1
|
Garcia E, Claudi L, La Chica Lhoëst MT, Polishchuk A, Samouillan V, Benitez Amaro A, Pinero J, Escolà-Gil JC, Sabidó E, Leta R, Vilades D, Llorente Cortes V. Reduced blood EPAC1 protein levels as a marker of severe coronary artery disease: the role of hypoxic foam cell-transformed smooth muscle cells. J Transl Med 2025; 23:523. [PMID: 40346550 PMCID: PMC12063457 DOI: 10.1186/s12967-025-06513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/18/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Vascular smooth muscle cells loaded with cholesterol (foam-VSMCs) play a crucial role in the progression of human atherosclerosis. Exchange Protein Directly Activated by cAMP 1 (EPAC1) is a critical protein in the regulation of vascular tone, endothelial function, and inflammation. Our objectives were to identify proteins specifically secreted by foam human coronary VSMCs (foam-hcVSMC) to evaluate their potential as circulating biomarkers for diagnosing coronary artery disease (CAD), and to ascertain the mechanisms underlying their levels in the blood of patients with CAD. METHODS AND RESULTS Differential proteomics identified EPAC1 as a differential foam-hcVSMC-secreted protein. Circulating EPAC1 levels were measured by ELISA in blood from 202 patients with suspected CAD who underwent coronary computed tomography angiography (CCTA). Blood EPAC1 levels were significantly lower in CAD patients compared to controls (p < 0.001). EPAC1 levels were reduced in both men and women with severe CAD (SIS > 4) compared to those with moderate CAD (SIS 1-4). ROC analysis identified 9.16 ng/ml as the optimal EPAC1 cut-off for severe CAD. At this threshold, EPAC1 predicted severe CAD (SIS > 4) with 69.6% sensitivity and 79.4% specificity, outperforming hs-CRP and hs-TnT in predicting CAD severity. Real-time PCR and Western blot analysis revealed that human foam-SMCs under hypoxic conditions exhibited a significant reduction in EPAC1 mRNA (p = 0.013) and protein (p < 0.001) levels. CONCLUSIONS These findings suggest that circulating EPAC1 protein levels lower than 9.16 ng/mL are predictive of severe CAD in humans. Hypoxic foam-SMCs, characteristic of advanced atherosclerotic lesions, exhibit diminished production of EPAC1, potentially contributing to the decreased circulating EPAC1 levels in patients with severe CAD.
Collapse
Affiliation(s)
- Eduardo Garcia
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain
| | - Lene Claudi
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041, Barcelona, Spain
| | - Maria Teresa La Chica Lhoëst
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain
| | - Anna Polishchuk
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041, Barcelona, Spain
| | - Valerie Samouillan
- CIRIMAT, Université de Toulouse, Université Paul Sabatier, Equipe PHYPOL, 31062, Toulouse, France
| | - Aleyda Benitez Amaro
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041, Barcelona, Spain
| | - Janet Pinero
- Research Programme on Biomedical Informatics (GRIB), Department of Experimental and Health Sciences (DCEXS), Hospital del Mar Medical Research Institute (IMIM), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Joan Carles Escolà-Gil
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08041, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029, Madrid, Spain
| | - Eduard Sabidó
- Proteomics Unit, Centre de Regulació Genòmica, Barcelona Institute of Science and Technology; Universitat Pompeu i Fabra (UPF), Barcelona, Spain
| | - Ruben Leta
- Cardiac Imaging Unit, Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - David Vilades
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041, Barcelona, Spain
- Cardiac Imaging Unit, Department of Cardiology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona, Spain
- CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, 28029, Madrid, Spain
| | - Vicenta Llorente Cortes
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain.
- Institut de Recerca Sant Pau (IR SANT PAU), Sant Quintí 77-79, 08041, Barcelona, Spain.
- CIBER de Enfermedades Cardiovasculares CIBERCV, Institute of Health Carlos III, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Guan T, Zhang W, Li M, Wang Q, Guo L, Guo B, Luo X, Li Z, Lu M, Dong Z, Xu M, Liu M, Liu Y, Feng J. D-Ala2-GIP (1-30) promotes angiogenesis by facilitating endothelial cell migration via the Epac/Rap1/Cdc42 signaling pathway. Cell Signal 2025; 127:111615. [PMID: 39855534 DOI: 10.1016/j.cellsig.2025.111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/07/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Angiogenesis, a meticulously regulated process essential for both normal development and pathological conditions, necessitates a comprehensive understanding of the endothelial mechanisms governing its progression. Leveraging the zebrafish model and NgAgo knockdown system to identify target genes influencing angiogenesis, our study highlights the significant role of gastric inhibitory polypeptide (GIP) and its receptor (GIPR) in this process. While GIP has been extensively studied for its insulinotropic and glucagonotropic effects, its role in angiogenesis remains unexplored. This study demonstrated that GIPR knockdown induced developmental delays, morphological abnormalities, and pronounced angiogenic impairments in zebrafish embryos. Conversely, exogenous D-Ala2-GIP administration enhanced blood vessel formation in the yolk sac membrane of chick embryos. Consistent with these findings, D-Ala2-GIP treatment promoted microvessel formation in the tube formation assays and rat aortic ring models. Further investigation revealed that D-Ala2-GIP facilitated human umbilical vein endothelial cell (HUVEC) migration, a key step in angiogenesis, through the cyclic adenosine monophosphate (cAMP)-mediated activation of the Epac/Rap1/Cdc42 signaling pathway. This study provides novel insights into the angiogenic functions of GIP and its potential implications for cardiovascular biology.
Collapse
Affiliation(s)
- Tuchen Guan
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Wenxue Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Mingxuan Li
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Qing Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Longyu Guo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Beibei Guo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Xiaoqian Luo
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Zhen Li
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Muxing Lu
- Medical School of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Zhangji Dong
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Jian Feng
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
3
|
Guha S, Nguyen AM, Young A, Mondell E, Farber DB. Decreased CREB phosphorylation impairs embryonic retinal neurogenesis in the Oa1-/- mouse model of Ocular albinism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594013. [PMID: 38798688 PMCID: PMC11118284 DOI: 10.1101/2024.05.14.594013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mutations in the human Ocular albinism type-1 gene OA1 are associated with abnormal retinal pigment epithelium (RPE) melanogenesis and poor binocular vision resulting from misrouting of ipsilateral retinal ganglion cell (iRGC) axons to the brain. We studied the latter using wild-type (WT) and Oa1-/- mouse eyes. At embryonic stages, the WT RPE-specific Oa1 protein signals through cAMP/Epac1-Erk2-CREB. Following CREB phosphorylation, a pCREB gradient extends from the RPE to the differentiating retinal amacrine and RGCs. In contrast to WT, the Oa1-/- RPE and ventral ciliary-margin-zone, a niche for iRGCs, express less pCREB while their retinas have a disrupted pCREB gradient, indicating Oa1's involvement in pCREB maintenance. Oa1-/- retinas also show hyperproliferation, enlarged nuclei, reduced differentiation, and fewer newborn amacrine and RGCs than WT retinas. Our results demonstrate that Oa1's absence leads to reduced binocular vision through a hyperproliferation-associated block in differentiation that impairs neurogenesis. This may affect iRGC axon's routing to the brain.
