1
|
Fonvielle J, Thuile Bistarelli L, Tao Y, Woodhouse JN, Shatwell T, Villalba LA, Berger SA, Kyba CCM, Nejstgaard JC, Jechow A, Kupprat F, Stephan S, Walles TJW, Wollrab S, Hölker F, Dittmar T, Gessner MO, Singer GA, Grossart HP. Skyglow increases cyanobacteria abundance and organic matter cycling in lakes. WATER RESEARCH 2025; 278:123315. [PMID: 40049093 DOI: 10.1016/j.watres.2025.123315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/30/2024] [Accepted: 02/17/2025] [Indexed: 04/14/2025]
Abstract
Artificial light propagating towards the night sky can be scattered back to Earth and reach ecosystems tens of kilometres away from the original light source. This phenomenon is known as artificial skyglow. Its consequences on freshwaters are largely unknown. In a large-scale lake enclosure experiment, we found that skyglow at levels of 0.06 and 6 lux increased the abundance of anoxygenic aerobic phototrophs and cyanobacteria by 32 (±22) times. An ecosystem metabolome analysis revealed that skyglow increased the production of algal-derived metabolites, which appeared to stimulate heterotrophic activities as well. Furthermore, we found evidence that skyglow decreased the number of bacteria-bacteria interactions. Effects of skyglow were more pronounced at night, suggesting that responses to skyglow can occur on short time scales. Overall, our results call for considering skyglow as a reality of increasing importance for microbial communities and carbon cycling in lake ecosystems.
Collapse
Affiliation(s)
- Jeremy Fonvielle
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Lukas Thuile Bistarelli
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology, and Inland Fisheries (IGB), Berlin, Germany; Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Yile Tao
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| | - Jason N Woodhouse
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany
| | - Tom Shatwell
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology, and Inland Fisheries (IGB), Berlin, Germany; Department of Lake Research, Helmholtz Centre for Environmental Research (UFZ), Magdeburg, Germany
| | - Luis A Villalba
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Stella A Berger
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Christopher C M Kyba
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology, and Inland Fisheries (IGB), Berlin, Germany; Remote Sensing and Geoinformatics Section, GFZ German Research Centre for Geosciences, Potsdam, Germany; Institute of Geography, Ruhr University Bochum, Bochum, Germany
| | - Jens C Nejstgaard
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Andreas Jechow
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology, and Inland Fisheries (IGB), Berlin, Germany; Remote Sensing and Geoinformatics Section, GFZ German Research Centre for Geosciences, Potsdam, Germany
| | - Franziska Kupprat
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology, and Inland Fisheries (IGB), Berlin, Germany
| | - Susanne Stephan
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Department of Ecology, Berlin Institute of Technology (TU Berlin), Berlin, Germany
| | - Tim J W Walles
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany; Department of Ecology, Berlin Institute of Technology (TU Berlin), Berlin, Germany
| | - Sabine Wollrab
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Franz Hölker
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology, and Inland Fisheries (IGB), Berlin, Germany; Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University, Oldenburg, Germany; Helmholtz Institute for Functional Marine Biodiversity, Carl von Ossietzky University, Oldenburg, Germany
| | - Mark O Gessner
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany; Department of Ecology, Berlin Institute of Technology (TU Berlin), Berlin, Germany
| | - Gabriel A Singer
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology, and Inland Fisheries (IGB), Berlin, Germany; Department of Ecology, University of Innsbruck, Innsbruck, Austria.
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Stechlin, Germany; Institute of Biochemistry and Biology, Potsdam University, Potsdam, Germany; Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany.
| |
Collapse
|
2
|
Jiang HW, Gisriel CJ, Cardona T, Flesher DA, Brudvig GW, Ho MY. Structure and evolution of photosystem I in the early-branching cyanobacterium Anthocerotibacter panamensis. Proc Natl Acad Sci U S A 2025; 122:e2427090122. [PMID: 40366692 PMCID: PMC12107172 DOI: 10.1073/pnas.2427090122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Thylakoid-free cyanobacteria are thought to preserve ancestral traits of early-evolving organisms capable of oxygenic photosynthesis. However, and until recently, photosynthesis studies in thylakoid-free cyanobacteria were only possible in the model strain Gloeobacter violaceus, limiting our understanding of photosynthesis evolution. Here, we report the isolation, biochemical characterization, cryo-EM structure, and phylogenetic analysis of photosystem I (PSI) from a recently discovered thylakoid-free cyanobacterium, Anthocerotibacter panamensis, a distant relative of the genus Gloeobacter. We find that A. panamensis PSI exhibits a distinct carotenoid composition and has one conserved low-energy chlorophyll site, which was lost in G. violaceus. Furthermore, PSI in thylakoid-free cyanobacteria has changed at the sequence level to a degree comparable to that of other strains, yet its subunit composition and oligomeric form might be identical to that of the most recent common ancestor of cyanobacteria. This study therefore provides a glimpse into the ancient evolution of photosynthesis.
Collapse
Affiliation(s)
- Han-Wei Jiang
- Department of Life Science, National Taiwan University, Taipei10617, Taiwan (Republic of China)
| | - Christopher J. Gisriel
- Department of Chemistry, Yale University, New Haven, CT06511
- Department of Biochemistry, University of Wisconsin, Madison, WI53706
| | - Tanai Cardona
- School of Biological and Behavioural Sciences, Queen Mary University of London, LondonE1 4NS, United Kingdom
| | - David A. Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, New Haven, CT06511
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511
| | - Ming-Yang Ho
- Department of Life Science, National Taiwan University, Taipei10617, Taiwan (Republic of China)
- Institute of Plant Biology, National Taiwan University, Taipei10617, Taiwan (Republic of China)
| |
Collapse
|
3
|
White IS, Canniffe DP, Hitchcock A. The diversity of physiology and metabolism in chlorophototrophic bacteria. Adv Microb Physiol 2025; 86:1-98. [PMID: 40404267 DOI: 10.1016/bs.ampbs.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Photosynthesis by (bacterio)chlorophyll-producing organisms ("chlorophototrophy") sustains virtually all life on Earth, providing the biosphere with food and energy. The oxygenic process carried out by plants, algae and cyanobacteria also generates the oxygen we breathe, and ancient cyanobacteria were responsible for oxygenating the atmosphere, creating the conditions that allowed the evolution of complex life. Cyanobacteria were also the endosymbiotic progenitors of chloroplasts, play major roles in biogeochemical cycles and as primary producers in aquatic ecosystems, and act as genetically tractable model organisms for studying oxygenic photosynthesis. In addition to the Cyanobacteriota, eight other bacterial phyla, namely Proteobacteria/Pseudomonadota, Chlorobiota, Chloroflexota, Bacillota, Acidobacteriota, Gemmatimonadota, Vulcanimicrobiota and Myxococcota contain at least one putative chlorophototrophic species, all of which perform a variant of anoxygenic photosynthesis, which does not yield oxygen as a by-product. These chlorophototrophic organisms display incredible diversity in the habitats that they colonise, and in their biochemistry, physiology and metabolism, with variation in the light-harvesting complexes and pigments they produce to utilise solar energy. Whilst some are very well understood, such as the proteobacterial 'purple bacteria', others have only been identified in the last few years and therefore relatively little is known about them - especially those that have not yet been isolated and cultured. In this chapter, we aim to summarise and compare the photosynthetic physiology and central metabolic processes of chlorophototrophic members from the nine phyla in which they are found, giving both a short historical perspective and highlighting gaps in our understanding.
Collapse
Affiliation(s)
- Isaac S White
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Daniel P Canniffe
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom; Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
4
|
Li Y, Cao T, Guo Y, Grimm B, Li X, Duanmu D, Lin R. Regulatory and retrograde signaling networks in the chlorophyll biosynthetic pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:887-911. [PMID: 39853950 PMCID: PMC12016751 DOI: 10.1111/jipb.13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/08/2024] [Indexed: 01/26/2025]
Abstract
Plants, algae and photosynthetic bacteria convert light into chemical energy by means of photosynthesis, thus providing food and energy for most organisms on Earth. Photosynthetic pigments, including chlorophylls (Chls) and carotenoids, are essential components that absorb the light energy necessary to drive electron transport in photosynthesis. The biosynthesis of Chl shares several steps in common with the biosynthesis of other tetrapyrroles, including siroheme, heme and phycobilins. Given that many tetrapyrrole precursors possess photo-oxidative properties that are deleterious to macromolecules and can lead to cell death, tetrapyrrole biosynthesis (TBS) requires stringent regulation under various developmental and environmental conditions. Thanks to decades of research on model plants and algae, we now have a deeper understanding of the regulatory mechanisms that underlie Chl synthesis, including (i) the many factors that control the activity and stability of TBS enzymes, (ii) the transcriptional and post-translational regulation of the TBS pathway, and (iii) the complex roles of tetrapyrrole-mediated retrograde signaling from chloroplasts to the cytoplasm and the nucleus. Based on these new findings, Chls and their derivatives will find broad applications in synthetic biology and agriculture in the future.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Photobiology, Institute of Botanythe Chinese Academy of SciencesBeijing100093China
| | - Tianjun Cao
- School of Life SciencesWestlake UniversityHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced StudyHangzhou310024China
| | - Yunling Guo
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Bernhard Grimm
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlin10115Germany
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifeng475004China
| | - Xiaobo Li
- School of Life SciencesWestlake UniversityHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced StudyHangzhou310024China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botanythe Chinese Academy of SciencesBeijing100093China
- Institute of Biotechnology, Xianghu LaboratoryHangzhou311231China
| |
Collapse
|
5
|
Xiang P, Marat T, Huang J, Cheng B, Liu J, Wang X, Wu L, Tan M, Zhu Q, Lin J. Response of photosynthetic capacity to ecological factors and its relationship with EGCG biosynthesis of tea plant (Camellia sinensis). BMC PLANT BIOLOGY 2025; 25:199. [PMID: 39953393 PMCID: PMC11827184 DOI: 10.1186/s12870-025-06106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/13/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND Epigallocatechin gallate (EGCG) imparts unique health benefits and flavour to tea. Photosynthesis plays a crucial role in modulating secondary metabolite production in plants, and this study investigated its impact on the biosynthesis of EGCG in tea plants under different ecological conditions. RESULTS Enhanced photosynthetic activity and the increased EGCG content, total esterified catechins (TEC), total catechins (TC) responded synchronously to changes in ecological factors. The photosynthetic capacity of tea plants and the EGCG content fit surface model equations (Extreme 2D and Polynomial 2D) and multiple regression equations (R2 > 70%). Additionally, logistic regression and ROC curves revealed that photosynthetic capacity was related to EGCG accumulation patterns in response to ecological variations. Upon perceiving ecological changes, the response of photosynthesis-related genes (CspsaA from photosystem I, CspsbB, CspsbC from photosystem II, and CsLHCB3 from the antenna protein pathway) was associated to carbon cycle-related genes (CsALDO, CsACOX, CsICDH, Csrbcs), which mediated the expression of CsPAL in the phenylalanine pathway; CsaroDE in the shikimate pathway; and CsCHS, CsF3H, CsF3'H, and CsANS in the flavonoid pathway. Eventually, this influenced the accumulation of EGCG and its precursors (gallic acid and epigallocatechin) in tea plants. CONCLUSIONS This study reveals the effects of photosynthesis on EGCG biosynthesis in response to ecological factors, providing insights for optimizing tea cultivation and quality.
