1
|
Yao Z, Sheng L, Song Y, Zhou H, Liu Z, Ji C, Han C, Duan B, Li Y, Yan W, Ma J, Jin C, Qi D, Zhang S. Focal spot diagnostic of pulsed planar anticathode accelerator with compressed streak imaging. OPTICS EXPRESS 2025; 33:15551-15560. [PMID: 40219465 DOI: 10.1364/oe.558974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025]
Abstract
The spatial-temporal distribution of the focal spot is a key characteristic for evaluating a pulsed accelerator. However, the small number of frames and the low frame frequency limit the accurate analysis of the focal spot evolution process in a single shot. Compressed ultrafast photography (CUP) has recently demonstrated the ability of capturing 980 frames at 7 × 1013 fps with a single camera snapshot. In this paper, we demonstrate the utilization of compressed sensing for focal spot diagnostic of a pulsed planar anticathode accelerator called "Chenguang". In particular, our system incorporates a large-format streak camera, an ICCD camera and a PIN detector. The traditional pinhole imaging method is discarded for its low X-ray projection efficiency. Instead, a scintillator is placed close to the anticathode and converts the X-ray focal spot image to visible light image directly. Different reconstruction strategies, including the deep prior denoising algorithm, have been tried to verify the accuracy of the reconstruction results with each other. The two-dimensional time series images of the focal spot of "Chenguang" in strongly-pinched and weakly-pinched modes are observed for the first time. The detailed evolution process of the X-ray focal spot is revealed.
Collapse
|
2
|
Yao J, Guo Z, Qi D, Xu S, Lin W, Cheng L, Jin C, He Y, Xu N, Pan Z, Mao J, Yao Y, Deng L, Shen Y, Zhao H, Sun Z, Zhang S. Discrete Illumination-Based Compressed Ultrafast Photography for High-Fidelity Dynamic Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403854. [PMID: 39120051 PMCID: PMC11538675 DOI: 10.1002/advs.202403854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/03/2024] [Indexed: 08/10/2024]
Abstract
Compressed ultrafast photography (CUP) can capture irreversible or difficult-to-repeat dynamic scenes at the imaging speed of more than one billion frames per second, which is obtained by compressive sensing-based image reconstruction from a compressed 2D image through the discretization of detector pixels. However, an excessively high data compression ratio in CUP severely degrades the image reconstruction quality, thereby restricting its ability to observe ultrafast dynamic scenes with complex spatial structures. To address this issue, a discrete illumination-based CUP (DI-CUP) with high fidelity is reported. In DI-CUP, the dynamic scenes are loaded into an ultrashort laser pulse train with controllable sub-pulse number and time interval, thus the data compression ratio, as well as the overlap between adjacent frames, is greatly decreased and flexibly controlled through the discretization of dynamic scenes based on laser pulse train illumination, and high-fidelity image reconstruction can be realized within the same observation time window. Furthermore, the superior performance of DI-CUP is verified by observing femtosecond laser-induced ablation dynamics and plasma channel evolution, which are hardly resolved in the spatial structures using conventional CUP. It is anticipated that DI-CUP will be widely and dependably used in the real-time observations of various ultrafast dynamics.
Collapse
Affiliation(s)
- Jiali Yao
- State Key Laboratory of Precision SpectroscopySchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241China
- Present address:
College of ScienceShanghai Institute of TechnologyShanghai201418China
| | - Zihan Guo
- State Key Laboratory of Precision SpectroscopySchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241China
| | - Dalong Qi
- State Key Laboratory of Precision SpectroscopySchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241China
| | - Shiyu Xu
- North Night Vision Technology Co. LtdKunming650217China
| | - Wenzhang Lin
- State Key Laboratory of Precision SpectroscopySchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241China
| | - Long Cheng
- State Key Laboratory of Precision SpectroscopySchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241China
| | - Chengzhi Jin
- State Key Laboratory of Precision SpectroscopySchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241China
| | - Yu He
- State Key Laboratory of Precision SpectroscopySchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241China
| | - Ning Xu
- State Key Laboratory of Precision SpectroscopySchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241China
| | - Zhen Pan
- State Key Laboratory of Precision SpectroscopySchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241China
| | - Jiayi Mao
- State Key Laboratory of Precision SpectroscopySchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241China
| | - Yunhua Yao
- State Key Laboratory of Precision SpectroscopySchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241China
| | - Lianzhong Deng
- State Key Laboratory of Precision SpectroscopySchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241China
| | - Yuecheng Shen
- State Key Laboratory of Precision SpectroscopySchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241China
| | - Heng Zhao
- North Night Vision Technology Co. LtdKunming650217China
| | - Zhenrong Sun
- State Key Laboratory of Precision SpectroscopySchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241China
| | - Shian Zhang
- State Key Laboratory of Precision SpectroscopySchool of Physics and Electronic ScienceEast China Normal UniversityShanghai200241China
- Collaborative Innovation Center of Extreme OpticsShanxi UniversityTaiyuan030006China
- Joint Research Center of Light Manipulation Science and Photonic Integrated Chip of East China Normal University and Shandong Normal UniversityEast China Normal UniversityShanghai200241China
| |
Collapse
|
3
|
Li S, Zhao Y, Wen W, Xiong C, Meng J, Chen G, Zhou P, Zhu Y, Gao P, Ye Y. Simple and low-cost microscopy setup for 3D particle field measurement using incoherent illumination and open-source hardware. Microsc Res Tech 2024; 87:2720-2727. [PMID: 38963689 DOI: 10.1002/jemt.24643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/14/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
The quantification of 3D particle field is of interest for a vast range of fields. While in-line particle holography (PH) can provide high-resolution measurements of particles, it suffers from speckle noise. Plenoptic imaging (PI) is less susceptible to speckle noises, but it involves a trade-off between spatial and angular resolution, rendering images with low resolution. Here, we report a simple microscopy setup with the goals of getting the strengths of both techniques. It is built with off-the-shelf and cost-effective components including a photographic lens, a diaphragm, and a CCD camera. The cost of the microscopy setup is affordable to small labs and individual researchers. The pupil plane of the proposed setup can be mechanically accessible, allowing us to implement pupil plane modulation and increase the depth of field (DOF) without requiring any additional relay lenses. It also allows us to understand the working principle of pupil plane modulation clearly, benefiting microscopy education. It illuminates the sample (particles) using diffuse white light, and thus avoids the problem of speckle noise. It captures multiple perspective images via pupil plane modulation, without requiring trading off angular and spatial resolution. We validate the setup with 2D and 3D particle samples. RESEARCH HIGHLIGHTS: We report a simple and cost-effective microscopy setup with the goals of getting the strengths of plenoptic imaging and in-line particle holography. It is built with off-the-shelf and cost-effective components. The cost of the microscopy setup is affordable to small labs and individual researchers. The pupil plane of the proposed setup can be mechanically accessible, allowing us to implement pupil plane modulation and increase the DOF without requiring any additional relay lenses. It also allows us to understand the working principle of pupil plane modulation clearly, benefiting microscopy education. It illuminates the sample (particles) using diffuse white light, and thus avoids the problem of speckle noise. It captures multiple perspective images via pupil plane modulation, without requiring trading off angular and spatial resolution. We validate the setup with 2D and 3D particle samples.