Collapse
Affiliation(s)
- Sonia Guha
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Andrew M. Nguyen
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Alejandra Young
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Ethan Mondell
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Debora B. Farber
- Department of Ophthalmology, Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Li Z, Liu Q, Cai Y, Ye N, He Z, Yao Y, Ding Y, Wang P, Qi C, Zheng L, Wang L, Zhou J, Zhang QQ. EPAC inhibitor suppresses angiogenesis and tumor growth of triple-negative breast cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167114. [PMID: 38447883 DOI: 10.1016/j.bbadis.2024.167114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
AIMS Exchange protein directly activated by cAMP 1 (EPAC1), a major isoform of guanine nucleotide exchange factors, is highly expressed in vascular endothelia cells and regulates angiogenesis in the retina. High intratumor microvascular densities (MVD) resulting from angiogenesis is responsible for breast cancer development. Downregulation of EPAC1 in tumor cell reduces triple-negative breast cancer (TNBC)-induced angiogenesis. However, whether Epac1 expressed in vascular endothelial cells contributes to angiogenesis and tumor development of TNBC remains elusive. MAIN METHODS We employed NY0123, a previously identified potent EPAC inhibitor, to explore the anti-angiogenic biological role of EPAC1 in vitro and in vivo through vascular endothelial cells, rat aortic ring, Matrigel plug, and chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) assays, as well as the in vivo xenograft tumor models of TNBC in both chick embryo and mice. KEY FINDINGS Inhibiting EPAC1 in vascular endothelial cells by NY0123 significantly suppresses angiogenesis and tumor growth of TNBC. In addition, NY0123 possesses a better inhibitory efficacy than ESI-09, a reported specific EPAC inhibitor tool compound. Importantly, inhibiting EPAC1 in vascular endothelia cells regulates the typical angiogenic signaling network, which is associated with not only vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor-2 (VEGFR2) signaling, but also PI3K/AKT, MEK/ERK and Notch pathway. CONCLUSIONS Our findings support that EPAC1 may serve as an effective anti-angiogenic therapeutic target of TNBC, and EPAC inhibitor NY0123 has the therapeutic potential to be developed for the treatment of TNBC.
Collapse
Affiliation(s)
- Zishuo Li
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiao Liu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuhao Cai
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Na Ye
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Zinan He
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yuying Yao
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Ding
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pingyuan Wang
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States
| | - Cuiling Qi
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lingyun Zheng
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lijing Wang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, United States.
| | - Qian-Qian Zhang
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Tzani A, Haemmig S, Cheng HS, Perez-Cremades D, Augusto Heuschkel M, Jamaiyar A, Singh S, Aikawa M, Yu P, Wang T, Ye S, Feinberg MW, Plutzky J. FAM222A, Part of the BET-Regulated Basal Endothelial Transcriptome, Is a Novel Determinant of Endothelial Biology and Angiogenesis-Brief Report. Arterioscler Thromb Vasc Biol 2024; 44:143-155. [PMID: 37942611 PMCID: PMC10840377 DOI: 10.1161/atvbaha.123.319909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/17/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND BETs (bromodomain and extraterminal domain-containing epigenetic reader proteins), including BRD4 (bromodomain-containing protein 4), orchestrate transcriptional programs induced by pathogenic stimuli, as intensively studied in cardiovascular disease and elsewhere. In endothelial cells (ECs), BRD4 directs induced proinflammatory, proatherosclerotic transcriptional responses; BET inhibitors, like JQ1, repress these effects and decrease atherosclerosis. While BET effects in pathogenic conditions have prompted therapeutic BET inhibitor development, BET action under basal conditions, including ECs, has remained understudied. To understand BET action in basal endothelial transcriptional programs, we first analyzed EC RNA-Seq data in the absence versus presence of JQ1 before using BET regulation to identify novel determinants of EC biology and function. METHODS RNA-Seq datasets of human umbilical vein ECs without and with JQ1 treatment were analyzed. After identifying C12orf34, also known as FAM222A (family with sequence similarity 222 member A), as a previously unreported, basally expressed, potently JQ1-induced EC gene, FAM222A was studied in endothelial and angiogenic responses in vitro using small-interference RNA silencing and lentiviral overexpression, in vitro, ex vivo and in vivo, including aortic sprouting, matrigel plug assays, and murine neonatal oxygen-induced retinopathy. RESULTS Resting EC RNA-Seq data indicate BETs direct transcriptional programs underlying core endothelial properties including migration, proliferation, and angiogenesis. BET inhibition in resting ECs also significantly induced a subset of mRNAs, including FAM222A-a unique BRD4-regulated gene with no reported EC role. Silencing endothelial FAM222A significantly decreased cellular proliferation, migration, network formation, aorta sprouting, and Matrigel plug vascularization through coordinated modulation of VEGF (vascular endothelial growth factor) and NOTCH mediator expression in vitro, ex vivo, in vivo; lentiviral FAM222A overexpression had opposite effects. In vivo, siFAM222A significantly repressed retinal revascularization in neonatal murine oxygen-induced retinopathy through similar angiogenic signaling modulation. CONCLUSIONS BET control over the basal endothelial transcriptome includes FAM222A, a novel, BRD4-regulated, key determinant of endothelial biology and angiogenesis.
Collapse
Affiliation(s)
- Aspasia Tzani
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Stefan Haemmig
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Henry S. Cheng
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Daniel Perez-Cremades
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Marina Augusto Heuschkel
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Anurag Jamaiyar
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Sasha Singh
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Masanori Aikawa
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Paul Yu
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Tianxi Wang
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Sun Ye
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Mark W. Feinberg
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| | - Jorge Plutzky
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115
- Harvard Medical School, Boston, MA 02115
| |
Collapse
|
6
|
Nazari-Khanamiri F, Abdyazdani N, Abbasi R, Ahmadi M, Rezaie J. Tumor cells-derived exosomal noncoding RNAs in cancer angiogenesis: Molecular mechanisms and prospective. Cell Biochem Funct 2023; 41:1008-1015. [PMID: 37843018 DOI: 10.1002/cbf.3874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/30/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Exosomes, heterogeneous, membrane-bound nanoparticles that originated from eukaryotic cells, contribute to intracellular communication by transferring various biomolecules both on their surface and as internal cargo. One of the most significant current discussions on cancer progression is noncoding RNAs cargo of exosomes, which can regulate angiogenesis in tumor. A growing body of evidence shows that exosomes from tumor cells contain various microRNAs, long noncoding RNAs, and circular RNAs that can promote tumor progression by inducing angiogenesis. However, some noncoding RNAs may inhibit cancer angiogenesis. Targeting angiogenic noncoding RNA of exosomes may serve as a hopeful implement for cancer therapy. In this review, we discuss the latest knowledge of the roles of exosomal noncoding RNAs in tumor angiogenesis Understanding the biology of exosomal noncoding RNAs can help scientists plan exosomes-based innovations for the treatment of cancer angiogenesis and cancer biomarkers.