Collapse
Affiliation(s)
- Ping Xiang
- College of Life and Environmental Science, Hunan University of Arts and Science, Changde, 415000, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tukhvatshin Marat
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiaxin Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bosi Cheng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianghong Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xingjian Wang
- Institute of Photobiological Industry, Fujian Sanan Sino-Science Photobiotech Co., Ltd, Xiamen, 361008, China
| | - Liangyu Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meng Tan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiufang Zhu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinke Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
6
|
Shen LQ, Zhang ZC, Zhang LD, Huang D, Yu G, Chen M, Li R, Qiu BS. Widespread distribution of chlorophyll f-producing Leptodesmis cyanobacteria. JOURNAL OF PHYCOLOGY 2025; 61:144-160. [PMID: 39673735 DOI: 10.1111/jpy.13538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/16/2024]
Abstract
Chlorophyll (Chl) f was reported as the fifth Chl in oxygenic photoautotrophs. Chlorophyll f production expanded the utilization of photosynthetically active radiation into the far-red light (FR) region in some cyanobacterial genera. In this study, 11 filamentous cyanobacterial strains were isolated from FR-enriched habitats, including hydrophyte, moss, shady stone, shallow ditch, and microbial mat across Central and Southern China. Polyphasic analysis classified them into the same genus of Leptodesmis and further recognized them as four new species, including Leptodesmis atroviridis sp. nov., Leptodesmis fuscus sp. nov., Leptodesmis olivacea sp. nov., and Leptodesmis undulata sp. nov. These cyanobacteria had absorption peaks beyond 700 nm due to Chl f production and red-shifted phycobiliprotein complexes under FR conditions. All but L. undulata produced phycoerythrin and showed varying degrees of a reddish-brown to dark green color under white light conditions. However, the phycoerythrin contents were sharply decreased under FR conditions, and these three Leptodesmis species appeared green. In summary, the Leptodesmis genus contains diverse species with the capacity to synthesize Chl f and is likely a ubiquitous group of Chl f-producing cyanobacteria.
Collapse
Affiliation(s)
- Li-Qin Shen
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, China
| | - Zhong-Chun Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, China
| | - Lu-Dan Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, China
| | - Da Huang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, China
| | - Gongliang Yu
- Key Lab of Algal Biology, Institute of Hydrobiology, the Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
7
|
Nakamura Y, Okochi M, Itoh S, Kimura A. Key Chlorophyll a Molecules in the Uphill Energy Transfer from Chlorophyll f to P700 in Far-Red Light-Adapted Photosystem I. J Phys Chem B 2025; 129:599-610. [PMID: 39750059 DOI: 10.1021/acs.jpcb.4c05007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Multiple far-red light-adapted photosystem I (FR-PSI) reaction centers are recently found to work in oxygenic photosynthesis. They contain a small amount of a new type pigment chlorophyll f (Chl f) in addition to the major pigment chlorophyll a (Chl a). FR-PSI differs from the conventional PSIs in plants and cyanobacteria, which use only visible light absorbed by Chl a, although the mechanism of FR-PSI is not fully clear yet. We theoretically studied the light-harvesting mechanism of FR-PSI of Fischerella thermalis PCC 7521, in which a small amount of Chl f transfers the excitation energy of FR-light uphill to Chl a. We constructed two types of exciton models for FR-PSI using pigment arrangements based on the structural information. A model that assumes the same site energy value for all of the antenna Chl a molecules reproduced most of the experimentally obtained properties. The transient absorption spectra, excitation energy relaxation, and mean first passage time (MFPT) of the excitation energy transfer from Chls f and a to the special pair P700 (a pair of Chl a/Chl a') were numerically calculated. The model, however, could not reproduce the low but distinct absorption intensity between the Chl a- and Chl f-bands and predicted a rather slow energy transfer from Chl f to P700. Advanced "modified models" further tested the effect of modification of the site energy values at individual antenna Chl a molecules. The optical properties and MFPTs of FR-PSI were calculated for each model with modified site energy values to evaluate the uphill light-harvesting process. The analysis showed that Chl a-1131 and -1222 play key roles in the light-harvesting process from Chl f molecules to P700, regardless of the excitation wavelength. The locations and site energy values of these Chl a molecules were found to be essential to reproduce the unique uphill energy transfer function of FR-PSI.
Collapse
Affiliation(s)
- Yuka Nakamura
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Mikihito Okochi
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shigeru Itoh
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Akihiro Kimura
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
8
|
Luo L, Milon TI, Tandoh EK, Galdamez WJ, Chistoserdov AY, Yu J, Kern J, Wang Y, Xu W. Development of a TSR-based method for understanding structural relationships of cofactors and local environments in photosystem I. BMC Bioinformatics 2025; 26:15. [PMID: 39810075 PMCID: PMC11731568 DOI: 10.1186/s12859-025-06038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND All chemical forms of energy and oxygen on Earth are generated via photosynthesis where light energy is converted into redox energy by two photosystems (PS I and PS II). There is an increasing number of PS I 3D structures deposited in the Protein Data Bank (PDB). The Triangular Spatial Relationship (TSR)-based algorithm converts 3D structures into integers (TSR keys). A comprehensive study was conducted, by taking advantage of the PS I 3D structures and the TSR-based algorithm, to answer three questions: (i) Are electron cofactors including P700, A-1 and A0, which are chemically identical chlorophylls, structurally different? (ii) There are two electron transfer chains (A and B branches) in PS I. Are the cofactors on both branches structurally different? (iii) Are the amino acids in cofactor binding sites structurally different from those not in cofactor binding sites? RESULTS The key contributions and important findings include: (i) a novel TSR-based method for representing 3D structures of pigments as well as for quantifying pigment structures was developed; (ii) the results revealed that the redox cofactor, P700, are structurally conserved and different from other redox factors. Similar situations were also observed for both A-1 and A0; (iii) the results demonstrated structural differences between A and B branches for the redox cofactors P700, A-1, A0 and A1 as well as their cofactor binding sites; (iv) the tryptophan residues close to A0 and A1 are structurally conserved; (v) The TSR-based method outperforms the Root Mean Square Deviation (RMSD) and the Ultrafast Shape Recognition (USR) methods. CONCLUSIONS The structural analyses of redox cofactors and their binding sites provide a foundation for understanding the unique chemical and physical properties of each redox cofactor in PS I, which are essential for modulating the rate and direction of energy and electron transfers.
Collapse
Affiliation(s)
- Lujun Luo
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Tarikul I Milon
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Elijah K Tandoh
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Walter J Galdamez
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Andrei Y Chistoserdov
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Jianping Yu
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Jan Kern
- Bioenergetics Department, MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yingchun Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA.
| |
Collapse
|
9
|
Gisriel CJ, Flesher DA, Long Z, Liu J, Wang J, Bryant DA, Batista VS, Brudvig GW. A quantitative assessment of (bacterio)chlorophyll assignments in the cryo-EM structure of the Chloracidobacterium thermophilum reaction center. PHOTOSYNTHESIS RESEARCH 2024; 162:187-196. [PMID: 37749456 DOI: 10.1007/s11120-023-01047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/31/2023] [Indexed: 09/27/2023]
Abstract
Chlorophylls and bacteriochlorophylls are the primary pigments used by photosynthetic organisms for light harvesting, energy transfer, and electron transfer. Many molecular structures of (bacterio)chlorophyll-containing protein complexes are available, some of which contain mixtures of different (bacterio)chlorophyll types. Differentiating these, which sometimes are structurally similar, is challenging but is required for leveraging structural data to gain functional insight. The reaction center complex from Chloroacidobacterium thermophilum has a hybrid (bacterio)chlorophyll antenna system containing both chlorophyll a and bacteriochlorophyll a molecules. The recent availability of its cryogenic electron microscopy (cryo-EM) structure provides an opportunity for a quantitative analysis of their identities and chemical environments. Here, we describe a theoretical basis for differentiating chlorophyll a and bacteriochlorophyll a in a cryo-EM map, and apply the approach to the experimental cryo-EM maps of the (bacterio)chlorophyll sites of the chloroacidobacterial reaction center. The comparison reveals that at ~ 2.2-Å resolution, chlorophyll a and bacteriochlorophyll a are easily distinguishable, but the orientation of the bacteriochlorophyll a acetyl moiety is not; however, the latter can confidently be assigned by identifying a hydrogen bond donor from the protein environment. This study reveals the opportunities and challenges in assigning (bacterio)chlorophyll types in structural biology, the accuracy of which is vital for downstream investigations.
Collapse
Affiliation(s)
| | - David A Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Zhuoran Long
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Jinchan Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
10
|
Jiang HW, Gisriel CJ, Cardona T, Flesher DA, Brudvig GW, Ho MY. Structure and evolution of Photosystem I in the early-branching cyanobacterium Anthocerotibacter panamensis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621444. [PMID: 39553964 PMCID: PMC11565984 DOI: 10.1101/2024.10.31.621444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Thylakoid-free cyanobacteria are thought to preserve ancestral traits of early-evolving organisms capable of oxygenic photosynthesis. However, and until recently, photosynthesis studies in thylakoid-free cyanobacteria were only possible in the model strain Gloeobacter violaceus. Here, we report the isolation, biochemical characterization, cryo-EM structure, and phylogenetic analysis of photosystem I from a newly-discovered thylakoid-free cyanobacterium, Anthocerotibacter panamensis, a distant relative of the genus Gloeobacter. We find that A. panamensis photosystem I exhibits a distinct carotenoid composition and has one conserved low-energy chlorophyll site, which was lost in G. violaceus. These features explain the capacity of A. panamensis to grow under high light intensity, unlike other Gloeobacteria. Furthermore, we find that, while at the sequence level photosystem I in thylakoid-free cyanobacteria has changed to a degree comparable to that of other strains, its subunit composition and oligomeric form might be identical to that of the most recent common ancestor of cyanobacteria.