Collapse
Affiliation(s)
- Shengfu Li
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Yu Zhao
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Weifeng Wen
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Chuanzhong Xiong
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Jianhua Meng
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Guanghua Chen
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Pingwei Zhou
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Yu Zhu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Peng Gao
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| | - Yan Ye
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, China
| |
Collapse
|
4
|
Li Z, Xiao L, Feng Z, Liu Z, Wang D, Lei C. Sequentially timed all-optical mapping photography with quantitative phase imaging capability. OPTICS LETTERS 2024; 49:5059-5062. [PMID: 39270227 DOI: 10.1364/ol.533759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024]
Abstract
Sequentially timed all-optical mapping photography (STAMP) is considered a powerful tool to observe highly dynamic events; however, its application is significantly hindered by its incapability to acquire quantitative phase images. In this work, by integrating diffraction phase microscopy (DPM) and STAMP, we achieve ultrafast single-shot quantitative phase imaging with a frame rate of up to 3.3 trillion fps. The performance of the system is evaluated using a homemade phase module. Experimental results show that the system can accurately record the propagation of laser filamentation in air. We believe our method will greatly enhance the capability of STAMP to measure highly transparent targets.
Collapse
|
5
|
Lin S, Gong L, Huang Z. Time-of-flight resolved stimulated Raman scattering microscopy using counter-propagating ultraslow Bessel light bullets generation. LIGHT, SCIENCE & APPLICATIONS 2024; 13:148. [PMID: 38951517 PMCID: PMC11217417 DOI: 10.1038/s41377-024-01498-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/20/2024] [Accepted: 05/30/2024] [Indexed: 07/03/2024]
Abstract
We present a novel time-of-flight resolved Bessel light bullet-enabled stimulated Raman scattering (B2-SRS) microscopy for deeper tissue 3D chemical imaging with high resolution without a need for mechanical z-scanning. To accomplish the tasks, we conceive a unique method to enable optical sectioning by generating the counter-propagating pump and Stokes Bessel light bullets in the sample, in which the group velocities of the Bessel light bullets are made ultraslow (e.g., vg ≈ 0.1c) and tunable by introducing programmable angular dispersions with a spatial light modulator. We theoretically analyze the working principle of the collinear multicolor Bessel light bullet generations and velocity controls with the relative time-of-flight resolved detection for SRS 3D deep tissue imaging. We have also built the B2-SRS imaging system and present the first demonstration of B2-SRS microscopy with Bessel light bullets for 3D chemical imaging in a variety of samples (e.g., polymer bead phantoms, biological samples such as spring onion tissue and porcine brain) with high resolution. The B2-SRS technique provides a > 2-fold improvement in imaging depth in porcine brain tissue compared to conventional SRS microscopy. The method of optical sectioning in tissue using counter-propagating ultraslow Bessel light bullets developed in B2-SRS is generic and easy to perform and can be readily extended to other nonlinear optical imaging modalities to advance 3D microscopic imaging in biological and biomedical systems and beyond.
Collapse
Affiliation(s)
- Shulang Lin
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Li Gong
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Zhiwei Huang
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117576, Singapore.
| |
Collapse
|
6
|
Yao Z, Ji C, Sheng L, Song Y, Liu Z, Han C, Zhou H, Duan B, Li Y, Hei D, Tian J, Xue Y. Snapshot compressive imaging at 855 million frames per second for aluminium planar wire array Z-pinch. OPTICS EXPRESS 2024; 32:6567-6574. [PMID: 38439356 DOI: 10.1364/oe.512450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/23/2024] [Indexed: 03/06/2024]
Abstract
This paper present a novel, integrated compressed ultrafast photography system for comprehensive measurement of the aluminium planar wire array Z-Pinch evolution process. The system incorporates a large array streak camera and embedded encoding to improve the signal-to-noise ratio. Based on the "QiangGuang-I" pulsed power facility, we recorded the complete continuous 2D implosion process of planar wire array Z-Pinch for the first time. Our results contribute valuable understanding of imploding plasma instabilities and offer direction for the optimization of Z-Pinch facilities.