Collapse
Affiliation(s)
- Fereshteh Nazari-Khanamiri
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
- Hematology, Immune Cell Therapy, and Stem Cells Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Nima Abdyazdani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Abbasi
- Department of Biology, Urmia University, Urmia, Iran
| | - Mahdi Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
7
|
Yang W, Xia F, Mei F, Shi S, Robichaux WG, Lin W, Zhang W, Liu H, Cheng X. Upregulation of Epac1 Promotes Pericyte Loss by Inducing Mitochondrial Fission, Reactive Oxygen Species Production, and Apoptosis. Invest Ophthalmol Vis Sci 2023; 64:34. [PMID: 37651112 PMCID: PMC10476449 DOI: 10.1167/iovs.64.11.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
Purpose The pathogenic mechanisms behind the development of ischemic retinopathy are complex and poorly understood. This study investigates the involvement of exchange protein directly activated by cAMP (Epac)1 signaling in pericyte injury during ischemic retinopathy, including diabetic retinopathy, a disease that threatens vision. Methods Mouse models of retinal ischemia-reperfusion injury and type 1 diabetes induced by streptozotocin were used to investigate the pathogenesis of these diseases. The roles of Epac1 signaling in the pathogenesis of ischemic retinopathy were determined by an Epac1 knockout mouse model. The cellular and molecular mechanisms of Epac1-mediated pericyte dysfunction in response to high glucose were investigated by specific modulation of Epac1 activity in primary human retinal pericytes using Epac1-specific RNA interference and a pharmacological inhibitor. Results Ischemic injury or diabetes-induced retinal capillary degeneration were associated with an increased expression of Epac1 in the mouse retinal vasculature, including both endothelial cells and pericytes. Genetic deletion of Epac1 protected ischemic injury-induced pericyte loss and capillary degeneration in the mouse retina. Furthermore, high glucose-induced Epac1 expression in retinal pericytes was accompanied by increased Drp1 phosphorylation, mitochondrial fission, reactive oxygen species production, and caspase 3 activation. Inhibition of Epac1 via RNA interference or pharmacological approaches blocked high glucose-mediated mitochondrial dysfunction and caspase 3 activation. Conclusions Our study reveals an important role of Epac1 signaling in mitochondrial dynamics, reactive oxygen species production, and apoptosis in retinal pericytes and identifies Epac1 as a therapeutic target for treating ischemic retinopathy.
Collapse
Affiliation(s)
- Wenli Yang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Fan Xia
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Fang Mei
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Shuizhen Shi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - William G. Robichaux
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Wei Lin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| | - Wenbo Zhang
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
- Department of Neurobiology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Hua Liu
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, United States
- Texas Therapeutics Institute, University of Texas Health Science Center, Houston, Texas, United States
| |
Collapse
|
8
|
Shi S, Ding C, Zhu S, Xia F, Buscho SE, Li S, Motamedi M, Liu H, Zhang W. PERK Inhibition Suppresses Neovascularization and Protects Neurons During Ischemia-Induced Retinopathy. Invest Ophthalmol Vis Sci 2023; 64:17. [PMID: 37566408 PMCID: PMC10424802 DOI: 10.1167/iovs.64.11.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Purpose Retinal ischemia is a common cause of a variety of eye diseases, such as retinopathy of prematurity, diabetic retinopathy, and vein occlusion. Protein kinase RNA-activated-like endoplasmic reticulum (ER) kinase (PERK), one of the main ER stress sensor proteins, has been involved in many diseases. In this study, we investigated the role of PERK in ischemia-induced retinopathy using a mouse model of oxygen-induced retinopathy (OIR). Methods OIR was induced by subjecting neonatal pups to 70% oxygen at postnatal day 7 (P7) followed by returning to room air at P12. GSK2606414, a selective PERK inhibitor, was orally administrated to pups right after they were returned to room air once daily until 1 day before sample collection. Western blot, immunostaining, and quantitative PCR were used to assess PERK phosphorylation, retinal changes, and signaling pathways in relation to PERK inhibition. Results PERK phosphorylation was prominently increased in OIR retinas, which was inhibited by GSK2606414. Concomitantly, PERK inhibition significantly reduced retinal neovascularization (NV) and retinal ganglion cell (RGC) loss, restored astrocyte network, and promoted revascularization. Furthermore, PERK inhibition downregulated the recruitment/proliferation of mononuclear phagocytes but did not affect OIR-upregulated canonical angiogenic pathways. Conclusions Our results demonstrate that PERK is involved in ischemia-induced retinopathy and its inhibition using GSK2606414 could offer an effective therapeutic intervention aimed at alleviating retinal NV while preventing neuron loss during retinal ischemia.
Collapse
Affiliation(s)
- Shuizhen Shi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Chun Ding
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Shuang Zhu
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Fan Xia
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Seth E. Buscho
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Shengguo Li
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Massoud Motamedi
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Hua Liu
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Wenbo Zhang
- Department of Ophthalmology & Visual Sciences, University of Texas Medical Branch, Galveston, Texas, United States
- Departments of Neurobiology, University of Texas Medical Branch, Galveston, Texas, United States
| |
Collapse
|
9
|
Sartre C, Peurois F, Ley M, Kryszke MH, Zhang W, Courilleau D, Fischmeister R, Ambroise Y, Zeghouf M, Cianferani S, Ferrandez Y, Cherfils J. Membranes prime the RapGEF EPAC1 to transduce cAMP signaling. Nat Commun 2023; 14:4157. [PMID: 37438343 DOI: 10.1038/s41467-023-39894-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/30/2023] [Indexed: 07/14/2023] Open
Abstract
EPAC1, a cAMP-activated GEF for Rap GTPases, is a major transducer of cAMP signaling and a therapeutic target in cardiac diseases. The recent discovery that cAMP is compartmentalized in membrane-proximal nanodomains challenged the current model of EPAC1 activation in the cytosol. Here, we discover that anionic membranes are a major component of EPAC1 activation. We find that anionic membranes activate EPAC1 independently of cAMP, increase its affinity for cAMP by two orders of magnitude, and synergize with cAMP to yield maximal GEF activity. In the cell cytosol, where cAMP concentration is low, EPAC1 must thus be primed by membranes to bind cAMP. Examination of the cell-active chemical CE3F4 in this framework further reveals that it targets only fully activated EPAC1. Together, our findings reformulate previous concepts of cAMP signaling through EPAC proteins, with important implications for drug discovery.