Collapse
Affiliation(s)
- Han-Wei Jiang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Christopher J. Gisriel
- Department of Chemistry, Yale University, New Haven, CT, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Tanai Cardona
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| | - David A. Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Ming-Yang Ho
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Sellés J, Alric J, Rutherford AW, Davis GA, Viola S. In vivo ElectroChromic Shift measurements of photosynthetic activity in far-red absorbing cyanobacteria. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149502. [PMID: 39127329 DOI: 10.1016/j.bbabio.2024.149502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Some cyanobacteria can do photosynthesis using not only visible but also far-red light that is unused by most other oxygenic photoautotrophs because of its lower energy content. These species have a modified photosynthetic apparatus containing red-shifted pigments. The incorporation of red-shifted pigments decreases the photochemical efficiency of photosystem I and, especially, photosystem II, and it might affect the distribution of excitation energy between the two photosystems with possible consequences on the activity of the entire electron transport chain. To investigate the in vivo effects on photosynthetic activity of these pigment changes, we present here the adaptation of a spectroscopic method, based on a physical phenomenon called ElectroChromic Shift (ECS), to the far-red absorbing cyanobacteria Acaryochloris marina and Chroococcidiopsis thermalis PCC7203. ECS measures the electric field component of the trans-thylakoid proton motive force generated by photosynthetic electron transfer. We show that ECS can be used in these cyanobacteria to investigate in vivo the stoichiometry of photosystem I and photosystem II and their absorption cross-section, as well as the overall efficiency of light energy conversion into electron transport. Our results indicate that both species use visible and far-red light with similar efficiency, despite significant differences in their light absorption characteristics. ECS thus represents a new non-invasive tool to study the performance of naturally occurring far-red photosynthesis.
Collapse
Affiliation(s)
- Julien Sellés
- Institute of Physico-Chemical Biology - UMR7141, Paris, France
| | - Jean Alric
- Institute of Biosciences and Biotechnologies of Aix-Marseille - UMR7265, Saint-Paul-Lez-Durance, France
| | | | - Geoffry A Davis
- Department of Life Sciences, Imperial College, London, UK; Biology Department, Ludwig-Maximilians University, Munich, Germany
| | - Stefania Viola
- Institute of Biosciences and Biotechnologies of Aix-Marseille - UMR7265, Saint-Paul-Lez-Durance, France.
| |
Collapse
|
12
|
Gisriel CJ, Ranepura G, Brudvig GW, Gunner MR. Assignment of chlorophyll d in the Chl D1 site of the electron transfer chain of far-red light acclimated photosystem II supported by MCCE binding calculations. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149496. [PMID: 39038640 DOI: 10.1016/j.bbabio.2024.149496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Affiliation(s)
| | - Gehan Ranepura
- Ph.D. Program in Physics, The Graduate Center, City University of New York, New York, NY 10016, USA; Department of Physics, City College of New York, New York, NY 10031, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - M R Gunner
- Ph.D. Program in Physics, The Graduate Center, City University of New York, New York, NY 10016, USA; Department of Physics, City College of New York, New York, NY 10031, USA
| |
Collapse
|
13
|
Croce R, Carmo-Silva E, Cho YB, Ermakova M, Harbinson J, Lawson T, McCormick AJ, Niyogi KK, Ort DR, Patel-Tupper D, Pesaresi P, Raines C, Weber APM, Zhu XG. Perspectives on improving photosynthesis to increase crop yield. THE PLANT CELL 2024; 36:3944-3973. [PMID: 38701340 PMCID: PMC11449117 DOI: 10.1093/plcell/koae132] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024]
Abstract
Improving photosynthesis, the fundamental process by which plants convert light energy into chemical energy, is a key area of research with great potential for enhancing sustainable agricultural productivity and addressing global food security challenges. This perspective delves into the latest advancements and approaches aimed at optimizing photosynthetic efficiency. Our discussion encompasses the entire process, beginning with light harvesting and its regulation and progressing through the bottleneck of electron transfer. We then delve into the carbon reactions of photosynthesis, focusing on strategies targeting the enzymes of the Calvin-Benson-Bassham (CBB) cycle. Additionally, we explore methods to increase carbon dioxide (CO2) concentration near the Rubisco, the enzyme responsible for the first step of CBB cycle, drawing inspiration from various photosynthetic organisms, and conclude this section by examining ways to enhance CO2 delivery into leaves. Moving beyond individual processes, we discuss two approaches to identifying key targets for photosynthesis improvement: systems modeling and the study of natural variation. Finally, we revisit some of the strategies mentioned above to provide a holistic view of the improvements, analyzing their impact on nitrogen use efficiency and on canopy photosynthesis.
Collapse
Affiliation(s)
- Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, theNetherlands
| | | | - Young B Cho
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Maria Ermakova
- School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Alistair J McCormick
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Paolo Pesaresi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Christine Raines
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Xin-Guang Zhu
- Key Laboratory of Carbon Capture, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
14
|
di Stefano G, Battistuzzi M, La Rocca N, Selinger VM, Nürnberg DJ, Billi D. Far-red light photoacclimation in a desert Chroococcidiopsis strain with a reduced FaRLiP gene cluster and expression of its chlorophyll f synthase in space-resistant isolates. Front Microbiol 2024; 15:1450575. [PMID: 39328908 PMCID: PMC11424453 DOI: 10.3389/fmicb.2024.1450575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Some cyanobacteria can use far-red light (FRL) to drive oxygenic photosynthesis, a phenomenon known as Far-Red Light Photoacclimation (FaRLiP). It can expand photosynthetically active radiation beyond the visible light (VL) range. Therefore, it holds promise for biotechnological applications and may prove useful for the future human exploration of outer space. Typically, FaRLiP relies on a cluster of ~20 genes, encoding paralogs of the standard photosynthetic machinery. One of them, a highly divergent D1 gene known as chlF (or psbA4), is the synthase responsible for the formation of the FRL-absorbing chlorophyll f (Chl f) that is essential for FaRLiP. The minimum gene set required for this phenotype is unclear. The desert cyanobacterium Chroococcidiopsis sp. CCMEE 010 is unusual in being capable of FaRLiP with a reduced gene cluster (15 genes), and it lacks most of the genes encoding FR-Photosystem I. Methods Here we investigated whether the reduced gene cluster of Chroococcidiopsis sp. CCMEE 010 is transcriptionally regulated by FRL and characterized the spectral changes that occur during the FaRLiP response of Chroococcidiopsis sp. CCMEE 010. In addition, the heterologous expression of the Chl f synthase from CCMEE 010 was attempted in three closely related desert strains of Chroococcidiopsis. Results All 15 genes of the FaRLiP cluster were preferentially expressed under FRL, accompanied by a progressive red-shift of the photosynthetic absorption spectrum. The Chl f synthase from CCMEE 010 was successfully expressed in two desert strains of Chroococcidiopsis and transformants could be selected in both VL and FRL. Discussion In Chroococcidiopsis sp. CCME 010, all the far-red genes of the unusually reduced FaRLiP cluster, are transcriptionally regulated by FRL and two closely related desert strains heterologously expressing the chlF010 gene could grow in FRL. Since the transformation hosts had been reported to survive outer space conditions, such an achievement lays the foundation toward novel cyanobacteria-based technologies to support human space exploration.
Collapse
Affiliation(s)
- Giorgia di Stefano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Ph.D. Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Mariano Battistuzzi
- Department of Biology, University of Padua, Padua, Italy
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), Padua, Italy
- Giuseppe Colombo University Center for Studies and Activities, University of Padua, Padua, Italy
| | - Nicoletta La Rocca
- Department of Biology, University of Padua, Padua, Italy
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), Padua, Italy
| | - Vera M. Selinger
- Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Dennis J. Nürnberg
- Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
15
|
Nagao R, Yamamoto H, Ogawa H, Ito H, Yamamoto Y, Suzuki T, Kato K, Nakajima Y, Dohmae N, Shen JR. Presence of low-energy chlorophylls d in photosystem I trimer and monomer cores isolated from Acaryochloris sp. NBRC 102871. PHOTOSYNTHESIS RESEARCH 2024; 161:203-212. [PMID: 38935195 DOI: 10.1007/s11120-024-01108-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Acaryochloris species belong to a special category of cyanobacteria possessing chlorophyll (Chl) d. One of the photosynthetic characteristics of Acaryochloris marina MBIC11017 is that the absorption spectra of photosystem I (PSI) showed almost no bands and shoulders of low-energy Chls d over 740 nm. In contrast, the absorption spectra of other Acaryochloris species showed a shoulder around 740 nm, suggesting that low-energy Chls d within PSI are diversified among Acaryochloris species. In this study, we purified PSI trimer and monomer cores from Acaryochloris sp. NBRC 102871 and examined their protein and pigment compositions and spectral properties. The protein bands and pigment compositions of the PSI trimer and monomer of NBRC102871 were virtually identical to those of MBIC11017. The absorption spectra of the NBRC102871 PSIs exhibited a shoulder around 740 nm, whereas the fluorescence spectra of PSI trimer and monomer displayed maximum peaks at 754 and 767 nm, respectively. These spectral properties were different from those of MBIC11017, indicating the presence of low-energy Chls d within the NBRC102871 PSIs. Moreover, we analyzed the NBRC102871 genome to identify amino acid sequences of PSI proteins and compared them with those of the A. marina MBIC11017 and MBIC10699 strains whose genomes are available. The results showed that some of the sequences in NBRC102871 were distinct from those in MBIC11017 and MBIC10699. These findings provide insights into the variety of low-energy Chls d with respect to the protein environments of PSI cores among the three Acaryochloris strains.
Collapse
Affiliation(s)
- Ryo Nagao
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan.
| | - Haruki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan.
| | - Haruya Ogawa
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hibiki Ito
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Yuma Yamamoto
- Faculty of Agriculture, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Koji Kato
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science, Saitama, 351-0198, Japan
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
16
|
Tian LR, Chen JH. Photosystem I: A Paradigm for Understanding Biological Environmental Adaptation Mechanisms in Cyanobacteria and Algae. Int J Mol Sci 2024; 25:8767. [PMID: 39201454 PMCID: PMC11354412 DOI: 10.3390/ijms25168767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
The process of oxygenic photosynthesis is primarily driven by two multiprotein complexes known as photosystem II (PSII) and photosystem I (PSI). PSII facilitates the light-induced reactions of water-splitting and plastoquinone reduction, while PSI functions as the light-driven plastocyanin-ferredoxin oxidoreductase. In contrast to the highly conserved structure of PSII among all oxygen-evolving photosynthetic organisms, the structures of PSI exhibit remarkable variations, especially for photosynthetic organisms that grow in special environments. In this review, we make a concise overview of the recent investigations of PSI from photosynthetic microorganisms including prokaryotic cyanobacteria and eukaryotic algae from the perspective of structural biology. All known PSI complexes contain a highly conserved heterodimeric core; however, their pigment compositions and peripheral light-harvesting proteins are substantially flexible. This structural plasticity of PSI reveals the dynamic adaptation to environmental changes for photosynthetic organisms.
Collapse
Affiliation(s)
- Li-Rong Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China;
| | - Jing-Hua Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Gisriel CJ. Recent structural discoveries of photosystems I and II acclimated to absorb far-red light. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149032. [PMID: 38401604 PMCID: PMC11162955 DOI: 10.1016/j.bbabio.2024.149032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 02/26/2024]
Abstract
Photosystems I and II are the photooxidoreductases central to oxygenic photosynthesis and canonically absorb visible light (400-700 nm). Recent investigations have revealed that certain cyanobacteria can acclimate to environments enriched in far-red light (700-800 nm), yet can still perform oxygenic photosynthesis in a process called far-red light photoacclimation, or FaRLiP. During this process, the photosystem subunits and pigment compositions are altered. Here, the current structural understanding of the photosystems expressed during FaRLiP is described. The design principles may be useful for guiding efforts to engineer shade tolerance in organisms that typically cannot utilize far-red light.