Collapse
|
7
|
Lai Y, Marquez M, Liang J. Tutorial on compressed ultrafast photography. JOURNAL OF BIOMEDICAL OPTICS 2024; 29:S11524. [PMID: 38292055 PMCID: PMC10826888 DOI: 10.1117/1.jbo.29.s1.s11524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 02/01/2024]
Abstract
Significance Compressed ultrafast photography (CUP) is currently the world's fastest single-shot imaging technique. Through the integration of compressed sensing and streak imaging, CUP can capture a transient event in a single camera exposure with imaging speeds from thousands to trillions of frames per second, at micrometer-level spatial resolutions, and in broad sensing spectral ranges. Aim This tutorial aims to provide a comprehensive review of CUP in its fundamental methods, system implementations, biomedical applications, and prospect. Approach A step-by-step guideline to CUP's forward model and representative image reconstruction algorithms is presented with sample codes and illustrations in Matlab and Python. Then, CUP's hardware implementation is described with a focus on the representative techniques, advantages, and limitations of the three key components-the spatial encoder, the temporal shearing unit, and the two-dimensional sensor. Furthermore, four representative biomedical applications enabled by CUP are discussed, followed by the prospect of CUP's technical advancement. Conclusions CUP has emerged as a state-of-the-art ultrafast imaging technology. Its advanced imaging ability and versatility contribute to unprecedented observations and new applications in biomedicine. CUP holds great promise in improving technical specifications and facilitating the investigation of biomedical processes.
Collapse
Affiliation(s)
- Yingming Lai
- Université du Québec, Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, Laboratory of Applied Computational Imaging, Varennes, Québec, Canada
| | - Miguel Marquez
- Université du Québec, Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, Laboratory of Applied Computational Imaging, Varennes, Québec, Canada
| | - Jinyang Liang
- Université du Québec, Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunications, Laboratory of Applied Computational Imaging, Varennes, Québec, Canada
| |
Collapse
|
8
|
Saiki T, Shimada K, Ishijima A, Song H, Qi X, Okamoto Y, Mizushima A, Mita Y, Hosobata T, Takeda M, Morita S, Kushibiki K, Ozaki S, Motohara K, Yamagata Y, Tsukamoto A, Kannari F, Sakuma I, Inada Y, Nakagawa K. Single-shot optical imaging with spectrum circuit bridging timescales in high-speed photography. SCIENCE ADVANCES 2023; 9:eadj8608. [PMID: 38117881 PMCID: PMC10732534 DOI: 10.1126/sciadv.adj8608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/17/2023] [Indexed: 12/22/2023]
Abstract
Single-shot optical imaging based on ultrashort lasers has revealed nonrepetitive processes in subnanosecond timescales beyond the recording range of conventional high-speed cameras. However, nanosecond photography without sacrificing short exposure time and image quality is still missing because of the gap in recordable timescales between ultrafast optical imaging and high-speed electronic cameras. Here, we demonstrate nanosecond photography and ultrawide time-range high-speed photography using a spectrum circuit that produces interval-tunable pulse trains while keeping short pulse durations. We capture a shock wave propagating through a biological cell with a 1.5-ns frame interval and 44-ps exposure time while suppressing image blur. Furthermore, we observe femtosecond laser processing over multiple timescales (25-ps, 2.0-ns, and 1-ms frame intervals), showing that the plasma generated at the picosecond timescale affects subsequent shock wave formation at the nanosecond timescale. Our technique contributes to accumulating data of various fast processes for analysis and to analyzing multi-timescale phenomena as a series of physical processes.
Collapse
Affiliation(s)
- Takao Saiki
- Department of Precision Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Keitaro Shimada
- Department of Bioengineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Ayumu Ishijima
- PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
- Medical Device Development and Regulation Research Center, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hang Song
- Department of Bioengineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Xinyi Qi
- Department of Bioengineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yuki Okamoto
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba, Ibaraki 305-8564, Japan
| | - Ayako Mizushima
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshio Mita
- Department of Electrical and Electronic Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takuya Hosobata
- RIKEN Centre for Advanced Photonics (RAP), RIKEN, Saitama 351-0198, Japan
| | - Masahiro Takeda
- RIKEN Centre for Advanced Photonics (RAP), RIKEN, Saitama 351-0198, Japan
| | - Shinya Morita
- School of Engineering, Tokyo Denki University, Tokyo 120-8551, Japan
| | - Kosuke Kushibiki
- Institute of Astronomy, The University of Tokyo, Tokyo 181-0015, Japan
| | - Shinobu Ozaki
- National Astronomical Observatory of Japan (NAOJ), Tokyo 181-8588, Japan
| | - Kentaro Motohara
- Institute of Astronomy, The University of Tokyo, Tokyo 181-0015, Japan
- National Astronomical Observatory of Japan (NAOJ), Tokyo 181-8588, Japan
| | - Yutaka Yamagata
- RIKEN Centre for Advanced Photonics (RAP), RIKEN, Saitama 351-0198, Japan
| | - Akira Tsukamoto
- Department of Applied Physics, National Defense Academy of Japan, Kanagawa 239-8686, Japan
| | - Fumihiko Kannari
- Department of Electronics and Electrical Engineering, Keio University, Kanagawa 223-8522, Japan
| | - Ichiro Sakuma
- Department of Precision Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Department of Bioengineering, The University of Tokyo, Tokyo 113-8656, Japan
- Medical Device Development and Regulation Research Center, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yuki Inada
- PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
- Electronics and Information Sciences, Saitama University, Saitama 338-8570, Japan
| | - Keiichi Nakagawa
- Department of Precision Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Department of Bioengineering, The University of Tokyo, Tokyo 113-8656, Japan
- PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
9
|
Guo Z, Yao J, Qi D, Ding P, Jin C, He Y, Xu N, Zhang Z, Yao Y, Deng L, Wang Z, Sun Z, Zhang S. Flexible and accurate total variation and cascaded denoisers-based image reconstruction algorithm for hyperspectrally compressed ultrafast photography. OPTICS EXPRESS 2023; 31:43989-44003. [PMID: 38178481 DOI: 10.1364/oe.506723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