Collapse
Affiliation(s)
- Candice Sartre
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - François Peurois
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Marie Ley
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, IPHC, CNRS UMR 7178, Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Marie-Hélène Kryszke
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Wenhua Zhang
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Delphine Courilleau
- Université Paris-Saclay, IPSIT-CIBLOT, Inserm US31, CNRS UAR3679, 91400, Orsay, France
| | | | - Yves Ambroise
- Université Paris-Saclay, CEA, Service de Chimie Bioorganique et de Marquage, 91191, Gif-sur-Yvette, France
| | - Mahel Zeghouf
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, IPHC, CNRS UMR 7178, Infrastructure Nationale de Protéomique ProFI - FR2048, 67087, Strasbourg, France
| | - Yann Ferrandez
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France
| | - Jacqueline Cherfils
- Université Paris-Saclay, Ecole Normale Supérieure Paris-Saclay, CNRS, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
10
|
Icariside II alleviates ischemic retinopathy by modulating microglia and promoting vessel integrity. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
|
11
|
Angiotensin-converting enzyme inhibitor promotes angiogenesis through Sp1/Sp3-mediated inhibition of notch signaling in male mice. Nat Commun 2023; 14:731. [PMID: 36759621 PMCID: PMC9911748 DOI: 10.1038/s41467-023-36409-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Angiogenesis is a critical pathophysiological process involved in organ growth and various diseases. Transcription factors Sp1/Sp3 are necessary for fetal development and tumor growth. Sp1/Sp3 proteins were downregulated in the capillaries of the gastrocnemius in patients with critical limb ischemia samples. Endothelial-specific Sp1/Sp3 knockout reduces angiogenesis in retinal, pathological, and tumor models and induced activation of the Notch1 pathway. Further, the inactivation of VEGFR2 signaling by Notch1 contributes to the delayed angiogenesis phenotype. Mechanistically, endothelial Sp1 binds to the promoter of Notch1 and inhibits its transcription, which is enhanced by Sp3. The proangiogenic effect of ACEI is abolished in Sp1/Sp3-deletion male mice. We identify USP7 as an ACEI-activated deubiquitinating enzyme that translocated into the nucleus binding to Sp1/Sp3, which are deacetylated by HDAC1. Our findings demonstrate a central role for endothelial USP7-Sp1/Sp3-Notch1 signaling in pathophysiological angiogenesis in response to ACEI treatment.
Collapse
|
12
|
Ding J, Li B, Zhang H, Xu Z, Zhang Q, Ye R, Feng S, Jiang Q, Zhu W, Yan B. Suppression of Pathological Ocular Neovascularization by a Small Molecular Multi-Targeting Kinase Inhibitor, DCZ19903. Transl Vis Sci Technol 2022; 11:8. [PMID: 36484641 DOI: 10.1167/tvst.11.12.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose The administration of anti-vascular endothelial growth factor agents is the standard firs-line therapy for ocular vascular diseases, but some patients still have poor outcomes and drug resistance. This study investigated the role of DCZ19903, a small molecule multitarget kinase inhibitor, in ocular angiogenesis. Methods The toxicity of DCZ19903 was evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assays, flow cytometry, Calcein-AM/PI staining, and terminal uridine nick-end labeling staining. Oxygen-induced retinopathy and laser-induced choroidal neovascularization models were adopted to assess the antiangiogenic effects of DCZ19903 by Isolectin B4 (GS-IB4) and hematoxylin-eosin staining. EdU assays, transwell migration assays, tube formation, and choroid sprouting assays were performed to determine the antiangiogenic effects of DCZ19903. The antiangiogenic mechanism of DCZ19903 was determined using network pharmacology approach and western blots. Results There was no obvious cytotoxicity or tissue toxicity after DCZ19903 treatment. DCZ19903 exerted the antiangiogenic effects in OIR model and choroidal neovascularization model. DCZ19903 inhibited the proliferation, tube formation, migration ability of endothelial cells, and choroidal explant sprouting. DCZ19903 plus ranibizumab achieved greater antiangiogenetic effects than DCZ19903 or ranibizumab alone. DCZ19903 exerted its antiangiogenic effects via affecting the activation of ERK1/2 and p38 signaling. Conclusions DCZ19903 is a promising drug for antiangiogenic treatment in ocular vascular diseases. Translational Relevance These findings suggest that DCZ19903 possesses great antiangiogenic potential for treating ocular vascular diseases.
Collapse
Affiliation(s)
- Jingjuan Ding
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Bo Li
- State Key Laboratory of Drug Research, Shanghai, China.,Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Shanghai, China
| | - Huiying Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Shanghai, China.,Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Shanghai, China
| | - Qiuyang Zhang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Rong Ye
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Siguo Feng
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Qin Jiang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Shanghai, China.,Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Shanghai, China
| | - Biao Yan
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.,National Health Commission (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Chen H, She Q, Liu Y, Chen J, Qin Y, Lu C. The peripheral Epac1/p-Cav-1 pathway underlies the disruption of the vascular endothelial barrier following skin/muscle incision and retraction-induced chronic postsurgical pain. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1377. [PMID: 36660643 PMCID: PMC9843368 DOI: 10.21037/atm-22-6069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
Background Vascular endothelial barrier disruption is pivotal in the development of acute and chronic pain. Here, we demonstrate a previously unidentified molecular mechanism in which activation of the peripheral Epac1/p-Cav-1 pathway accelerated the disruption of the vascular endothelial barrier, thereby promoting chronic postsurgical pain (CPSP). Methods We established a rat model of CPSP induced by skin/muscle incision and retraction (SMIR). Pain behaviors were assessed by the mechanical withdrawal threshold (MWT) at different times. Local muscle tissues around the incision were isolated to detect the vascular permeability and the expression of Epac1 and Cav-1. They were assessed by western blot and immunofluorescence staining. Results SMIR increased vascular endothelial permeability and the number of macrophages and endothelial cells in the muscle tissues around the incision. The peripheral upregulation of Epac1 was macrophage-derived, whereas that of p-Cav-1 was both macrophage and endothelial cell-derived in the SMIR model. Moreover, the Epac1 agonist 8-pCPT could induce mechanical sensitivity, increase the expression of p-Cav-1, and disrupt vascular endothelial barrier in normal rats. The Epac1 inhibitor CE3F4 attenuated established SMIR-induced mechanical hyperalgesia, the upregulation of p-Cav-1 and vascular endothelial barrier. Finally, we showed that intrathecal injection of Cav-1siRNA relieved SMIR-induced mechanical allodynia, but had no effects of the expression of Epac1. Conclusions Collectively, these results revealed a molecular mechanism for modulating CPSP through the peripheral Epac1/Cav-1 pathway. Importantly, targeting Epac1/Cav-1 signaling might be a potential treatment for CPSP.