Collapse
|
18
|
Abstract
Oxygenic photosynthesis, the process that converts light energy into chemical energy, is traditionally associated with the absorption of visible light by chlorophyll molecules. However, recent studies have revealed a growing number of organisms capable of using far-red light (700-800 nm) to drive oxygenic photosynthesis. This phenomenon challenges the conventional understanding of the limits of this process. In this review, we briefly introduce the organisms that exhibit far-red photosynthesis and explore the different strategies they employ to harvest far-red light. We discuss the modifications of photosynthetic complexes and their impact on the delivery of excitation energy to photochemical centers and on overall photochemical efficiency. Finally, we examine the solutions employed to drive electron transport and water oxidation using relatively low-energy photons. The findings discussed here not only expand our knowledge of the remarkable adaptation capacities of photosynthetic organisms but also offer insights into the potential for enhancing light capture in crops.
Collapse
Affiliation(s)
- Eduard Elias
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| | - Thomas J Oliver
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;
| |
Collapse
|
19
|
Dordoni M, Tittel J, Rosenlöcher Y, Rinke K, Barth JAC. Metabolic activity of Planktothrix rubescens and its consequences on oxygen dynamics in laboratory experiment: A stable isotope study. JOURNAL OF PHYCOLOGY 2024; 60:642-653. [PMID: 38634250 DOI: 10.1111/jpy.13455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/21/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Fluctuations in dissolved oxygen (DO) contents in natural waters can become intense during cyanobacteria blooms. In a reconnaissance study, we investigated DO concentrations and stable isotope dynamics during a laboratory experiment with the cyanobacterium Planktothrix rubescens in order to obtain insights into primary production under specific conditions. This observation was extended to sub-daily timescales with alternating light and dark phases. Dissolved oxygen concentrations and its isotopes (δ18ODO) ranged from 0.02 to 0.06 mmol · L-1 and from +9.6‰ to +23.4‰. The δ18ODO proved to be more sensitive than concentration measurements in response to metabolic variation and registered earlier shifts to dominance by respiration. Oxygen (O2) contents in the headspace and its isotopes (δ18OO2) ranged from 2.62 to 3.20 mmol · L-1 and from +9.8‰ to +21.9‰. Headspace samples showed less fluctuations in concentration and isotope trends because aquatic processes were hardly able to alter signals once the gas had reached the headspace. Headspace δ18OO2 values were corrected for gas-water equilibration and were determined to be higher than the mean δ18OH2O of -8.7‰. This finding suggests that counteracting respiration was important even during the highest photosynthetic activity. Additionally, headspace analyses led to the definition of a fractionation factor for respiration (αR) of this cyanobacterium with a value of 0.980. This value confirms the one commonly used for cyanobacteria. Our findings may become important for the management of water bodies where decreases in DO are caused by cyanobacteria.
Collapse
Affiliation(s)
- Marlene Dordoni
- Department of Geography and Geosciences, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jörg Tittel
- Helmholtz Centre for Environmental Research-UFZ, Magdeburg, Germany
| | | | - Karsten Rinke
- Helmholtz Centre for Environmental Research-UFZ, Magdeburg, Germany
| | - Johannes A C Barth
- Department of Geography and Geosciences, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
20
|
Luo L, Martin AP, Tandoh EK, Chistoserdov A, Slipchenko LV, Savikhin S, Xu W. Impact of Peripheral Hydrogen Bond on Electronic Properties of the Primary Acceptor Chlorophyll in the Reaction Center of Photosystem I. Int J Mol Sci 2024; 25:4815. [PMID: 38732034 PMCID: PMC11084960 DOI: 10.3390/ijms25094815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Photosystem I (PS I) is a photosynthetic pigment-protein complex that absorbs light and uses the absorbed energy to initiate electron transfer. Electron transfer has been shown to occur concurrently along two (A- and B-) branches of reaction center (RC) cofactors. The electron transfer chain originates from a special pair of chlorophyll a molecules (P700), followed by two chlorophylls and one phylloquinone in each branch (denoted as A-1, A0, A1, respectively), converging in a single iron-sulfur complex Fx. While there is a consensus that the ultimate electron donor-acceptor pair is P700+A0-, the involvement of A-1 in electron transfer, as well as the mechanism of the very first step in the charge separation sequence, has been under debate. To resolve this question, multiple groups have targeted electron transfer cofactors by site-directed mutations. In this work, the peripheral hydrogen bonds to keto groups of A0 chlorophylls have been disrupted by mutagenesis. Four mutants were generated: PsaA-Y692F; PsaB-Y667F; PsaB-Y667A; and a double mutant PsaA-Y692F/PsaB-Y667F. Contrary to expectations, but in agreement with density functional theory modeling, the removal of the hydrogen bond by Tyr → Phe substitution was found to have a negligible effect on redox potentials and optical absorption spectra of respective chlorophylls. In contrast, Tyr → Ala substitution was shown to have a fatal effect on the PS I function. It is thus inferred that PsaA-Y692 and PsaB-Y667 residues have primarily structural significance, and their ability to coordinate respective chlorophylls in electron transfer via hydrogen bond plays a minor role.
Collapse
Affiliation(s)
- Lujun Luo
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; (L.L.)
| | - Antoine P. Martin
- Department of Physics, Purdue University, West Lafayette, IN 47907, USA
| | - Elijah K. Tandoh
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; (L.L.)
| | - Andrei Chistoserdov
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | | | - Sergei Savikhin
- Department of Physics, Purdue University, West Lafayette, IN 47907, USA
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; (L.L.)
| |
Collapse
|
21
|
Elias E, Brache K, Schäfers J, Croce R. Coloring Outside the Lines: Exploiting Pigment-Protein Synergy for Far-Red Absorption in Plant Light-Harvesting Complexes. J Am Chem Soc 2024; 146:3508-3520. [PMID: 38286009 PMCID: PMC10859958 DOI: 10.1021/jacs.3c13373] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/31/2024]
Abstract
Plants are designed to utilize visible light for photosynthesis. Expanding this light absorption toward the far-red could boost growth in low-light conditions and potentially increase crop productivity in dense canopies. A promising strategy is broadening the absorption of antenna complexes to the far-red. In this study, we investigated the capacity of the photosystem I antenna protein Lhca4 to incorporate far-red absorbing chlorophylls d and f and optimize their spectra. We demonstrate that these pigments can successfully bind to Lhca4, with the protein environment further red-shifting the chlorophyll d absorption, markedly extending the absorption range of this complex above 750 nm. Notably, chlorophyll d substitutes the canonical chlorophyll a red-forms, resulting in the most red-shifted emission observed in a plant light-harvesting complex. Using ultrafast spectroscopy, we show that the introduction of these novel chlorophylls does not interfere with the excited state decay or the energy equilibration processes within the complex. The results demonstrate the feasibility of engineering plant antennae to absorb deeper into the far-red region while preserving their functional and structural integrity, paving the way for innovative strategies to enhance photosynthesis.
Collapse
Affiliation(s)
- Eduard Elias
- Department of Physics and
Astronomy and Institute for Lasers, Life and Biophotonics, Faculty
of Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Katrin Brache
- Department of Physics and
Astronomy and Institute for Lasers, Life and Biophotonics, Faculty
of Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Judith Schäfers
- Department of Physics and
Astronomy and Institute for Lasers, Life and Biophotonics, Faculty
of Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Roberta Croce
- Department of Physics and
Astronomy and Institute for Lasers, Life and Biophotonics, Faculty
of Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
22
|
Gisriel CJ, Shen G, Brudvig GW, Bryant DA. Structure of the antenna complex expressed during far-red light photoacclimation in Synechococcus sp. PCC 7335. J Biol Chem 2024; 300:105590. [PMID: 38141759 PMCID: PMC10810746 DOI: 10.1016/j.jbc.2023.105590] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 12/25/2023] Open
Abstract
Far-red light photoacclimation, or FaRLiP, is a facultative response exhibited by some cyanobacteria that allows them to absorb and utilize lower energy light (700-800 nm) than the wavelengths typically used for oxygenic photosynthesis (400-700 nm). During this process, three essential components of the photosynthetic apparatus are altered: photosystem I, photosystem II, and the phycobilisome. In all three cases, at least some of the chromophores found in these pigment-protein complexes are replaced by chromophores that have red-shifted absorbance relative to the analogous complexes produced in visible light. Recent structural and spectroscopic studies have elucidated important features of the two photosystems when altered to absorb and utilize far-red light, but much less is understood about the modified phycobiliproteins made during FaRLiP. We used single-particle, cryo-EM to determine the molecular structure of a phycobiliprotein core complex comprising allophycocyanin variants that absorb far-red light during FaRLiP in the marine cyanobacterium Synechococcus sp. PCC 7335. The structure reveals the arrangement of the numerous red-shifted allophycocyanin variants and the probable locations of the chromophores that serve as the terminal emitters in this complex. It also suggests how energy is transferred to the photosystem II complexes produced during FaRLiP. The structure additionally allows comparisons with other previously studied allophycocyanins to gain insights into how phycocyanobilin chromophores can be tuned to absorb far-red light. These studies provide new insights into how far-red light is harvested and utilized during FaRLiP, a widespread cyanobacterial photoacclimation mechanism.
Collapse
Affiliation(s)
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
23
|
Kimura A, Kitoh-Nishioka H, Kondo T, Oh-Oka H, Itoh S, Azai C. Experimental and Theoretical Mutation of Exciton States on the Smallest Type-I Photosynthetic Reaction Center Complex of a Green Sulfur Bacterium Chlorobaclum tepidum. J Phys Chem B 2024; 128:731-743. [PMID: 38198639 DOI: 10.1021/acs.jpcb.3c07424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The exciton states on the smallest type-I photosynthetic reaction center complex of a green sulfur bacterium Chlorobaculum tepidum (GsbRC) consisting of 26 bacteriochlorophylls a (BChl a) and four chlorophylls a (Chl a) located on the homodimer of two PscA reaction center polypeptides were investigated. This analysis involved the study of exciton states through a combination of theoretical modeling and the genetic removal of BChl a pigments at eight sites. (1) A theoretical model of the pigment assembly exciton state on GsbRC was constructed using Poisson TrESP (P-TrESP) and charge density coupling (CDC) methods based on structural information. The model reproduced the experimentally obtained absorption spectrum, circular dichroism spectrum, and excitation transfer dynamics, as well as explained the effects of mutation. (2) Eight BChl a molecules at different locations on the GsbRC were selectively removed by genetic exchange of the His residue, which ligates the central Mg atom of BChl a, with the Leu residue on either one or two PscAs in the RC. His locations are conserved among all type-I RC plant polypeptide, cyanobacteria, and bacteria amino acid sequences. (3) Purified mutant-GsbRCs demonstrated distinct absorption and fluorescence spectra at 77 K, which were different from each other, suggesting successful pigment removal. (4) The same mutations were applied to the constructed theoretical model to analyze the outcomes of these mutations. (5) The combination of theoretical predictions and experimental mutations based on structural information is a new tool for studying the function and evolution of photosynthetic reaction centers.