Hyperspectrally compressed ultrafast photography (HCUP) based on compressed sensing and time- and spectrum-to-space mappings can simultaneously realize the temporal and spectral imaging of non-repeatable or difficult-to-repeat transient events with a passive manner in single exposure. HCUP possesses an incredibly high frame rate of tens of trillions of frames per second and a sequence depth of several hundred, and therefore plays a revolutionary role in single-shot ultrafast optical imaging. However, due to ultra-high data compression ratios induced by the extremely large sequence depth, as well as limited fidelities of traditional algorithms over the image reconstruction process, HCUP suffers from a poor image reconstruction quality and fails to capture fine structures in complex transient scenes. To overcome these restrictions, we report a flexible image reconstruction algorithm based on a total variation (TV) and cascaded denoisers (CD) for HCUP, named the TV-CD algorithm. The TV-CD algorithm applies the TV denoising model cascaded with several advanced deep learning-based denoising models in the iterative plug-and-play alternating direction method of multipliers framework, which not only preserves the image smoothness with TV, but also obtains more priori with CD. Therefore, it solves the common sparsity representation problem in local similarity and motion compensation. Both the simulation and experimental results show that the proposed TV-CD algorithm can effectively improve the image reconstruction accuracy and quality of HCUP, and may further promote the practical applications of HCUP in capturing high-dimensional complex physical, chemical and biological ultrafast dynamic scenes.
Collapse
|
10
|
Mishra YN, Wang P, Bauer FJ, Zhang Y, Hanstorp D, Will S, Wang LV. Single-pulse real-time billion-frames-per-second planar imaging of ultrafast nanoparticle-laser dynamics and temperature in flames. LIGHT, SCIENCE & APPLICATIONS 2023; 12:47. [PMID: 36807322 PMCID: PMC9941513 DOI: 10.1038/s41377-023-01095-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Unburnt hydrocarbon flames produce soot, which is the second biggest contributor to global warming and harmful to human health. The state-of-the-art high-speed imaging techniques, developed to study non-repeatable turbulent flames, are limited to million-frames-per-second imaging rates, falling short in capturing the dynamics of critical species. Unfortunately, these techniques do not provide a complete picture of flame-laser interactions, important for understanding soot formation. Furthermore, thermal effects induced by multiple consecutive pulses modify the optical properties of soot nanoparticles, thus making single-pulse imaging essential. Here, we report single-shot laser-sheet compressed ultrafast photography (LS-CUP) for billion-frames-per-second planar imaging of flame-laser dynamics. We observed laser-induced incandescence, elastic light scattering, and fluorescence of soot precursors - polycyclic aromatic hydrocarbons (PAHs) in real-time using a single nanosecond laser pulse. The spatiotemporal maps of the PAHs emission, soot temperature, primary nanoparticle size, soot aggregate size, and the number of monomers, present strong experimental evidence in support of the theory and modeling of soot inception and growth mechanism in flames. LS-CUP represents a generic and indispensable tool that combines a portfolio of ultrafast combustion diagnostic techniques, covering the entire lifecycle of soot nanoparticles, for probing extremely short-lived (picoseconds to nanoseconds) species in the spatiotemporal domain in non-repeatable turbulent environments. Finally, LS-CUP's unparalleled capability of ultrafast wide-field temperature imaging in real-time is envisioned to unravel mysteries in modern physics such as hot plasma, sonoluminescence, and nuclear fusion.
Collapse
Affiliation(s)
- Yogeshwar Nath Mishra
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Mail Code 138-78, Pasadena, CA, 91125, USA
- NASA-Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
- Department of Physics, University of Gothenburg, SE 41296, Gothenburg, Sweden
| | - Peng Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Mail Code 138-78, Pasadena, CA, 91125, USA
| | - Florian J Bauer
- Institute of Engineering Thermodynamics (LTT) and Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058, Erlangen, Germany
| | - Yide Zhang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Mail Code 138-78, Pasadena, CA, 91125, USA
| | - Dag Hanstorp
- Department of Physics, University of Gothenburg, SE 41296, Gothenburg, Sweden
| | - Stefan Will
- Institute of Engineering Thermodynamics (LTT) and Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058, Erlangen, Germany
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, 1200 East California Boulevard, Mail Code 138-78, Pasadena, CA, 91125, USA.
| |
Collapse
|
11
|
Zhang Y, Shen B, Wu T, Zhao J, Jing JC, Wang P, Sasaki-Capela K, Dunphy WG, Garrett D, Maslov K, Wang W, Wang LV. Ultrafast and hypersensitive phase imaging of propagating internodal current flows in myelinated axons and electromagnetic pulses in dielectrics. Nat Commun 2022; 13:5247. [PMID: 36068212 PMCID: PMC9448739 DOI: 10.1038/s41467-022-33002-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/25/2022] [Indexed: 12/30/2022] Open
Abstract
Many ultrafast phenomena in biology and physics are fundamental to our scientific understanding but have not yet been visualized owing to the extreme speed and sensitivity requirements in imaging modalities. Two examples are the propagation of passive current flows through myelinated axons and electromagnetic pulses through dielectrics, which are both key to information processing in living organisms and electronic devices. Here, we demonstrate differentially enhanced compressed ultrafast photography (Diff-CUP) to directly visualize propagations of passive current flows at approximately 100 m/s along internodes, i.e., continuous myelinated axons between nodes of Ranvier, from Xenopus laevis sciatic nerves and of electromagnetic pulses at approximately 5 × 107 m/s through lithium niobate. The spatiotemporal dynamics of both propagation processes are consistent with the results from computational models, demonstrating that Diff-CUP can span these two extreme timescales while maintaining high phase sensitivity. With its ultrahigh speed (picosecond resolution), high sensitivity, and noninvasiveness, Diff-CUP provides a powerful tool for investigating ultrafast biological and physical phenomena.