Collapse
Affiliation(s)
- Hongsheng Chen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Qing She
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yanfang Liu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Junjie Chen
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yibin Qin
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| | - Cui'e Lu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
14
|
Shin HS, Thakore A, Tada Y, Pedroza AJ, Ikeda G, Chen IY, Chan D, Jaatinen KJ, Yajima S, Pfrender EM, Kawamura M, Yang PC, Wu JC, Appel EA, Fischbein MP, Woo YJ, Shudo Y. Angiogenic stem cell delivery platform to augment post-infarction neovasculature and reverse ventricular remodeling. Sci Rep 2022; 12:17605. [PMID: 36266453 PMCID: PMC9584918 DOI: 10.1038/s41598-022-21510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/28/2022] [Indexed: 01/13/2023] Open
Abstract
Many cell-based therapies are challenged by the poor localization of introduced cells and the use of biomaterial scaffolds with questionable biocompatibility or bio-functionality. Endothelial progenitor cells (EPCs), a popular cell type used in cell-based therapies due to their robust angiogenic potential, are limited in their therapeutic capacity to develop into mature vasculature. Here, we demonstrate a joint delivery of human-derived endothelial progenitor cells (EPC) and smooth muscle cells (SMC) as a scaffold-free, bi-level cell sheet platform to improve ventricular remodeling and function in an athymic rat model of myocardial infarction. The transplanted bi-level cell sheet on the ischemic heart provides a biomimetic microenvironment and improved cell-cell communication, enhancing cell engraftment and angiogenesis, thereby improving ventricular remodeling. Notably, the increased density of vessel-like structures and upregulation of biological adhesion and vasculature developmental genes, such as Cxcl12 and Notch3, particularly in the ischemic border zone myocardium, were observed following cell sheet transplantation. We provide compelling evidence that this SMC-EPC bi-level cell sheet construct can be a promising therapy to repair ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Hye Sook Shin
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Akshara Thakore
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Yuko Tada
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Albert J Pedroza
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Gentaro Ikeda
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Ian Y Chen
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Doreen Chan
- Department of Chemistry, Department of Materials Science & Engineering, Stanford University, Stanford University, Stanford, USA
| | - Kevin J Jaatinen
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shin Yajima
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Eric M Pfrender
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Masashi Kawamura
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Phillip C Yang
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Joseph C Wu
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Eric A Appel
- Department of Materials Science & Engineering, Department of Bioengineering, Department of Pediatric (Endocrinology), Stanford University, Stanford, USA
| | - Michael P Fischbein
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - YJoseph Woo
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Yasuhiro Shudo
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA.
| |
Collapse
|
15
|
Pan Y, Liu J, Ren J, Luo Y, Sun X. Epac: A Promising Therapeutic Target for Vascular Diseases: A Review. Front Pharmacol 2022; 13:929152. [PMID: 35910387 PMCID: PMC9330031 DOI: 10.3389/fphar.2022.929152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Vascular diseases affect the circulatory system and comprise most human diseases. They cause severe symptoms and affect the quality of life of patients. Recently, since their identification, exchange proteins directly activated by cAMP (Epac) have attracted increasing scientific interest, because of their role in cyclic adenosine monophosphate (cAMP) signaling, a well-known signal transduction pathway. The role of Epac in cardiovascular disease and cancer is extensively studied, whereas their role in kidney disease has not been comprehensively explored yet. In this study, we aimed to review recent studies on the regulatory effects of Epac on various vascular diseases, such as cardiovascular disease, cerebrovascular disease, and cancer. Accumulating evidence has shown that both Epac1 and Epac2 play important roles in vascular diseases under both physiological and pathological conditions. Additionally, there has been an increasing focus on Epac pharmacological modulators. Therefore, we speculated that Epac could serve as a novel therapeutic target for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Yunfeng Pan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Jia Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jiahui Ren
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Yun Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
16
|
Yang W, Robichaux WG, Mei FC, Lin W, Li L, Pan S, White MA, Chen Y, Cheng X. Epac1 activation by cAMP regulates cellular SUMOylation and promotes the formation of biomolecular condensates. SCIENCE ADVANCES 2022; 8:eabm2960. [PMID: 35442725 PMCID: PMC9020664 DOI: 10.1126/sciadv.abm2960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Protein SUMOylation plays an essential role in maintaining cellular homeostasis when cells are under stress. However, precisely how SUMOylation is regulated, and a molecular mechanism linking cellular stress to SUMOylation, remains elusive. Here, we report that cAMP, a major stress-response second messenger, acts through Epac1 as a regulator of cellular SUMOylation. The Epac1-associated proteome is highly enriched with components of the SUMOylation pathway. Activation of Epac1 by intracellular cAMP triggers phase separation and the formation of nuclear condensates containing Epac1 and general components of the SUMOylation machinery to promote cellular SUMOylation. Furthermore, genetic knockout of Epac1 obliterates oxidized low-density lipoprotein-induced cellular SUMOylation in macrophages, leading to suppression of foam cell formation. These results provide a direct nexus connecting two major cellular stress responses to define a molecular mechanism in which cAMP regulates the dynamics of cellular condensates to modulate protein SUMOylation.
Collapse
Affiliation(s)
- Wenli Yang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - William G. Robichaux
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Fang C. Mei
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Wei Lin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Li Li
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Sheng Pan
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| | - Mark A. White
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Yuan Chen
- Department of Surgery and Moores Cancer Center, UC San Diego Health, La Jolla, CA, USA
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, TX, USA
- Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
17
|
Zou F, Li Y, Zhang S, Zhang J. DP1 (Prostaglandin D 2 Receptor 1) Activation Protects Against Vascular Remodeling and Vascular Smooth Muscle Cell Transition to Myofibroblasts in Angiotensin II-Induced Hypertension in Mice. Hypertension 2022; 79:1203-1215. [PMID: 35354317 DOI: 10.1161/hypertensionaha.121.17584] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) phenotype transition plays an essential role in vascular remodeling. PGD2 (Prostaglandin D2) is involved in cardiovascular inflammation. In this study, we aimed to investigates the role of DP1 (PGD2 receptor 1) on VSMC phenotype transition in vascular remodeling after Ang II (angiotensin II) infusion in mice. METHODS VSMC-specific DP1 knockout mice and DP1flox/flox mice were infused with Ang II for 28 days and systolic blood pressure was measured by noninvasive tail-cuff system. The arterial samples were applied to an unbiased proteome analysis. DP1f/f Myh11 (myosin heavy chain 11) CREERT2 R26mTmG/+ mice were generated for VSMC lineage tracing. Multiple genetic and pharmacological approaches were used to investigate DP1-mediated signaling in phenotypic transition of VSMCs in response to Ang II administration. RESULTS DP1 knockout promoted vascular media thickness and increased systolic blood pressure after Ang II infusion by impairing Epac (exchange protein directly activated by cAMP)-1-mediated Rap-1 (Ras-related protein 1) activation. The DP1 agonist facilitated the interaction of myocardin-related transcription factor A and G-actin, which subsequently inhibited the VSMC transition to myofibroblasts through the suppression of RhoA (Ras homolog family member A)/ROCK-1 (Rho associated coiled-coil containing protein kinase 1) activity. Moreover, Epac-1 overexpression by lentivirus blocked the progression of vascular fibrosis in DP1 deficient mice in response to Ang II infusion. CONCLUSIONS Our finding revealed a protective role of DP1 in VSMC switch to myofibroblasts by impairing the phosphorylation of MRTF (myocardin-related transcription factor)-A by ROCK-1 through Epac-1/Rap-1/RhoA pathway and thus inhibited the expression of collagen I, fibronectin, ED-A (extra domain A) fibronectin, and vinculin. Thus, DP1 activation has therapeutic potential for vascular fibrosis in hypertension.