Collapse
Affiliation(s)
- Akihiro Kimura
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hirotaka Kitoh-Nishioka
- Department of Energy and Materials, Faculty of Science and Engineering, Kindai University, Osaka 577-8502, Japan
| | - Toru Kondo
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Hirozo Oh-Oka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Shigeru Itoh
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Chihiro Azai
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| |
Collapse
|
24
|
Ranepura GA, Mao J, Vermaas JV, Wang J, Gisriel CJ, Wei RJ, Ortiz-Soto J, Uddin MR, Amin M, Brudvig GW, Gunner MR. Computing the Relative Affinity of Chlorophylls a and b to Light-Harvesting Complex II. J Phys Chem B 2023; 127:10974-10986. [PMID: 38097367 DOI: 10.1021/acs.jpcb.3c06273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
In plants and algae, the primary antenna protein bound to photosystem II is light-harvesting complex II (LHCII), a pigment-protein complex that binds eight chlorophyll (Chl) a molecules and six Chl b molecules. Chl a and Chl b differ only in that Chl a has a methyl group (-CH3) on one of its pyrrole rings, while Chl b has a formyl group (-CHO) at that position. This blue-shifts the Chl b absorbance relative to Chl a. It is not known how the protein selectively binds the right Chl type at each site. Knowing the selection criteria would allow the design of light-harvesting complexes that bind different Chl types, modifying an organism to utilize the light of different wavelengths. The difference in the binding affinity of Chl a and Chl b in pea and spinach LHCII was calculated using multiconformation continuum electrostatics and free energy perturbation. Both methods have identified some Chl sites where the bound Chl type (a or b) has a significantly higher affinity, especially when the protein provides a hydrogen bond for the Chl b formyl group. However, the Chl a sites often have little calculated preference for one Chl type, so they are predicted to bind a mixture of Chl a and b. The electron density of the spinach LHCII was reanalyzed, which, however, confirmed that there is negligible Chl b in the Chl a-binding sites. It is suggested that the protein chooses the correct Chl type during folding, segregating the preferred Chl to the correct binding site.
Collapse
Affiliation(s)
- Gehan A Ranepura
- Ph.D. Program in Physics, The Graduate Center, City University of New York, New York, New York 10016, United States
- Department of Physics, City College of New York, New York, New York 10031, United States
| | - Junjun Mao
- Benjamin Levich Institute for Physico-Chemical Hydrodynamics, City College of New York, New York, New York 10031, United States
| | - Josh V Vermaas
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, 612 Wilson Road, East Lansing, Michigan 48824, United States
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Christopher J Gisriel
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Rongmei Judy Wei
- Department of Physics, City College of New York, New York, New York 10031, United States
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, New York 10016, United States
| | - Jose Ortiz-Soto
- Department of Physics, City College of New York, New York, New York 10031, United States
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, New York 10016, United States
| | - Md Raihan Uddin
- Department of Physics, City College of New York, New York, New York 10031, United States
- Ph.D. Program in Biochemistry, The Graduate Center, City University of New York, New York, New York 10016, United States
| | - Muhamed Amin
- Laboratory of Computational Biology, National Heart, Lung and Blood, Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Gary W Brudvig
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - M R Gunner
- PhD Program in Physics, in Chemistry and in Biochemistry at the Graduate Center, City University of New York, New York, New York 10016, United States
- Department of Physics, City College of New York, New York, New York 10031, United States
| |
Collapse
|
25
|
Gisriel CJ, Bryant DA, Brudvig GW, Cardona T. Molecular diversity and evolution of far-red light-acclimated photosystem I. FRONTIERS IN PLANT SCIENCE 2023; 14:1289199. [PMID: 38053766 PMCID: PMC10694217 DOI: 10.3389/fpls.2023.1289199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023]
Abstract
The need to acclimate to different environmental conditions is central to the evolution of cyanobacteria. Far-red light (FRL) photoacclimation, or FaRLiP, is an acclimation mechanism that enables certain cyanobacteria to use FRL to drive photosynthesis. During this process, a well-defined gene cluster is upregulated, resulting in changes to the photosystems that allow them to absorb FRL to perform photochemistry. Because FaRLiP is widespread, and because it exemplifies cyanobacterial adaptation mechanisms in nature, it is of interest to understand its molecular evolution. Here, we performed a phylogenetic analysis of the photosystem I subunits encoded in the FaRLiP gene cluster and analyzed the available structural data to predict ancestral characteristics of FRL-absorbing photosystem I. The analysis suggests that FRL-specific photosystem I subunits arose relatively late during the evolution of cyanobacteria when compared with some of the FRL-specific subunits of photosystem II, and that the order Nodosilineales, which include strains like Halomicronema hongdechloris and Synechococcus sp. PCC 7335, could have obtained FaRLiP via horizontal gene transfer. We show that the ancestral form of FRL-absorbing photosystem I contained three chlorophyll f-binding sites in the PsaB2 subunit, and a rotated chlorophyll a molecule in the A0B site of the electron transfer chain. Along with our previous study of photosystem II expressed during FaRLiP, these studies describe the molecular evolution of the photosystem complexes encoded by the FaRLiP gene cluster.
Collapse
Affiliation(s)
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, New Haven, CT, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, London, United Kingdom
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
26
|
Kobayashi K, Yoshihara A, Kubota-Kawai H. Evolutionary implications from lipids in membrane bilayers and photosynthetic complexes in cyanobacteria and chloroplasts. J Biochem 2023; 174:399-408. [PMID: 37500078 DOI: 10.1093/jb/mvad058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 07/29/2023] Open
Abstract
In biomembranes, lipids form bilayer structures that serve as the fluid matrix for membrane proteins and other hydrophobic compounds. Additionally, lipid molecules associate with membrane proteins and impact their structures and functions. In both cyanobacteria and the chloroplasts of plants and algae, the lipid bilayer of the thylakoid membrane consists of four distinct glycerolipid classes: monogalactosyldiacylglycerol, digalactosyldiacylglycerol, sulfoquinovosyldiacylglycerol, and phosphatidylglycerol. These lipids are also integral components of photosynthetic complexes such as photosystem II and photosystem I. The lipid-binding sites within the photosystems, as well as the lipid composition in the thylakoid membrane, are highly conserved between cyanobacteria and photosynthetic eukaryotes, and each lipid class has specific roles in oxygenic photosynthesis. This review aims to shed light on the potential evolutionary implications of lipid utilization in membrane lipid bilayers and photosynthetic complexes in oxygenic photosynthetic organisms.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Faculty of Liberal Arts, Science and Global Education, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Akiko Yoshihara
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hisako Kubota-Kawai
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata-shi 990-8560, Japan
| |
Collapse
|
27
|
Cherepanov DA, Neverov KV, Obukhov YN, Maleeva YV, Gostev FE, Shelaev IV, Aybush AV, Kritsky MS, Nadtochenko VA. Femtosecond Dynamics of Excited States of Chlorophyll Tetramer in Water-Soluble Chlorophyll-Binding Protein BoWSCP. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1580-1595. [PMID: 38105026 DOI: 10.1134/s0006297923100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 12/19/2023]
Abstract
The paper reports on the absorption dynamics of chlorophyll a in a symmetric tetrameric complex of the water-soluble chlorophyll-binding protein BoWSCP. It was measured by a broadband femtosecond laser pump-probe spectroscopy within the range from 400 to 750 nm and with a time resolution of 20 fs-200 ps. When BoWSCP was excited in the region of the Soret band at a wavelength of 430 nm, nonradiative intramolecular conversion S3→S1 was observed with a characteristic time of 83 ± 9 fs. When the complex was excited in the region of the Qy band at 670 nm, relaxation transition between two excitonic states of the chlorophyll dimer was observed in the range of 105 ± 10 fs. Absorption spectra of the excited singlet states S1 and S3 of chlorophyll a were obtained. The delocalization of the excited state between exciton-coupled Chl molecules in BoWSCP tetramer changed in time and depended on the excitation energy. When BoWSCP is excited in the Soret band region, an ultrafast photochemical reaction is observed. This could result from the reduction of tryptophan in the vicinity of chlorophyll.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
- Belozersky Research Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Konstantin V Neverov
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Yuriy N Obukhov
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Yulia V Maleeva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Feodor E Gostev
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ivan V Shelaev
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
- Belozersky Research Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Arseny V Aybush
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Michail S Kritsky
- Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Victor A Nadtochenko
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
28
|
Niedzwiedzki DM, Magdaong NCM, Su X, Adir N, Keren N, Liu H. Mass spectrometry and spectroscopic characterization of a tetrameric photosystem I supercomplex from Leptolyngbya ohadii, a desiccation-tolerant cyanobacterium. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148955. [PMID: 36708912 DOI: 10.1016/j.bbabio.2023.148955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Cyanobacteria inhabiting desert biological soil crusts face the harsh conditions of the desert. They evolved a suite of strategies toward desiccation-hydration cycles mixed with high light irradiations, etc. In this study we purified and characterized the structure and function of Photosystem I (PSI) from Leptolyngbya ohadii, a desiccation-tolerant desert cyanobacterium. We discovered that PSI forms tetrameric (PSI-Tet) aggregate. We investigated it by using sucrose density gradient centrifugation, clear native PAGE, high performance liquid chromatography, mass spectrometry (MS), time-resolved fluorescence (TRF) and time-resolved transient absorption (TA) spectroscopy. MS analysis identified the presence of two PsaB and two PsaL proteins in PSI-Tet and uniquely revealed that PsaLs are N-terminally acetylated in contrast to non-modified PsaL in the trimeric PSI from Synechocystis sp. PCC 6803. Chlorophyll (Chl) a fluorescence decay profiles of the PSI-Tet performed at 77 K revealed two emission bands at ∼690 nm and 725 nm with the former appearing only at early delay time. The main fluorescence emission peak, associated with emission from the low energy Chls a, decays within a few nanoseconds. TA studies demonstrated that the 725 nm emission band is associated with low energy Chls a with absorption band clearly resolved at ∼710 nm at 77 K. In summary, our work suggests that the heterogenous composition of PsaBs and PsaL in PSI-Tet is related with the adaptation mechanisms needed to cope with stressful conditions under which this bacterium naturally grows.