Collapse
Affiliation(s)
- Yide Zhang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Binglin Shen
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Tong Wu
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Key Laboratory of Space Photoelectric Detection and Perception, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Jerry Zhao
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Joseph C Jing
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Peng Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Kanomi Sasaki-Capela
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - William G Dunphy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - David Garrett
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Konstantin Maslov
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Weiwei Wang
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lihong V Wang
- Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, Department of Electrical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
12
|
Tang H, Men T, Liu X, Hu Y, Su J, Zuo Y, Li P, Liang J, Downer MC, Li Z. Single-shot compressed optical field topography. LIGHT, SCIENCE & APPLICATIONS 2022; 11:244. [PMID: 35915072 PMCID: PMC9343635 DOI: 10.1038/s41377-022-00935-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Femtosecond lasers are powerful in studying matter's ultrafast dynamics within femtosecond to attosecond time scales. Drawing a three-dimensional (3D) topological map of the optical field of a femtosecond laser pulse including its spatiotemporal amplitude and phase distributions, allows one to predict and understand the underlying physics of light interaction with matter, whose spatially resolved transient dielectric function experiences ultrafast evolution. However, such a task is technically challenging for two reasons: first, one has to capture in single-shot and squeeze the 3D information of an optical field profile into a two-dimensional (2D) detector; second, typical detectors are only sensitive to intensity or amplitude information rather than phase. Here we have demonstrated compressed optical field topography (COFT) drawing a 3D map for an ultrafast optical field in single-shot, by combining the coded aperture snapshot spectral imaging (CASSI) technique with a global 3D phase retrieval procedure. COFT can, in single-shot, fully characterize the spatiotemporal coupling of a femtosecond laser pulse, and live stream the light-speed propagation of an air plasma ionization front, unveiling its potential applications in ultrafast sciences.
Collapse
Affiliation(s)
- Haocheng Tang
- School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ting Men
- School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xianglei Liu
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, Varennes, Québec, Canada
| | - Yaodan Hu
- School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingqin Su
- Laser Fusion Research Center, Chinese Academy of Engineering Physics, Mianyang, Sichuan, China
| | - Yanlei Zuo
- Laser Fusion Research Center, Chinese Academy of Engineering Physics, Mianyang, Sichuan, China
| | - Ping Li
- Laser Fusion Research Center, Chinese Academy of Engineering Physics, Mianyang, Sichuan, China
| | - Jinyang Liang
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, Varennes, Québec, Canada
| | - Michael C Downer
- Department of Physics, University of Texas at Austin, Austin, TX, USA
| | - Zhengyan Li
- School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Optics Valley Laboratory, Wuhan, Hubei, China.
| |
Collapse
|
13
|
Touil M, Idlahcen S, Becheker R, Lebrun D, Rozé C, Hideur A, Godin T. Acousto-optically driven lensless single-shot ultrafast optical imaging. LIGHT, SCIENCE & APPLICATIONS 2022; 11:66. [PMID: 35318313 PMCID: PMC8940908 DOI: 10.1038/s41377-022-00759-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 05/02/2023]
Abstract
Driven by many applications in a wide span of scientific fields, a myriad of advanced ultrafast imaging techniques have emerged in the last decade, featuring record-high imaging speeds above a trillion-frame-per-second with long sequence depths. Although bringing remarkable insights into various ultrafast phenomena, their application out of a laboratory environment is however limited in most cases, either by the cost, complexity of the operation or by heavy data processing. We then report a versatile single-shot imaging technique combining sequentially timed all-optical mapping photography (STAMP) with acousto-optics programmable dispersive filtering (AOPDF) and digital in-line holography (DIH). On the one hand, a high degree of simplicity is reached through the AOPDF, which enables full control over the acquisition parameters via an electrically driven phase and amplitude spectro-temporal tailoring of the imaging pulses. Here, contrary to most single-shot techniques, the frame rate, exposure time, and frame intensities can be independently adjusted in a wide range of pulse durations and chirp values without resorting to complex shaping stages, making the system remarkably agile and user-friendly. On the other hand, the use of DIH, which does not require any reference beam, allows to achieve an even higher technical simplicity by allowing its lensless operation but also for reconstructing the object on a wide depth of field, contrary to classical techniques that only provide images in a single plane. The imaging speed of the system as well as its flexibility are demonstrated by visualizing ultrashort events on both the picosecond and nanosecond timescales. The virtues and limitations as well as the potential improvements of this on-demand ultrafast imaging method are critically discussed.