Collapse
Affiliation(s)
- Fangdi Zou
- Department of Pharmacology, School of Basic Medical Sciences (F.Z., Y.L., S.Z., J.Z.), Tianjin Medical University, China.,School of Pharmacy (F.Z.), Tianjin Medical University, China
| | - Yong Li
- Department of Pharmacology, School of Basic Medical Sciences (F.Z., Y.L., S.Z., J.Z.), Tianjin Medical University, China
| | - Shijie Zhang
- Department of Pharmacology, School of Basic Medical Sciences (F.Z., Y.L., S.Z., J.Z.), Tianjin Medical University, China
| | - Jian Zhang
- Department of Pharmacology, School of Basic Medical Sciences (F.Z., Y.L., S.Z., J.Z.), Tianjin Medical University, China.,School of Pharmacy, East China University of Science and Technology, Shanghai, China (J.Z.)
| |
Collapse
|
18
|
Tan YQ, Li J, Chen HW. Epac, a positive or negative signaling molecule in cardiovascular diseases. Pharmacotherapy 2022; 148:112726. [DOI: 10.1016/j.biopha.2022.112726] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/08/2023]
|
19
|
Tomilin VN, Pyrshev K, Stavniichuk A, Hassanzadeh Khayyat N, Ren G, Zaika O, Khedr S, Staruschenko A, Mei FC, Cheng X, Pochynyuk O. Epac1-/- and Epac2-/- mice exhibit deficient epithelial Na+ channel regulation and impaired urinary Na+ conservation. JCI Insight 2022; 7:e145653. [PMID: 34914636 PMCID: PMC8855822 DOI: 10.1172/jci.insight.145653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
Exchange proteins directly activated by cAMP (Epacs) are abundantly expressed in the renal tubules. We used genetic and pharmacological tools in combination with balance, electrophysiological, and biochemical approaches to examine the role of Epac1 and Epac2 in renal sodium handling. We demonstrate that Epac1-/- and Epac2-/- mice exhibit a delayed anti-natriuresis to dietary sodium restriction despite augmented aldosterone levels. This was associated with a significantly lower response to the epithelial Na+ channel (ENaC) blocker amiloride, reduced ENaC activity in split-opened collecting ducts, and defective posttranslational processing of α and γENaC subunits in the KO mice fed with a Na+-deficient diet. Concomitant deletion of both isoforms led to a marginally greater natriuresis but further increased aldosterone levels. Epac2 blocker ESI-05 and Epac1&2 blocker ESI-09 decreased ENaC activity in Epac WT mice kept on the Na+-deficient diet but not on the regular diet. ESI-09 injections led to natriuresis in Epac WT mice on the Na+-deficient diet, which was caused by ENaC inhibition. In summary, our results demonstrate similar but nonredundant actions of Epac1 and Epac2 in stimulation of ENaC activity during variations in dietary salt intake. We speculate that inhibition of Epac signaling could be instrumental in treatment of hypertensive states associated with ENaC overactivation.
Collapse
Affiliation(s)
- Viktor N. Tomilin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kyrylo Pyrshev
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anna Stavniichuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Naghmeh Hassanzadeh Khayyat
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Guohui Ren
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Sherif Khedr
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Physiology, Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Fang C. Mei
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
20
|
Dai C, Waduge P, Ji L, Huang C, He Y, Tian H, Zuniga-Sanchez E, Bhatt A, Pang IH, Su G, Webster KA, Li W. Secretogranin III stringently regulates pathological but not physiological angiogenesis in oxygen-induced retinopathy. Cell Mol Life Sci 2022; 79:63. [PMID: 35006382 PMCID: PMC9007175 DOI: 10.1007/s00018-021-04111-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 01/12/2023]
Abstract
Conventional angiogenic factors, such as vascular endothelial growth factor (VEGF), regulate both pathological and physiological angiogenesis indiscriminately, and their inhibitors may elicit adverse side effects. Secretogranin III (Scg3) was recently reported to be a diabetes-restricted VEGF-independent angiogenic factor, but the disease selectivity of Scg3 in retinopathy of prematurity (ROP), a retinal disease in preterm infants with concurrent pathological and physiological angiogenesis, was not defined. Here, using oxygen-induced retinopathy (OIR) mice, a surrogate model of ROP, we quantified an exclusive binding of Scg3 to diseased versus healthy developing neovessels that contrasted sharply with the ubiquitous binding of VEGF. Functional immunohistochemistry visualized Scg3 binding exclusively to disease-related disorganized retinal neovessels and neovascular tufts, whereas VEGF bound to both disorganized and well-organized neovessels. Homozygous deletion of the Scg3 gene showed undetectable effects on physiological retinal neovascularization but markedly reduced the severity of OIR-induced pathological angiogenesis. Furthermore, anti-Scg3 humanized antibody Fab (hFab) inhibited pathological angiogenesis with similar efficacy to anti-VEGF aflibercept. Aflibercept dose-dependently blocked physiological angiogenesis in neonatal retinas, whereas anti-Scg3 hFab was without adverse effects at any dose and supported a therapeutic window at least 10X wider than that of aflibercept. Therefore, Scg3 stringently regulates pathological but not physiological angiogenesis, and anti-Scg3 hFab satisfies essential criteria for development as a safe and effective disease-targeted anti-angiogenic therapy for ROP.
Collapse
Affiliation(s)
- Chang Dai
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
| | - Prabuddha Waduge
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
| | - Liyang Ji
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
| | - Chengchi Huang
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Ye He
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
| | - Hong Tian
- Everglades Biopharma, LLC, Houston, TX, USA
| | | | - Amit Bhatt
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- Texas Children Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Iok-Hou Pang
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas, Fort Worth, TX, USA
| | - Guanfang Su
- Department of Ophthalmology, The Second Hospital of Jilin University, #218 Ziqiang Street, Changchun, Jilin, China
| | - Keith A Webster
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA
- Everglades Biopharma, LLC, Houston, TX, USA
| | - Wei Li
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.
- Bascom Palmer Eye Institute, University of Miami School of Medicine, Miami, FL, USA.
| |
Collapse
|
21
|
Ni Z, Cheng X. Origin and Isoform Specific Functions of Exchange Proteins Directly Activated by cAMP: A Phylogenetic Analysis. Cells 2021; 10:cells10102750. [PMID: 34685730 PMCID: PMC8534922 DOI: 10.3390/cells10102750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/09/2021] [Accepted: 10/09/2021] [Indexed: 12/21/2022] Open
Abstract
Exchange proteins directly activated by cAMP (EPAC1 and EPAC2) are one of the several families of cellular effectors of the prototypical second messenger cAMP. To understand the origin and molecular evolution of EPAC proteins, we performed a comprehensive phylogenetic analysis of EPAC1 and EPAC2. Our study demonstrates that unlike its cousin PKA, EPAC proteins are only present in multicellular Metazoa. Within the EPAC family, EPAC1 is only associated with chordates, while EPAC2 spans the entire animal kingdom. Despite a much more contemporary origin, EPAC1 proteins show much more sequence diversity among species, suggesting that EPAC1 has undergone more selection and evolved faster than EPAC2. Phylogenetic analyses of the individual cAMP binding domain (CBD) and guanine nucleotide exchange (GEF) domain of EPACs, two most conserved regions between the two isoforms, further reveal that EPAC1 and EPAC2 are closely clustered together within both the larger cyclic nucleotide receptor and RAPGEF families. These results support the notion that EPAC1 and EPAC2 share a common ancestor resulting from a fusion between the CBD of PKA and the GEF from RAPGEF1. On the other hand, the two terminal extremities and the RAS-association (RA) domains show the most sequence diversity between the two isoforms. Sequence diversities within these regions contribute significantly to the isoform-specific functions of EPACs. Importantly, unique isoform-specific sequence motifs within the RA domain have been identified.