Collapse
Affiliation(s)
- Dariusz M Niedzwiedzki
- Center for Solar Energy and Energy Storage, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Energy Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | | | - Xinyang Su
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Noam Adir
- Schulich Faculty of Chemistry, Technion, Israel Institute of Technology, Hafai, Israel
| | - Nir Keren
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Israel
| | - Haijun Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
29
|
Shen LQ, Zhang ZC, Huang L, Zhang LD, Yu G, Chen M, Li R, Qiu BS. Chlorophyll f production in two new subaerial cyanobacteria of the family Oculatellaceae. JOURNAL OF PHYCOLOGY 2023; 59:370-382. [PMID: 36680560 DOI: 10.1111/jpy.13314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 05/28/2023]
Abstract
Chlorophyll (Chl) f was recently identified in a few cyanobacteria as the fifth chlorophyll of oxygenic organisms. In this study, two Leptolyngbya-like strains of CCNU0012 and CCNU0013 were isolated from a dry ditch in Chongqing city and a brick wall in Mount Emei Scenic Area in China, respectively. These two strains were described as new species: Elainella chongqingensis sp. nov. (Oculatellaceae, Synechococcales) and Pegethrix sichuanica sp. nov. (Oculatellaceae, Synechococcales) by the polyphasic approach based on morphological features, phylogenetic analysis of 16S rRNA gene and secondary structure comparison of 16S-23S internal transcribed spacer domains. Both strains produced Chl a under white light (WL) but additionally induced Chl f synthesis under far-red light (FRL). Unexpectedly, the content of Chl f in P. sichuanica was nearly half that in most Chl f-producing cyanobacteria. Red-shifted phycobiliproteins were also induced in both strains under FRL conditions. Subsequently, additional absorption peak beyond 700 nm in the FRL spectral region appeared in these two strains. This is the first report of Chl f production induced by FRL in the family Oculatellaceae. This study not only extended the diversity of Chl f-producing cyanobacteria but also provided precious samples to elucidate the essential binding sites of Chl f within cyanobacterial photosystems.
Collapse
Affiliation(s)
- Li-Qin Shen
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, China
| | - Zhong-Chun Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, China
| | - Li Huang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, China
| | - Lu-Dan Zhang
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, China
| | - Gongliang Yu
- Key Lab of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Renhui Li
- College of Life and Environmental Sciences, Wenzhou University, Zhejiang, China
| | - Bao-Sheng Qiu
- School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, China
| |
Collapse
|
30
|
Gisriel CJ, Shen G, Flesher DA, Kurashov V, Golbeck JH, Brudvig GW, Amin M, Bryant DA. Structure of a dimeric photosystem II complex from a cyanobacterium acclimated to far-red light. J Biol Chem 2023; 299:102815. [PMID: 36549647 PMCID: PMC9843442 DOI: 10.1016/j.jbc.2022.102815] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Photosystem II (PSII) is the water-splitting enzyme central to oxygenic photosynthesis. To drive water oxidation, light is harvested by accessory pigments, mostly chlorophyll (Chl) a molecules, which absorb visible light (400-700 nm). Some cyanobacteria facultatively acclimate to shaded environments by altering their photosynthetic machinery to additionally absorb far-red light (FRL, 700-800 nm), a process termed far-red light photoacclimation or FaRLiP. During far-red light photoacclimation, FRL-PSII is assembled with FRL-specific isoforms of the subunits PsbA, PsbB, PsbC, PsbD, and PsbH, and some Chl-binding sites contain Chls d or f instead of the usual Chl a. The structure of an apo-FRL-PSII monomer lacking the FRL-specific PsbH subunit has previously been determined, but visualization of the dimeric complex has remained elusive. Here, we report the cryo-EM structure of a dimeric FRL-PSII complex. The site assignments for Chls d and f are consistent with those assigned in the previous apo-FRL-PSII monomeric structure. All sites that bind Chl d or Chl f at high occupancy exhibit a FRL-specific interaction of the formyl moiety of the Chl d or Chl f with the protein environment, which in some cases involves a phenylalanine sidechain. The structure retains the FRL-specific PsbH2 subunit, which appears to alter the energetic landscape of FRL-PSII, redirecting energy transfer from the phycobiliprotein complex to a Chl f molecule bound by PsbB2 that acts as a bridge for energy transfer to the electron transfer chain. Collectively, these observations extend our previous understanding of the structure-function relationship that allows PSII to function using lower energy FRL.
Collapse
Affiliation(s)
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - David A Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Muhamed Amin
- Department of Sciences, University College Groningen, University of Groningen, Groningen, the Netherlands; Rijksuniversiteit Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands; Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
31
|
Vergara-Barros P, Alcorta J, Casanova-Katny A, Nürnberg DJ, Díez B. Compensatory Transcriptional Response of Fischerella thermalis to Thermal Damage of the Photosynthetic Electron Transfer Chain. Molecules 2022; 27:8515. [PMID: 36500606 PMCID: PMC9740203 DOI: 10.3390/molecules27238515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/11/2022] Open
Abstract
Key organisms in the environment, such as oxygenic photosynthetic primary producers (photosynthetic eukaryotes and cyanobacteria), are responsible for fixing most of the carbon globally. However, they are affected by environmental conditions, such as temperature, which in turn affect their distribution. Globally, the cyanobacterium Fischerella thermalis is one of the main primary producers in terrestrial hot springs with thermal gradients up to 60 °C, but the mechanisms by which F. thermalis maintains its photosynthetic activity at these high temperatures are not known. In this study, we used molecular approaches and bioinformatics, in addition to photophysiological analyses, to determine the genetic activity associated with the energy metabolism of F. thermalis both in situ and in high-temperature (40 °C to 65 °C) cultures. Our results show that photosynthesis of F. thermalis decays with temperature, while increased transcriptional activity of genes encoding photosystem II reaction center proteins, such as PsbA (D1), could help overcome thermal damage at up to 60 °C. We observed that F. thermalis tends to lose copies of the standard G4 D1 isoform while maintaining the recently described D1INT isoform, suggesting a preference for photoresistant isoforms in response to the thermal gradient. The transcriptional activity and metabolic characteristics of F. thermalis, as measured by metatranscriptomics, further suggest that carbon metabolism occurs in parallel with photosynthesis, thereby assisting in energy acquisition under high temperatures at which other photosynthetic organisms cannot survive. This study reveals that, to cope with the harsh conditions of hot springs, F. thermalis has several compensatory adaptations, and provides emerging evidence for mixotrophic metabolism as being potentially relevant to the thermotolerance of this species. Ultimately, this work increases our knowledge about thermal adaptation strategies of cyanobacteria.
Collapse
Affiliation(s)
- Pablo Vergara-Barros
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8370186, Chile
| | - Jaime Alcorta
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
| | - Angélica Casanova-Katny
- Laboratory of Plant Ecophysiology, Faculty of Natural Resources, Campus Luis Rivas del Canto, Catholic University of Temuco, Temuco 4780000, Chile
| | - Dennis J. Nürnberg
- Institute of Experimental Physics, Freie Universität Berlin, 14195 Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, 14195 Berlin, Germany
| | - Beatriz Díez
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago 8331150, Chile
- Millennium Institute Center for Genome Regulation (CGR), Santiago 8370186, Chile
- Center for Climate and Resilience Research (CR)2, Santiago 8370449, Chile
| |
Collapse
|
32
|
Pinevich AV, Averina SG. On the Edge of the Rainbow: Red-Shifted Chlorophylls and Far-Red Light Photoadaptation in Cyanobacteria. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722602019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
33
|
Cherepanov DA, Petrova AA, Mamedov MD, Vishnevskaya AI, Gostev FE, Shelaev IV, Aybush AV, Nadtochenko VA. Comparative Absorption Dynamics of the Singlet Excited States of Chlorophylls a and d. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1179-1186. [PMID: 36273886 DOI: 10.1134/s000629792210011x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 06/16/2023]
Abstract
Transient absorption dynamics of chlorophylls a and d dissolved in tetrahydrofuran was measured by the broadband femtosecond laser pump-probe spectroscopy in a spectral range from 400 to 870 nm. The absorption spectra of the excited S1 singlet states of chlorophylls a and d were recorded, and the dynamics of the of the Qy band shift of the stimulated emission (Stokes shift of fluorescence) was determined in a time range from 60 fs to 4 ps. The kinetics of the intramolecular conversion Qx→Qy (electronic transition S2→S1) was measured; the characteristic relaxation time was 54 ± 3 and 45 ± 9 fs for chlorophylls a and d, respectively.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia.
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Anastasia A Petrova
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Mahir D Mamedov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Anna I Vishnevskaya
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Fedor E Gostev
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ivan V Shelaev
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Arseniy V Aybush
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Victor A Nadtochenko
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, 119991, Russia
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
34
|
Langley J, Purchase R, Viola S, Fantuzzi A, Davis GA, Shen JR, Rutherford AW, Krausz E, Cox N. Simulating the low-temperature, metastable electrochromism of Photosystem I: Applications to Thermosynechococcus vulcanus and Chroococcidiopsis thermalis. J Chem Phys 2022; 157:125103. [DOI: 10.1063/5.0100431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Low-temperature, metastable electrochromism has been used as a tool to assign pigments in Photosystem I (PS I) from Thermosynechococcus vulcanus and both the white light (WL) and far-red light (FRL) forms of Chroococcidiopsis thermalis. We find a minimum of seven pigments is required to satisfactorily model the electrochromism of PS I. Using our model, we provide a short list of candidates for the chlorophyll f pigment in FRL C. thermalis that absorbs at 756 nm, whose identity to date has proven to be controversial. Specifically, we propose the linker pigments A40 and B39, and two antenna pigments A26 and B24 as defined by crystal structure 1JB0. The pros and cons of these assignments are discussed, and we propose further experiments to better understand the functioning of FRL C. thermalis.
Collapse
Affiliation(s)
- Julien Langley
- Australian National University Research School of Chemistry, Australia
| | - Robin Purchase
- Australian National University Research School of Chemistry, Australia
| | | | | | | | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science, Okayama University, Japan
| | | | - Elmars Krausz
- Australian National University, Australian National University Research School of Chemistry, Australia
| | | |
Collapse
|
35
|
Cherepanov DA, Semenov AY, Mamedov MD, Aybush AV, Gostev FE, Shelaev IV, Shuvalov VA, Nadtochenko VA. Current state of the primary charge separation mechanism in photosystem I of cyanobacteria. Biophys Rev 2022; 14:805-820. [PMID: 36124265 PMCID: PMC9481807 DOI: 10.1007/s12551-022-00983-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/10/2022] [Indexed: 11/24/2022] Open
Abstract
This review analyzes new data on the mechanism of ultrafast reactions of primary charge separation in photosystem I (PS I) of cyanobacteria obtained in the last decade by methods of femtosecond absorption spectroscopy. Cyanobacterial PS I from many species harbours 96 chlorophyll a (Chl a) molecules, including six specialized Chls denoted Chl1A/Chl1B (dimer P700, or PAPB), Chl2A/Chl2B, and Chl3A/Chl3B arranged in two branches, which participate in electron transfer reactions. The current data indicate that the primary charge separation occurs in a symmetric exciplex, where the special pair P700 is electronically coupled to the symmetrically located monomers Chl2A and Chl2B, which can be considered together as a symmetric exciplex Chl2APAPBChl2B with the mixed excited (Chl2APAPBChl2B)* and two charge-transfer states P700 +Chl2A - and P700 +Chl2B -. The redistribution of electrons between the branches in favor of the A-branch occurs after reduction of the Chl2A and Chl2B monomers. The formation of charge-transfer states and the symmetry breaking mechanisms were clarified by measuring the electrochromic Stark shift of β-carotene and the absorption dynamics of PS I complexes with the genetically altered Chl 2B or Chl 2A monomers. The review gives a brief description of the main methods for analyzing data obtained using femtosecond absorption spectroscopy. The energy levels of excited and charge-transfer intermediates arising in the cyanobacterial PS I are critically analyzed.