Collapse
Affiliation(s)
- Mohamed Touil
- CORIA, CNRS UMR6614-Université de Rouen Normandie-INSA Rouen, 76800, Saint Etienne du Rouvray, France
| | - Saïd Idlahcen
- CORIA, CNRS UMR6614-Université de Rouen Normandie-INSA Rouen, 76800, Saint Etienne du Rouvray, France
| | - Rezki Becheker
- CORIA, CNRS UMR6614-Université de Rouen Normandie-INSA Rouen, 76800, Saint Etienne du Rouvray, France
| | - Denis Lebrun
- CORIA, CNRS UMR6614-Université de Rouen Normandie-INSA Rouen, 76800, Saint Etienne du Rouvray, France
| | - Claude Rozé
- CORIA, CNRS UMR6614-Université de Rouen Normandie-INSA Rouen, 76800, Saint Etienne du Rouvray, France
| | - Ammar Hideur
- CORIA, CNRS UMR6614-Université de Rouen Normandie-INSA Rouen, 76800, Saint Etienne du Rouvray, France
| | - Thomas Godin
- CORIA, CNRS UMR6614-Université de Rouen Normandie-INSA Rouen, 76800, Saint Etienne du Rouvray, France.
| |
Collapse
|
14
|
Inoue T, Junpei Y, Itoh S, Okuda T, Funahashi A, Takimoto T, Kakue T, Nishio K, Matoba O, Awatsuji Y. Spatiotemporal observation of light propagation in a three-dimensional scattering medium. Sci Rep 2021; 11:21890. [PMID: 34750419 PMCID: PMC8576009 DOI: 10.1038/s41598-021-01124-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/18/2021] [Indexed: 11/10/2022] Open
Abstract
Spatiotemporal information about light pulse propagation obtained with femtosecond temporal resolution plays an important role in understanding transient phenomena and light–matter interactions. Although ultrafast optical imaging techniques have been developed, it is still difficult to capture light pulse propagation spatiotemporally. Furthermore, imaging through a three-dimensional (3-D) scattering medium is a longstanding challenge due to the optical scattering caused by the interaction between light pulse and a 3-D scattering medium. Here, we propose a technique for ultrafast optical imaging of light pulses propagating inside a 3D scattering medium. We record an image of the light pulse propagation using the ultrashort light pulse even when the interaction between light pulse and a 3-D scattering medium causes the optical scattering. We demonstrated our proposed technique by recording converging, refracted, and diffracted propagating light for 59 ps with femtosecond temporal resolution.
Collapse
Affiliation(s)
- Tomoyoshi Inoue
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.,Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Yuasa Junpei
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Seiya Itoh
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tatsuya Okuda
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Akinori Funahashi
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tetsuya Takimoto
- Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Takashi Kakue
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Kenzo Nishio
- Advanced Technology Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Osamu Matoba
- Organization for Advanced and Integrated Research, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-850, Japan
| | - Yasuhiro Awatsuji
- Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
15
|
Xie C, Meyer R, Froehly L, Giust R, Courvoisier F. In-situ diagnostic of femtosecond laser probe pulses for high resolution ultrafast imaging. LIGHT, SCIENCE & APPLICATIONS 2021; 10:126. [PMID: 34135303 PMCID: PMC8209123 DOI: 10.1038/s41377-021-00562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Ultrafast imaging is essential in physics and chemistry to investigate the femtosecond dynamics of nonuniform samples or of phenomena with strong spatial variations. It relies on observing the phenomena induced by an ultrashort laser pump pulse using an ultrashort probe pulse at a later time. Recent years have seen the emergence of very successful ultrafast imaging techniques of single non-reproducible events with extremely high frame rate, based on wavelength or spatial frequency encoding. However, further progress in ultrafast imaging towards high spatial resolution is hampered by the lack of characterization of weak probe beams. For pump-probe experiments realized within solids or liquids, because of the difference in group velocities between pump and probe, the determination of the absolute pump-probe delay depends on the sample position. In addition, pulse-front tilt is a widespread issue, unacceptable for ultrafast imaging, but which is conventionally very difficult to evaluate for the low-intensity probe pulses. Here we show that a pump-induced micro-grating generated from the electronic Kerr effect provides a detailed in-situ characterization of a weak probe pulse. It allows solving the two issues of absolute pump-probe delay determination and pulse-front tilt detection. Our approach is valid whatever the transparent medium with non-negligible Kerr index, whatever the probe pulse polarization and wavelength. Because it is nondestructive and fast to perform, this in-situ probe diagnostic can be repeated to calibrate experimental conditions, particularly in the case where complex wavelength, spatial frequency or polarization encoding is used. We anticipate that this technique will enable previously inaccessible spatiotemporal imaging in a number of fields of ultrafast science at the micro- and nanoscale.
Collapse
Affiliation(s)
- Chen Xie
- Ultrafast Laser Laboratory, Key Laboratory of Opto-electronic Information Technology of Ministry of Education, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, 300072, Tianjin, China
- FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS, 15B avenue des Montboucons, 25030, Besançon Cedex, France
| | - Remi Meyer
- FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS, 15B avenue des Montboucons, 25030, Besançon Cedex, France
| | - Luc Froehly
- FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS, 15B avenue des Montboucons, 25030, Besançon Cedex, France
| | - Remo Giust
- FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS, 15B avenue des Montboucons, 25030, Besançon Cedex, France
| | - Francois Courvoisier
- FEMTO-ST Institute, Univ. Bourgogne Franche-Comté, CNRS, 15B avenue des Montboucons, 25030, Besançon Cedex, France.