Collapse
Affiliation(s)
- Zhuofu Ni
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Xiaodong Cheng
- Department of Integrative Biology & Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
- Texas Therapeutics Institute, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-500-7487
| |
Collapse
|
22
|
Zeng A, Wang SR, He YX, Yan Y, Zhang Y. Progress in understanding of the stalk and tip cells formation involvement in angiogenesis mechanisms. Tissue Cell 2021; 73:101626. [PMID: 34479073 DOI: 10.1016/j.tice.2021.101626] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 12/28/2022]
Abstract
Vascular sprouting is a key process of angiogenesis and mainly related to the formation of stalk and tip cells. Many studies have found that angiogenesis has a great clinical significance in promoting the functional repair of impaired tissues and anti-angiogenesis is a key to treatment of many tumors. Therefore, how the pathways regulate angiogenesis by regulating the formation of stalk and tip cells is an urgent problem for researchers. This review mainly summarizes the research progress of pathways affecting the formation of stalk and tip cells during angiogenesis in recent years, including the main signaling pathways (such as VEGF-VEGFR-Dll4-Notch signaling pathway, ALK-Smad signaling pathway,CCN1-YAP/YAZ signaling pathway and other signaling pathways) and cellular actions (such as cellular metabolisms, intercellular tension and other actions), aiming to further give the readers an insight into the mechanism of regulating the formation of stalk and tip cells during angiogenesis and provide more targets for anti-angiogenic drugs.
Collapse
Affiliation(s)
- Ao Zeng
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China
| | - Shu-Rong Wang
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China
| | - Yu-Xi He
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China
| | - Yu Yan
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China
| | - Yan Zhang
- Department of Ophthalmology, the Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China.
| |
Collapse
|
23
|
Akil A, Gutiérrez-García AK, Guenter R, Rose JB, Beck AW, Chen H, Ren B. Notch Signaling in Vascular Endothelial Cells, Angiogenesis, and Tumor Progression: An Update and Prospective. Front Cell Dev Biol 2021; 9:642352. [PMID: 33681228 PMCID: PMC7928398 DOI: 10.3389/fcell.2021.642352] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
The Notch signaling pathway plays an essential role in a wide variety of biological processes including cell fate determination of vascular endothelial cells and the regulation of arterial differentiation and angiogenesis. The Notch pathway is also an essential regulator of tumor growth and survival by functioning as either an oncogene or a tumor suppressor in a context-dependent manner. Crosstalk between the Notch and other signaling pathways is also pivotal in tumor progression by promoting cancer cell growth, migration, invasion, metastasis, tumor angiogenesis, and the expansion of cancer stem cells (CSCs). In this review, we provide an overview and update of Notch signaling in endothelial cell fate determination and functioning, angiogenesis, and tumor progression, particularly in the development of CSCs and therapeutic resistance. We further summarize recent studies on how endothelial signaling crosstalk with the Notch pathway contributes to tumor angiogenesis and the development of CSCs, thereby providing insights into vascular biology within the tumor microenvironment and tumor progression.
Collapse
Affiliation(s)
- Abdellah Akil
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ana K. Gutiérrez-García
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rachael Guenter
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J. Bart Rose
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Adam W. Beck
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Herbert Chen
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bin Ren
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
24
|
Yang J, Zhou M, Li W, Lin F, Shan G. Preparation and Evaluation of Sustained Release Platelet-Rich Plasma-Loaded Gelatin Microspheres Using an Emulsion Method. ACS OMEGA 2020; 5:27113-27118. [PMID: 33134671 PMCID: PMC7593996 DOI: 10.1021/acsomega.0c02543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/30/2020] [Indexed: 05/12/2023]
Abstract
The management and treatment of chronic wounds or acute wounds remain a major challenge in modern medicine. The application of autologous platelet-rich plasma (PRP) has become a promising adjuvant therapy to promote wound healing. PRP is derived from centrifuged whole blood to extract concentrated platelets, and a large amount of cytokines and growth factors are released upon activation. These bioactive molecules can enhance angiogenesis and tissue regeneration. Herein, PRP-loaded gelatin microspheres were prepared by the emulsion cross-linking method. Scanning electron microscopy results showed that the prepared microspheres are completely spherical, with an average particle size of 15.95 ± 3.79 μm and having a uniform particle size. Among them, the surface of a single microsphere is smooth and has a microporous structure, which may be the main channel for drug diffusion. Results of drug release measurements show that the prepared microspheres can slowly release the vascular endothelial growth factor for more than 7 days. In vitro cell experiments show that the prepared microspheres can promote proliferation and migration of L929 mouse fibroblast cells. In summary, the prepared PRP-loaded gelatin microspheres with high and long-term activity can provide experimental and theoretical knowledge for the development of the clinical long-acting injectable formulations.
