Ti ratios and are slightly depleted in light rare-earth elements relative to the post-Archean average shale, which is consistent with a limited contribution from felsic igneous rocks in Archean upper continental crust. Redox conditions have likely varied between suboxic and euxinic at the depositional site of the studied section, as suggested by variable U/Al and Mo/Al ratios. Organic carbon and nitrogen isotope compositions of the black shales are approximately -23‰ and +13.7‰, respectively, and these values are systematically higher than those of broadly coeval continental margin deposits (approximately -30‰ for δ13Corg and +5‰ for δ15Nbulk). These elevated values are indicative of high productivity that led to enhanced denitrification (i.e., a high denitrification rate relative to nitrogen influx at the depositional site). Similar geochemical patterns have also been observed in the modern Peruvian oxygen minimum zone where dissolved nitrogen compounds are actively lost from the reservoir via denitrification and anammox, but the large nitrate reservoir of the deep ocean prevents exhaustion of the surface nitrate pool. Nitrogen must have been widely bioavailable in the ca. 1.9 Ga oceans, and its supply to upwelling zones must have supported habitable environments for eukaryotes, even in the middle of oceans around island arcs.
Collapse
Affiliation(s)
- Kento Motomura
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
- Department of Earth and Planetary Sciences, Kyushu University, Fukuoka, Japan
| | - Andrey Bekker
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| | - Minoru Ikehara
- Marine Core Research Institute, Kochi University, Nankoku, Kochi, Japan
| | - Takashi Sano
- Department of Geology and Paleontology, National Museum of Nature and Science, Tsukuba, Ibaraki, Japan
| | - Ying Lin
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
| | - Shoichi Kiyokawa
- Department of Earth and Planetary Sciences, Kyushu University, Fukuoka, Japan
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
- Marine Core Research Institute, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
3
|
Tino CJ, Stüeken EE, Arp G, Böttcher ME, Bates SM, Lyons TW. Are Large Sulfur Isotope Variations Biosignatures in an Ancient, Impact-Induced Hydrothermal Mars Analog? ASTROBIOLOGY 2023; 23:1027-1044. [PMID: 37498995 DOI: 10.1089/ast.2022.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Discrepancies have emerged concerning the application of sulfur stable isotope ratios as a biosignature in impact crater paleolakes. The first in situ δ34S data from Mars at Gale crater display a ∼75‰ range that has been attributed to an abiotic mechanism. Yet biogeochemical studies of ancient environments on Earth generally interpret δ34S fractionations >21‰ as indicative of a biological origin, and studies of δ34S at analog impact crater lakes on Earth have followed the same approach. We performed analyses (including δ34S, total organic carbon wt%, and scanning electron microscope imaging) on multiple lithologies from the Nördlinger Ries impact crater, focusing on hydrothermally altered impact breccias and associated sedimentary lake-fill sequences to determine whether the δ34S properties define a biosignature. The differences in δ34S between the host lithologies may have resulted from thermochemical sulfate reduction, microbial sulfate reduction, hydrothermal equilibrium fractionation, or any combination thereof. Despite abundant samples and instrumental precision currently exclusive to Earth-bound analyses, assertions of biogenicity from δ34S variations >21‰ at the Miocene Ries impact crater are tenuous. This discourages the use of δ34S as a biosignature in similar environments without independent checks that include the full geologic, biogeochemical, and textural context, as well as a comprehensive acknowledgment of alternative hypotheses.