| |
Collapse
|
16
|
Vassholz M, Hoeppe HP, Hagemann J, Rosselló JM, Osterhoff M, Mettin R, Kurz T, Schropp A, Seiboth F, Schroer CG, Scholz M, Möller J, Hallmann J, Boesenberg U, Kim C, Zozulya A, Lu W, Shayduk R, Schaffer R, Madsen A, Salditt T. Pump-probe X-ray holographic imaging of laser-induced cavitation bubbles with femtosecond FEL pulses. Nat Commun 2021; 12:3468. [PMID: 34103498 PMCID: PMC8187368 DOI: 10.1038/s41467-021-23664-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
Cavitation bubbles can be seeded from a plasma following optical breakdown, by focusing an intense laser in water. The fast dynamics are associated with extreme states of gas and liquid, especially in the nascent state. This offers a unique setting to probe water and water vapor far-from equilibrium. However, current optical techniques cannot quantify these early states due to contrast and resolution limitations. X-ray holography with single X-ray free-electron laser pulses has now enabled a quasi-instantaneous high resolution structural probe with contrast proportional to the electron density of the object. In this work, we demonstrate cone-beam holographic flash imaging of laser-induced cavitation bubbles in water with nanofocused X-ray free-electron laser pulses. We quantify the spatial and temporal pressure distribution of the shockwave surrounding the expanding cavitation bubble at time delays shortly after seeding and compare the results to numerical simulations.
Collapse
Affiliation(s)
- M Vassholz
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - H P Hoeppe
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - J Hagemann
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - J M Rosselló
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
| | - M Osterhoff
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany
| | - R Mettin
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
| | - T Kurz
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen, Germany
| | - A Schropp
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - F Seiboth
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - C G Schroer
- CXNS - Center for X-ray and Nano Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
- Department Physik, Universität Hamburg, Hamburg, Germany
| | - M Scholz
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - J Möller
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - J Hallmann
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - U Boesenberg
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - C Kim
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - A Zozulya
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - W Lu
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - R Shayduk
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - R Schaffer
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - A Madsen
- European X-Ray Free-Electron Laser Facility, Schenefeld, Germany
| | - T Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany.
| |
Collapse
|
17
|
WILSON BRYCEG, FAN ZHENKUN, SREEDASYAM RAHUL, BOTVINICK ELLIOT, VENUGOPALAN VASAN. Single-shot interferometric measurement of cavitation bubble dynamics. OPTICS LETTERS 2021; 46:1409-1412. [PMID: 33720199 PMCID: PMC9233925 DOI: 10.1364/ol.416923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/12/2021] [Indexed: 06/02/2023]
Abstract
We demonstrate an interferometric method to provide direct, single-shot measurements of cavitation bubble dynamics with nanoscale spatial and temporal resolution with results that closely match theoretical predictions. Implementation of this method reduces the need for expensive and complex ultra-high speed camera systems for the measurement of single cavitation events. This method can capture dynamics over large time intervals with sub-nanosecond temporal resolution and spatial precision surpassing the optical diffraction limit. We expect this method to have broad utility for examination of cavitation bubble dynamics, as well as for metrology applications such as optorheological materials characterization. This method provides an accurate approach for precise measurement of cavitation bubble dynamics suitable for metrology applications such as optorheological materials characterization.
Collapse
Affiliation(s)
- BRYCE G. WILSON
- Department of Chemical and Biomolecular Engineering,
University of California, Irvine, CA 92697-2580
| | - ZHENKUN FAN
- Department of Chemical and Biomolecular Engineering,
University of California, Irvine, CA 92697-2580
| | - RAHUL SREEDASYAM
- Department of Biomedical Engineering University of
California, Irvine, CA 92697-2715
| | - ELLIOT BOTVINICK
- Department of Biomedical Engineering University of
California, Irvine, CA 92697-2715
- Beckman Laser Institute and Medical Clinic, 1002 Health
Sciences Rd E, University of California, Irvine, CA 92697-3010
| | - VASAN VENUGOPALAN
- Department of Chemical and Biomolecular Engineering,
University of California, Irvine, CA 92697-2580
- Department of Biomedical Engineering University of
California, Irvine, CA 92697-2715
- Beckman Laser Institute and Medical Clinic, 1002 Health
Sciences Rd E, University of California, Irvine, CA 92697-3010
| |
Collapse
|
18
|
Brennan G, Ryan S, Soulimane T, Tofail SAM, Silien C. Dark Field and Coherent Anti-Stokes Raman (DF-CARS) Imaging of Cell Uptake of Core-Shell, Magnetic-Plasmonic Nanoparticles. NANOMATERIALS 2021; 11:nano11030685. [PMID: 33803430 PMCID: PMC7998699 DOI: 10.3390/nano11030685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/25/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022]
Abstract
Magnetic-plasmonic, Fe3O4-Au, core-shell nanoparticles are popular in many applications, most notably in therapeutics and diagnostics, and thus, the imaging of these nanostructures in biological samples is of high importance. These nanostructures are typically imaged in biological material by dark field scatter imaging, which requires an even distribution of nanostructures in the sample and, therefore, high nanoparticle doses, potentially leading to toxicology issues. Herein, we explore the nonlinear optical properties of magnetic nanoparticles coated with various thicknesses of gold using the open aperture z-scan technique to determine the nonlinear optical properties and moreover, predict the efficacy of the nanostructures in nonlinear imaging. We find that the magnetic nanoparticles coated with gold nanoseeds and thinner gold shells (ca. 4 nm) show the largest nonlinear absorption coefficient β and imaginary part of the third-order susceptibility Im χ(3), suggesting that these nanostructures would be suitable contrast agents. Next, we combine laser dark field microscopy and epi-detected coherent anti-Stokes Raman (CARS) microscopy to image the uptake of magnetic-plasmonic nanoparticles in human pancreatic cancer cells. We show the epi-detected CARS technique is suitable for imaging of the magnetic-plasmonic nanoparticles without requiring a dense distribution of nanoparticles. This technique achieves superior nanoparticle contrasting over both epi-detected backscatter imaging and transmission dark field imaging, while also attaining label-free chemical contrasting of the cell. Lastly, we show the high biocompatibility of the Fe3O4 nanoparticles with ca. 4-nm thick Au shell at concentrations of 10-100 µg/mL.