Collapse
Affiliation(s)
- Dmitry A. Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Leninskye gory 1 building, 40 Moscow, Russia
| | - Mahir D. Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119992 Leninskye gory 1 building, 40 Moscow, Russia
| | - Arseniy V. Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Fedor E. Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Ivan V. Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Vladimir A. Shuvalov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
| | - Victor A. Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991, Kosygina Street 1, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991, Leninskiye Gory 1-3, Moscow, Russia
| |
Collapse
|
36
|
Gisriel CJ, Cardona T, Bryant DA, Brudvig GW. Molecular Evolution of Far-Red Light-Acclimated Photosystem II. Microorganisms 2022; 10:1270. [PMID: 35888987 PMCID: PMC9325196 DOI: 10.3390/microorganisms10071270] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/10/2022] Open
Abstract
Cyanobacteria are major contributors to global carbon fixation and primarily use visible light (400-700 nm) to drive oxygenic photosynthesis. When shifted into environments where visible light is attenuated, a small, but highly diverse and widespread number of cyanobacteria can express modified pigments and paralogous versions of photosystem subunits and phycobiliproteins that confer far-red light (FRL) absorbance (700-800 nm), a process termed far-red light photoacclimation, or FaRLiP. During FaRLiP, alternate photosystem II (PSII) subunits enable the complex to bind chlorophylls d and f, which absorb at lower energy than chlorophyll a but still support water oxidation. How the FaRLiP response arose remains poorly studied. Here, we report ancestral sequence reconstruction and structure-based molecular evolutionary studies of the FRL-specific subunits of FRL-PSII. We show that the duplications leading to the origin of two PsbA (D1) paralogs required to make chlorophyll f and to bind chlorophyll d in water-splitting FRL-PSII are likely the first to have occurred prior to the diversification of extant cyanobacteria. These duplications were followed by those leading to alternative PsbC (CP43) and PsbD (D2) subunits, occurring early during the diversification of cyanobacteria, and culminating with those leading to PsbB (CP47) and PsbH paralogs coincident with the radiation of the major groups. We show that the origin of FRL-PSII required the accumulation of a relatively small number of amino acid changes and that the ancestral FRL-PSII likely contained a chlorophyll d molecule in the electron transfer chain, two chlorophyll f molecules in the antenna subunits at equivalent positions, and three chlorophyll a molecules whose site energies were altered. The results suggest a minimal model for engineering far-red light absorbance into plant PSII for biotechnological applications.
Collapse
Affiliation(s)
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK;
| | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Gary W. Brudvig
- Department of Chemistry, Yale University, New Haven, CT 06520, USA;
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
37
|
Reflections on Cyanobacterial Chromatic Acclimation: Exploring the Molecular Bases of Organismal Acclimation and Motivation for Rethinking the Promotion of Equity in STEM. Microbiol Mol Biol Rev 2022; 86:e0010621. [PMID: 35727025 PMCID: PMC9491170 DOI: 10.1128/mmbr.00106-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria are photosynthetic organisms that exhibit characteristic acclimation and developmental responses to dynamic changes in the external light environment. Photomorphogenesis is the tuning of cellular physiology, development, morphology, and metabolism in response to external light cues. The tuning of photosynthetic pigmentation, carbon fixation capacity, and cellular and filament morphologies to changes in the prevalent wavelengths and abundance of light have been investigated to understand the regulation and fitness implications of different aspects of cyanobacterial photomorphogenesis. Chromatic acclimation (CA) is the most common form of photomorphogenesis that has been explored in cyanobacteria. Multiple types of CA in cyanobacteria have been reported, and insights gained into the regulatory pathways and networks controlling some of these CA types. I examine the recent expansion of CA types that occur in nature and provide an overview of known regulatory factors involved in distinct aspects of cyanobacterial photomorphogenesis. Additionally, I explore lessons for cultivating success in scientific communities that can be drawn from a reflection on existing knowledge of and approaches to studying CA.
Collapse
|
38
|
Kimura A, Kitoh-Nishioka H, Aota T, Hamaguchi T, Yonekura K, Kawakami K, Shinzawa-Itoh K, Inoue-Kashino N, Ifuku K, Yamashita E, Kashino Y, Itoh S. Theoretical Model of the Far-Red-Light-Adapted Photosystem I Reaction Center of Cyanobacterium Acaryochloris marina Using Chlorophyll d and the Effect of Chlorophyll Exchange. J Phys Chem B 2022; 126:4009-4021. [PMID: 35617171 DOI: 10.1021/acs.jpcb.2c00869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A theoretical model of the far-red-light-adapted photosystem I (PSI) reaction center (RC) complex of a cyanobacterium, Acaryochloris marina (AmPSI), was constructed based on the exciton theory and the recently identified molecular structure of AmPSI by Hamaguchi et al. (Nat. Commun., 2021, 12, 2333). A. marina performs photosynthesis under the visible to far-red light (400-750 nm), which is absorbed by chlorophyll d (Chl-d). It is in contrast to the situation of all the other oxygenic photosynthetic processes of cyanobacteria and plants, which contains chlorophyll a (Chl-a) that absorbs only 400-700 nm visible light. AmPSI contains 70 Chl-d, 1 Chl-d', 2 pheophytin a (Pheo-a), and 12 carotenoids in the currently available structure. A special pair of Chl-d/Chl-d' acts as the electron donor (P740) and two Pheo-a act as the primary electron acceptor A0 as the counterparts of P700 and Chl-a, respectively, of Chl-a-type PSIs. The exciton Hamiltonian of AmPSI was constructed considering the excitonic coupling strength and site energy shift of individual pigments using the Poisson-TrESP (P-TrESP) and charge density coupling (CDC) methods. The model was constructed to fit the experimentally measured spectra of absorption and circular dichroism (CD) spectra during downhill/uphill excitation energy transfer processes. The constructed theoretical model of AmPSI was further compared with the Chl-a-type PSI of Thermosynechococcus elongatus (TePSI), which contains only Chl-a and Chl-a'. The functional properties of AmPSI and TePSI were further examined by the in silico exchange of Chl-d by Chl-a in the models.
Collapse
Affiliation(s)
- Akihiro Kimura
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | - Toshimichi Aota
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tasuku Hamaguchi
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 776 Sayo, Hyogo 679-5148, Japan
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 776 Sayo, Hyogo 679-5148, Japan
| | - Keisuke Kawakami
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 776 Sayo, Hyogo 679-5148, Japan
| | - Kyoko Shinzawa-Itoh
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan
| | | | - Kentaro Ifuku
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Eiki Yamashita
- Laboratory of Supramolecular Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuhiro Kashino
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan
| | - Shigeru Itoh
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
39
|
Yoshihara A, Kobayashi K. Lipids in photosynthetic protein complexes in the thylakoid membrane of plants, algae, and cyanobacteria. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2735-2750. [PMID: 35560200 DOI: 10.1093/jxb/erac017] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/27/2022] [Indexed: 06/15/2023]
Abstract
In the thylakoid membrane of cyanobacteria and chloroplasts, many proteins involved in photosynthesis are associated with or integrated into the fluid bilayer matrix formed by four unique glycerolipid classes, monogalactosyldiacylglycerol, digalactosyldiacylglycerol, sulfoquinovosyldiacylglycerol, and phosphatidylglycerol. Biochemical and molecular genetic studies have revealed that these glycerolipids play essential roles not only in the formation of thylakoid lipid bilayers but also in the assembly and functions of photosynthetic complexes. Moreover, considerable advances in structural biology have identified a number of lipid molecules within the photosynthetic complexes such as PSI and PSII. These data have provided important insights into the association of lipids with protein subunits in photosynthetic complexes and the distribution of lipids in the thylakoid membrane. Here, we summarize recent high-resolution observations of lipid molecules in the structures of photosynthetic complexes from plants, algae, and cyanobacteria, and evaluate the distribution of lipids among photosynthetic protein complexes and thylakoid lipid bilayers. By integrating the structural information into the findings from biochemical and molecular genetic studies, we highlight the conserved and differentiated roles of lipids in the assembly and functions of photosynthetic complexes among plants, algae, and cyanobacteria.
Collapse
Affiliation(s)
- Akiko Yoshihara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, OsakaJapan
| | - Koichi Kobayashi
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, OsakaJapan
- Faculty of Liberal Arts and Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, OsakaJapan
| |
Collapse
|
40
|
Kato K, Hamaguchi T, Nagao R, Kawakami K, Ueno Y, Suzuki T, Uchida H, Murakami A, Nakajima Y, Yokono M, Akimoto S, Dohmae N, Yonekura K, Shen JR. Structural basis for the absence of low-energy chlorophylls in a photosystem I trimer from Gloeobacter violaceus. eLife 2022; 11:73990. [PMID: 35404232 PMCID: PMC9000952 DOI: 10.7554/elife.73990] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Photosystem I (PSI) is a multi-subunit pigment-protein complex that functions in light-harvesting and photochemical charge-separation reactions, followed by reduction of NADP to NADPH required for CO2 fixation in photosynthetic organisms. PSI from different photosynthetic organisms has a variety of chlorophylls (Chls), some of which are at lower-energy levels than its reaction center P700, a special pair of Chls, and are called low-energy Chls. However, the sites of low-energy Chls are still under debate. Here, we solved a 2.04-Å resolution structure of a PSI trimer by cryo-electron microscopy from a primordial cyanobacterium Gloeobacter violaceus PCC 7421, which has no low-energy Chls. The structure shows the absence of some subunits commonly found in other cyanobacteria, confirming the primordial nature of this cyanobacterium. Comparison with the known structures of PSI from other cyanobacteria and eukaryotic organisms reveals that one dimeric and one trimeric Chls are lacking in the Gloeobacter PSI. The dimeric and trimeric Chls are named Low1 and Low2, respectively. Low2 is missing in some cyanobacterial and eukaryotic PSIs, whereas Low1 is absent only in Gloeobacter. These findings provide insights into not only the identity of low-energy Chls in PSI, but also the evolutionary changes of low-energy Chls in oxyphototrophs.