Collapse
Affiliation(s)
- Christopher J Tino
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
| | - Eva E Stüeken
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews, Scotland, United Kingdom
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
| | - Gernot Arp
- Geowissenschaftliches Zentrum, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Michael Ernst Böttcher
- Geochemistry & Isotope Biogeochemistry, Leibniz Institute for Baltic Sea Research (IOW), Warnemünde, Germany
- Marine Geochemistry, University of Greifswald, Greifswald, Germany
- Department of Maritime Systems, Interdisciplinary Faculty (INF), University of Rostock, Rostock, Germany
| | - Steven M Bates
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
| | - Timothy W Lyons
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Stüeken EE, Prave AR. Diagenetic nutrient supplies to the Proterozoic biosphere archived in divergent nitrogen isotopic ratios between kerogen and silicate minerals. GEOBIOLOGY 2022; 20:623-633. [PMID: 35749131 PMCID: PMC9544726 DOI: 10.1111/gbi.12507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen isotopes and abundances in sedimentary rocks have become an important tool for reconstructing biogeochemical cycles in ancient ecosystems. There are two archives of nitrogen in the rock record, namely kerogen-bound amines and silicate-bound ammonium, and it is well documented that the isotopic ratios of these two archives can be offset from one another. This offset has been observed to increase with metamorphic grade, suggesting that it may be related to the bonding environment in differing nitrogen host phases and associated equilibrium isotope fractionation. However, theoretical bounds for this effect have not been established, and it remains possible that some isotopic offsets predate metamorphism. In support of this hypothesis, we report an unexpectedly large isotopic offset of 4-5‰ in siltstones of very low metamorphic grade from the late Mesoproterozoic Diabaig Formation in NW Scotland (1.0 Ga). Carbon to nitrogen ratios of bulk rocks are 2-3 times lower than in other Mesoproterozoic sections. The rocks also contain early-formed phosphate concretions and display wrinkled surfaces on bedding planes, indicative of fossilised microbial mats. Collectively, these data are most parsimoniously interpreted as evidence of diagenetic ammonium release from microbial mats into porewaters, followed by partial oxidation to nitrite or nitrate at the sediment-water interface. This process would render residual ammonium in clays isotopically heavy, while the resulting nitrite or nitrate would be relatively lighter and captured in new biomass, leading to the observed isotopic divergence. The same diagenetic degradation pathway likely also liberated phosphate that was trapped within concretions. Diagenetic release of nutrients is known to occur in modern settings, and our data suggest that nitrogen isotopes may be a way to track this local sedimentary nutrient source in past environments. Lastly, we speculate that diagenetic nutrient recycling within Proterozoic microbial mats may have created a favourable niche for eukaryotic organisms in shallow waters.
Collapse
Affiliation(s)
- Eva E. Stüeken
- School of Earth & Environmental SciencesUniversity of St AndrewsSt AndrewsUK
| | - Anthony R. Prave
- School of Earth & Environmental SciencesUniversity of St AndrewsSt AndrewsUK
| |
Collapse
|
5
|
Swindle TD, Atreya S, Busemann H, Cartwright JA, Mahaffy P, Marty B, Pack A, Schwenzer SP. Scientific Value of Including an Atmospheric Sample as Part of Mars Sample Return (MSR). ASTROBIOLOGY 2022; 22:S165-S175. [PMID: 34904893 DOI: 10.1089/ast.2021.0107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Perseverance rover is meant to collect samples of the martian surface for eventual return to Earth. The headspace gas present over the solid samples within the sample tubes will be of significant scientific interest for what it reveals about the interactions of the solid samples with the trapped atmosphere and for what it will reveal about the martian atmosphere itself. However, establishing the composition of the martian atmosphere will require other dedicated samples. The headspace gas as the sole atmospheric sample is problematic for many reasons. The quantity of gas present within the sample tube volume is insufficient for many investigations, and there will be exchange between solid samples, headspace gas, and tube walls. Importantly, the sample tube materials and preparation were not designed for optimal Mars atmospheric gas collection and storage as they were not sent to Mars in a degassed evacuated state and have been exposed to both Earth's and Mars' atmospheres. Additionally, there is a risk of unconstrained seal leakage in transit back to Earth, which would allow fractionation of the sample (leak-out) and contamination (leak-in). The science return can be improved significantly (and, in some cases, dramatically) by adding one or more of several strategies listed here in increasing order of effectiveness and difficulty of implementation: (1) Having Perseverance collect a gas sample in an empty sample tube, (2) Collecting gas in a newly-designed, valved, sample-tube-sized vessel that is flown on either the Sample Fetch Rover (SFR) or the Sample Retrieval Lander (SRL), (3) Adding a larger (50-100 cc) dedicated gas sampling volume to the Orbiting Sample container (OS), (4) Adding a larger (50-100 cc) dedicated gas sampling volume to the OS that can be filled with compressed martian atmosphere.