Collapse
Affiliation(s)
- Grace Brennan
- Department of Physics and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; (G.B.); (S.A.M.T.)
| | - Sally Ryan
- Department of Chemical Sciences and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; (S.R.); (T.S.)
| | - Tewfik Soulimane
- Department of Chemical Sciences and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; (S.R.); (T.S.)
| | - Syed A. M. Tofail
- Department of Physics and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; (G.B.); (S.A.M.T.)
| | - Christophe Silien
- Department of Physics and Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland; (G.B.); (S.A.M.T.)
- Correspondence:
| |
Collapse
|
19
|
Li Y, Tian J, Li DDU. Theoretical investigations of a modified compressed ultrafast photography method suitable for single-shot fluorescence lifetime imaging. APPLIED OPTICS 2021; 60:1476-1483. [PMID: 33690594 DOI: 10.1364/ao.415594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
A single-shot fluorescence lifetime imaging (FLIM) method based on the compressed ultrafast photography (CUP) is proposed, named space-restricted CUP (srCUP). srCUP is suitable for imaging objects moving slowly (<∼150/Mmm/s, M is the magnification of the objective lens) in the field of view with the intensity changing within nanoseconds in a measurement window around 10 ns. We used synthetic datasets to explore the performances of srCUP compared with CUP and TCUP (a variant of CUP). srCUP not only provides superior reconstruction performances, but its reconstruction speed is also twofold and threefold faster than CUP and TCUP, respectively. The lifetime determination performances were assessed by estimating lifetime components, amplitude- and intensity-weighted average lifetimes (τA and τI), with the reconstructed scenes using the least squares method based on a bi-exponential model. srCUP has the best accuracy and precision for lifetime determinations with a relative bias less than 7% and a coefficient of variation less than 7% for τA, and a relative bias less than 10% and a coefficient of variation less than 11% for τI.
Collapse
|
20
|
Toward the Super Temporal Resolution Image Sensor with a Germanium Photodiode for Visible Light. SENSORS 2020; 20:s20236895. [PMID: 33276651 PMCID: PMC7729775 DOI: 10.3390/s20236895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 12/29/2022]
Abstract
The theoretical temporal resolution limit tT of a silicon photodiode (Si PD) is 11.1 ps. We call “super temporal resolution” the temporal resolution that is shorter than that limit. To achieve this resolution, Germanium is selected as a candidate material for the photodiode (Ge PD) for visible light since the absorption coefficient of Ge for the wavelength is several tens of times higher than that of Si, allowing a very thin PD. On the other hand, the saturation drift velocity of electrons in Ge is about 2/3 of that in Si. The ratio suggests an ultra-short propagation time of electrons in the Ge PD. However, the diffusion coefficient of electrons in Ge is four times higher than that of Si. Therefore, Monte Carlo simulations were applied to analyze the temporal resolution of the Ge PD. The estimated theoretical temporal resolution limit is 0.26 ps, while the practical limit is 1.41 ps. To achieve a super temporal resolution better than 11.1 ps, the driver circuit must operate at least 100 GHz. It is thus proposed to develop, at first, a short-wavelength infrared (SWIR) ultra-high-speed image sensor with a thicker and wider Ge PD, and then gradually decrease the size along with the progress of the driver circuits.
Collapse
|
21
|
Liang J. Punching holes in light: recent progress in single-shot coded-aperture optical imaging. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:116101. [PMID: 33125347 DOI: 10.1088/1361-6633/abaf43] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Single-shot coded-aperture optical imaging physically captures a code-aperture-modulated optical signal in one exposure and then recovers the scene via computational image reconstruction. Recent years have witnessed dazzling advances in various modalities in this hybrid imaging scheme in concomitant technical improvement and widespread applications in physical, chemical and biological sciences. This review comprehensively surveys state-of-the-art single-shot coded-aperture optical imaging. Based on the detected photon tags, this field is divided into six categories: planar imaging, depth imaging, light-field imaging, temporal imaging, spectral imaging, and polarization imaging. In each category, we start with a general description of the available techniques and design principles, then provide two representative examples of active-encoding and passive-encoding approaches, with a particular emphasis on their methodology and applications as well as their advantages and challenges. Finally, we envision prospects for further technical advancement in this field.
Collapse
Affiliation(s)
- Jinyang Liang
- Laboratory of Applied Computational Imaging, Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec J3X1S2, Canada
| |
Collapse
|
22
|
Nemoto H, Suzuki T, Kannari F. Extension of time window into nanoseconds in single-shot ultrafast burst imaging by spectrally sweeping pulses. APPLIED OPTICS 2020; 59:5210-5215. [PMID: 32543540 DOI: 10.1364/ao.392676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
We achieved single-shot 2D-burst imaging with a ∼22ps temporal resolution in a nanosecond time window using sequentially timed all-optical mapping photography with a spectral filtering (SF-STAMP) scheme, where a single snapshot of spectral images measured with a linear frequency chirped laser pulse forms time-resolved snapshots. We combined a pulse-stretching scheme of a free-space angular-chirp-enhanced delay (FACED) composed of a pair of tilted mirrors and a 4f-system. With a 4f-FACED system, we generated collinearly propagating burst laser pulses with a different center wavelength and a tunable time interval and demonstrated single-shot burst imaging with a 303 ps interval in a 1.5 ns time window by an SF-STAMP with spectrally sweeping probe pulses.
Collapse
|