Collapse
Affiliation(s)
- Jing Yang
- Department
of Clinical Laboratory, Guanghua School of Stomatology, Hospital of
Stomatology, Sun Yat-sen University, Guangdong
Provincial Key Laboratory of Stomatology, Guangzhou, Guangdong 510055, China
| | - Mou Zhou
- Department
of Blood Transfusion, General Hospital of
Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Wendan Li
- Department
of Blood Transfusion, General Hospital of
Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Fang Lin
- Department
of Blood Transfusion, General Hospital of
Southern Theatre Command of PLA, Guangzhou 510010, China
| | - Guiqiu Shan
- Department
of Blood Transfusion, General Hospital of
Southern Theatre Command of PLA, Guangzhou 510010, China
| |
Collapse
|
25
|
Robichaux WG, Mei FC, Yang W, Wang H, Sun H, Zhou Z, Milewicz DM, Teng BB, Cheng X. Epac1 (Exchange Protein Directly Activated by cAMP 1) Upregulates LOX-1 (Oxidized Low-Density Lipoprotein Receptor 1) to Promote Foam Cell Formation and Atherosclerosis Development. Arterioscler Thromb Vasc Biol 2020; 40:e322-e335. [PMID: 33054390 DOI: 10.1161/atvbaha.119.314238] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The cAMP second messenger system, a major stress-response pathway, plays essential roles in normal cardiovascular functions and in pathogenesis of heart diseases. Here, we test the hypothesis that the Epac1 (exchange protein directly activated by cAMP 1) acts as a major downstream effector of cAMP signaling to promote atherogenesis and represents a novel therapeutic target. Approach and Results: To ascertain Epac1's function in atherosclerosis development, a triple knockout mouse model (LTe) was generated by crossing Epac1-/- mice with atherosclerosis-prone LDb mice lacking both Ldlr and Apobec1. Deletion of Epac1 led to a significant reduction of atherosclerotic lesion formation as measured by postmortem staining, accompanied by attenuated macrophage/foam cell infiltrations within atherosclerotic plaques as determined by immunofluorescence staining in LTe animals compared with LDb littermates. Primary bone marrow-derived macrophages were isolated from Epac1-null and wild-type mice to investigate the role of Epac1 in lipid uptake and foam cell formation. ox-LDLs (oxidized low-density lipoproteins) stimulation of bone marrow-derived macrophages led to elevated intracellular cAMP and Epac1 levels, whereas an Epac-specific agonist, increased lipid accumulation in wild-type, but not Epac1-null, bone marrow-derived macrophages. Mechanistically, Epac1 acts through PKC (protein kinase C) to upregulate LOX-1 (ox-LDL receptor 1), a major scavenger receptor for ox-LDL uptake, exerting a feedforward mechanism with ox-LDL to increase lipid uptake and propel foam cell formation and atherogenesis. CONCLUSIONS Our study demonstrates a fundamental role of cAMP/Epac1 signaling in vascular remodeling by promoting ox-LDL uptake and foam cell formation during atherosclerosis lesion development. Therefore, Epac1 represents a promising, unexplored therapeutic target for atherosclerosis.
Collapse
Affiliation(s)
- William G Robichaux
- Department of Integrative Biology and Pharmacology (W.G.R., F.C.M., W.Y., H.W., X.C.), McGovern Medical School, The University of Texas Health Science Center, Houston.,Texas Therapeutics Institute (W.G.R., F.C.M., W.Y., H.W., X.C.), McGovern Medical School, The University of Texas Health Science Center, Houston.,Brown Foundation Institute of Molecular Medicine (W.G.R., F.C.M., W.Y., H.W., H.S., B.-B.T.), McGovern Medical School, The University of Texas Health Science Center, Houston
| | - Fang C Mei
- Department of Integrative Biology and Pharmacology (W.G.R., F.C.M., W.Y., H.W., X.C.), McGovern Medical School, The University of Texas Health Science Center, Houston.,Texas Therapeutics Institute (W.G.R., F.C.M., W.Y., H.W., X.C.), McGovern Medical School, The University of Texas Health Science Center, Houston.,Brown Foundation Institute of Molecular Medicine (W.G.R., F.C.M., W.Y., H.W., H.S., B.-B.T.), McGovern Medical School, The University of Texas Health Science Center, Houston
| | - Wenli Yang
- Department of Integrative Biology and Pharmacology (W.G.R., F.C.M., W.Y., H.W., X.C.), McGovern Medical School, The University of Texas Health Science Center, Houston.,Texas Therapeutics Institute (W.G.R., F.C.M., W.Y., H.W., X.C.), McGovern Medical School, The University of Texas Health Science Center, Houston.,Brown Foundation Institute of Molecular Medicine (W.G.R., F.C.M., W.Y., H.W., H.S., B.-B.T.), McGovern Medical School, The University of Texas Health Science Center, Houston
| | - Hui Wang
- Department of Integrative Biology and Pharmacology (W.G.R., F.C.M., W.Y., H.W., X.C.), McGovern Medical School, The University of Texas Health Science Center, Houston.,Texas Therapeutics Institute (W.G.R., F.C.M., W.Y., H.W., X.C.), McGovern Medical School, The University of Texas Health Science Center, Houston.,Brown Foundation Institute of Molecular Medicine (W.G.R., F.C.M., W.Y., H.W., H.S., B.-B.T.), McGovern Medical School, The University of Texas Health Science Center, Houston
| | - Hua Sun
- Brown Foundation Institute of Molecular Medicine (W.G.R., F.C.M., W.Y., H.W., H.S., B.-B.T.), McGovern Medical School, The University of Texas Health Science Center, Houston
| | - Zhen Zhou
- Division of Medical Genetics, Department of Internal Medicine (Z.Z., D.M.M.), McGovern Medical School, The University of Texas Health Science Center, Houston
| | - Dianna M Milewicz
- Division of Medical Genetics, Department of Internal Medicine (Z.Z., D.M.M.), McGovern Medical School, The University of Texas Health Science Center, Houston
| | - Ba-Bie Teng
- Brown Foundation Institute of Molecular Medicine (W.G.R., F.C.M., W.Y., H.W., H.S., B.-B.T.), McGovern Medical School, The University of Texas Health Science Center, Houston
| | - Xiaodong Cheng
- Department of Integrative Biology and Pharmacology (W.G.R., F.C.M., W.Y., H.W., X.C.), McGovern Medical School, The University of Texas Health Science Center, Houston.,Texas Therapeutics Institute (W.G.R., F.C.M., W.Y., H.W., X.C.), McGovern Medical School, The University of Texas Health Science Center, Houston
| |
Collapse
|
26
|
EPAC in Vascular Smooth Muscle Cells. Int J Mol Sci 2020; 21:ijms21145160. [PMID: 32708284 PMCID: PMC7404248 DOI: 10.3390/ijms21145160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023] Open
Abstract
Vascular smooth muscle cells (VSMCs) are major components of blood vessels. They regulate physiological functions, such as vascular tone and blood flow. Under pathological conditions, VSMCs undergo a remodeling process known as phenotypic switching. During this process, VSMCs lose their contractility and acquire a synthetic phenotype, where they over-proliferate and migrate from the tunica media to the tunica interna, contributing to the occlusion of blood vessels. Since their discovery as effector proteins of cyclic adenosine 3′,5′-monophosphate (cAMP), exchange proteins activated by cAMP (EPACs) have been shown to play vital roles in a plethora of pathways in different cell systems. While extensive research to identify the role of EPAC in the vasculature has been conducted, much remains to be explored to resolve the reported discordance in EPAC’s effects. In this paper, we review the role of EPAC in VSMCs, namely its regulation of the vascular tone and phenotypic switching, with the likely involvement of reactive oxygen species (ROS) in the interplay between EPAC and its targets/effectors.
Collapse
|
27
|
Steinle JJ. Review: Role of cAMP signaling in diabetic retinopathy. Mol Vis 2020; 26:355-358. [PMID: 32476815 PMCID: PMC7245604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/07/2020] [Indexed: 11/25/2022] Open
Abstract
Despite decades of research, diabetic retinopathy remains the leading cause of blindness in working age adults. Treatments for early phases for the disease remain elusive. One pathway that appears to regulate neuronal, vascular, and inflammatory components of diabetic retinopathy is the cyclic adenosine 3', 5'-monophosphate (cAMP) pathway. In this review, we discuss the current literature on cAMP actions on the retina, with a focus on neurovascular changes commonly associated with preproliferative diabetic retinopathy models.
Collapse
|