Collapse
Affiliation(s)
- Timothy D Swindle
- University of Arizona, Lunar and Planetary Laboratory, Tucson, Arizona, USA
| | | | - Henner Busemann
- ETH Zürich, Institute of Geochemistry and Petrology, Zürich, Switzerland
| | | | - Paul Mahaffy
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | | | | | | |
Collapse
|
6
|
Xia L, Cao J, Lee C, Stüeken EE, Zhi D, Love GD. A new constraint on the antiquity of ancient haloalkaliphilic green algae that flourished in a ca. 300 Ma Paleozoic lake. GEOBIOLOGY 2021; 19:147-161. [PMID: 33331051 DOI: 10.1111/gbi.12423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/03/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
It is established that green algae and land plants progressively colonized freshwater and terrestrial habitats throughout the Paleozoic Era, but little is known about the ecology of Paleozoic saline lakes. Here, we report lipid biomarker and petrographic evidence for the occurrence of a green alga as a major primary producer in a late Paleozoic alkaline lake (Fengcheng Formation; 309-292 Ma). A persistently saline and alkaline lacustrine setting is supported by mineralogical and lipid biomarker evidence alongside extremely enriched δ15 Nbulk values (+16 to +24‰) for the lake depocenter. The prominence of C28 and C29 steroids, co-occurring with abundant carotene-derived accessory pigment markers in these ancient rocks, is suggestive of prolific primary production and elevated source inputs from haloalkaliphilic green algae. The high C28 /C29 -sterane ratios (0.78-1.29) are significantly higher than the typical marine value reported for late Paleozoic rocks (<0.5) and thus are associated with certain groups of chlorophytes. Adaptation to such extreme lacustrine environments, aided by enhanced biosynthesis of certain cell membrane lipids, likely played an important role in the evolution and physiological development of ancient green algae.
Collapse
Affiliation(s)
- Liuwen Xia
- MOE Key Laboratory of Surficial Geochemistry, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Jian Cao
- MOE Key Laboratory of Surficial Geochemistry, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Carina Lee
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA
- Universities Space Research Association, Lunar and Planetary Institute, Houston, TX, USA
| | - Eva E Stüeken
- School of Earth & Environmental Sciences, University of St Andrews, St Andrews, Scotland, UK
| | - Dongming Zhi
- PetroChina Xinjiang Oilfield Company, Karamay, China
| | - Gordon D Love
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
7
|
A Series of Data-Driven Hypotheses for Inferring Biogeochemical Conditions in Alkaline Lakes and Their Deposits Based on the Behavior of Mg and SiO2. MINERALS 2021. [DOI: 10.3390/min11020106] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Alkaline (pH > 8.5) lakes have been common features of Earth’s surface environments throughout its history and are currently among the most biologically productive environments on the planet. The chemistry of alkaline lakes favors the deposition of aluminum-poor magnesian clays (e.g., sepiolite, stevensite, and kerolite) whose chemistry and mineralogy may provide a useful record of the biogeochemistry of the lake waters from which they were precipitated. In this forward-looking review, we present six data-driven, testable hypotheses devoted to furthering our understanding of the biogeochemical conditions in paleolake waters based on the geochemical behavior of Mg and SiO2. In the development of these hypotheses, we bring together a compilation of modern lake water chemistry, recently published and new experimental data, and empirical, thermodynamic, and kinetic relationships developed from these data. We subdivide the hypotheses and supporting evidence into three categories: (1) interpreting paleolake chemistry from mineralogy; (2) interpreting the impact of diatoms on alkaline lake sedimentation; and (3) interpreting depositional mineralogy based on water chemistry. We demonstrate the need for further investigation by discussing evidence both for and against each hypothesis, which, in turn, highlights the gaps in our knowledge and the importance of furthering our understanding of the relevant geological and biological systems. The focused testing of these hypotheses against modern occurrences and the geologic record of alkaline lakes can have profound implications for the interpretation of the paleo-biogeochemistry and paleohabitability of these systems on Earth and beyond.
Collapse
|