Collapse
Affiliation(s)
- Koji Kato
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| | | | - Ryo Nagao
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| | | | | | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science
| | | | - Akio Murakami
- Graduate School of Science, Kobe University
- Research Center for Inland Seas, Kobe University
| | - Yoshiki Nakajima
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| | - Makio Yokono
- Institute of Low Temperature Science, Hokkaido University
| | | | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
- Advanced Electron Microscope Development Unit, RIKEN-JEOL Collaboration Center, RIKEN Baton Zone Program
| | - Jian-Ren Shen
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University
| |
Collapse
|
41
|
Chen M, Liu X, He Y, Li N, He J, Zhang Y. Diversity Among Cyanobacterial Photosystem I Oligomers. Front Microbiol 2022; 12:781826. [PMID: 35281305 PMCID: PMC8908432 DOI: 10.3389/fmicb.2021.781826] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/06/2021] [Indexed: 12/03/2022] Open
Abstract
Unraveling the oligomeric states of the photosystem I complex is essential to understanding the evolution and native mechanisms of photosynthesis. The molecular composition and functions of this complex are highly conserved among cyanobacteria, algae, and plants; however, its structure varies considerably between species. In cyanobacteria, the photosystem I complex is a trimer in most species, but monomer, dimer and tetramer arrangements with full physiological function have recently been characterized. Higher order oligomers have also been identified in some heterocyst-forming cyanobacteria and their close unicellular relatives. Given technological progress in cryo-electron microscope single particle technology, structures of PSI dimers, tetramers and some heterogeneous supercomplexes have been resolved into near atomic resolution. Recent developments in photosystem I oligomer studies have largely enriched theories on the structure and function of these photosystems.
Collapse
Affiliation(s)
- Ming Chen
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xuan Liu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yujie He
- Center for Cell Fate and Lineage (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Ningning Li
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- China–UK Institute for Frontier Science, Shenzhen, China
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jun He
- Center for Cell Fate and Lineage (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
- Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ying Zhang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- China–UK Institute for Frontier Science, Shenzhen, China
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
42
|
MacGregor-Chatwin C, Nürnberg DJ, Jackson PJ, Vasilev C, Hitchcock A, Ho MY, Shen G, Gisriel CJ, Wood WH, Mahbub M, Selinger VM, Johnson MP, Dickman MJ, Rutherford AW, Bryant DA, Hunter CN. Changes in supramolecular organization of cyanobacterial thylakoid membrane complexes in response to far-red light photoacclimation. SCIENCE ADVANCES 2022; 8:eabj4437. [PMID: 35138895 PMCID: PMC8827656 DOI: 10.1126/sciadv.abj4437] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Cyanobacteria are ubiquitous in nature and have developed numerous strategies that allow them to live in a diverse range of environments. Certain cyanobacteria synthesize chlorophylls d and f to acclimate to niches enriched in far-red light (FRL) and incorporate paralogous photosynthetic proteins into their photosynthetic apparatus in a process called FRL-induced photoacclimation (FaRLiP). We characterized the macromolecular changes involved in FRL-driven photosynthesis and used atomic force microscopy to examine the supramolecular organization of photosystem I associated with FaRLiP in three cyanobacterial species. Mass spectrometry showed the changes in the proteome of Chroococcidiopsis thermalis PCC 7203 that accompany FaRLiP. Fluorescence lifetime imaging microscopy and electron microscopy reveal an altered cellular distribution of photosystem complexes and illustrate the cell-to-cell variability of the FaRLiP response.
Collapse
Affiliation(s)
| | - Dennis J. Nürnberg
- Department of Life Sciences, Imperial College London, London, UK
- Physics Department, Freie Universität Berlin, Berlin, Germany
| | - Philip J. Jackson
- School of Biosciences, University of Sheffield, Sheffield, UK
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | | | | | - Ming-Yang Ho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Christopher J. Gisriel
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, USA
| | | | - Moontaha Mahbub
- Department of Life Sciences, Imperial College London, London, UK
| | | | | | - Mark J. Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | | | - Donald A. Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - C. Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
43
|
Lazar D, Stirbet A, Björn L, Govindjee G. Light quality, oxygenic photosynthesis and more. PHOTOSYNTHETICA 2022; 60:25-28. [PMID: 39648998 PMCID: PMC11559484 DOI: 10.32615/ps.2021.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/15/2021] [Indexed: 12/10/2024]
Abstract
Oxygenic photosynthesis takes place in thylakoid membranes (TM) of cyanobacteria, algae, and higher plants. It begins with light absorption by pigments in large (modular) assemblies of pigment-binding proteins, which then transfer excitation energy to the photosynthetic reaction centers of photosystem (PS) I and PSII. In green algae and plants, these light-harvesting protein complexes contain chlorophylls (Chls) and carotenoids (Cars). However, cyanobacteria, red algae, and glaucophytes contain, in addition, phycobiliproteins in phycobilisomes that are attached to the stromal surface of TM, and transfer excitation energy to the reaction centers via the Chl a molecules in the inner antennas of PSI and PSII. The color and the intensity of the light to which these photosynthetic organisms are exposed in their environment have a great influence on the composition and the structure of the light-harvesting complexes (the antenna) as well as the rest of the photosynthetic apparatus, thus affecting the photosynthetic process and even the entire organism. We present here a perspective on 'Light Quality and Oxygenic Photosynthesis', in memory of George Christos Papageorgiou (9 May 1933-21 November 2020; see notes a and b). Our review includes (1) the influence of the solar spectrum on the antenna composition, and the special significance of Chl a; (2) the effects of light quality on photosynthesis, measured using Chl a fluorescence; and (3) the importance of light quality, intensity, and its duration for the optimal growth of photosynthetic organisms.
Collapse
Affiliation(s)
- D. Lazar
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic
| | - A. Stirbet
- Anne Burras Lane, Newport News, 23606 Virginia, USA
| | - L.O. Björn
- Department of Biology, Molecular Cell Biology, Lund University, Sölvegatan 35, SE-22462 Lund, Sweden
| | - G. Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
44
|
Gisriel CJ, Flesher DA, Shen G, Wang J, Ho MY, Brudvig GW, Bryant DA. Structure of a photosystem I-ferredoxin complex from a marine cyanobacterium provides insights into far-red light photoacclimation. J Biol Chem 2022; 298:101408. [PMID: 34793839 PMCID: PMC8689207 DOI: 10.1016/j.jbc.2021.101408] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/08/2023] Open
Abstract
Far-red light photoacclimation exhibited by some cyanobacteria allows these organisms to use the far-red region of the solar spectrum (700-800 nm) for photosynthesis. Part of this process includes the replacement of six photosystem I (PSI) subunits with isoforms that confer the binding of chlorophyll (Chl) f molecules that absorb far-red light (FRL). However, the exact sites at which Chl f molecules are bound are still challenging to determine. To aid in the identification of Chl f-binding sites, we solved the cryo-EM structure of PSI from far-red light-acclimated cells of the cyanobacterium Synechococcus sp. PCC 7335. We identified six sites that bind Chl f with high specificity and three additional sites that are likely to bind Chl f at lower specificity. All of these binding sites are in the core-antenna regions of PSI, and Chl f was not observed among the electron transfer cofactors. This structural analysis also reveals both conserved and nonconserved Chl f-binding sites, the latter of which exemplify the diversity in FRL-PSI among species. We found that the FRL-PSI structure also contains a bound soluble ferredoxin, PetF1, at low occupancy, which suggests that ferredoxin binds less transiently than expected according to the canonical view of ferredoxin-binding to facilitate electron transfer. We suggest that this may result from structural changes in FRL-PSI that occur specifically during FRL photoacclimation.
Collapse
Affiliation(s)
| | - David A Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Ming-Yang Ho
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
45
|
Orf GS, Gisriel CJ, Granstrom J, Baker PL, Redding KE. The PshX subunit of the photochemical reaction center from Heliobacterium modesticaldum acts as a low-energy antenna. PHOTOSYNTHESIS RESEARCH 2022; 151:11-30. [PMID: 34480322 DOI: 10.1007/s11120-021-00871-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
The anoxygenic phototrophic bacterium Heliobacterium modesticaldum contains a photochemical reaction center protein complex (called the HbRC) consisting of a homodimer of the PshA polypeptide and two copies of a newly discovered polypeptide called PshX, which is a single transmembrane helix that binds two bacteriochlorophyll g molecules. To assess the function of PshX, we produced a ∆pshX strain of Hbt. modesticaldum by leveraging the endogenous Hbt. modesticaldum Type I-A CRISPR-Cas system to aid in mutant selection. We optimized this system by separating the homologous recombination and CRISPR-based selection steps into two plasmid transformations, allowing for markerless gene replacement. Fluorescence and low-temperature absorbance of the purified HbRC from the wild-type and ∆pshX strains showed that the bacteriochlorophylls bound by PshX have the lowest site energies in the entire HbRC. This indicates that PshX acts as a low-energy antenna subunit, participating in entropy-assisted uphill energy transfer toward the P800 special bacteriochlorophyll g pair. We further discuss the role that PshX may play in stability of the HbRC, its conservation in other heliobacterial species, and the evolutionary pressure to produce and maintain single-TMH subunits in similar locations in other reaction centers.
Collapse
Affiliation(s)
- Gregory S Orf
- Center for Bioenergy and Photosynthesis, School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Infectious Disease Research, Abbott Diagnostics Division, Abbott Park, IL, 60064, USA
| | - Christopher J Gisriel
- Center for Bioenergy and Photosynthesis, School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Jesse Granstrom
- Center for Bioenergy and Photosynthesis, School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Patricia L Baker
- Center for Bioenergy and Photosynthesis, School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Kevin E Redding
- Center for Bioenergy and Photosynthesis, School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
46
|
Gisriel CJ, Shen G, Ho MY, Kurashov V, Flesher DA, Wang J, Armstrong WH, Golbeck JH, Gunner MR, Vinyard DJ, Debus RJ, Brudvig GW, Bryant DA. Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red light reveals the functions of chlorophylls d and f. J Biol Chem 2022; 298:101424. [PMID: 34801554 PMCID: PMC8689208 DOI: 10.1016/j.jbc.2021.101424] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/26/2022] Open
Abstract
Far-red light (FRL) photoacclimation in cyanobacteria provides a selective growth advantage for some terrestrial cyanobacteria by expanding the range of photosynthetically active radiation to include far-red/near-infrared light (700-800 nm). During this photoacclimation process, photosystem II (PSII), the water:plastoquinone photooxidoreductase involved in oxygenic photosynthesis, is modified. The resulting FRL-PSII is comprised of FRL-specific core subunits and binds chlorophyll (Chl) d and Chl f molecules in place of several of the Chl a molecules found when cells are grown in visible light. These new Chls effectively lower the energy canonically thought to define the "red limit" for light required to drive photochemical catalysis of water oxidation. Changes to the architecture of FRL-PSII were previously unknown, and the positions of Chl d and Chl f molecules had only been proposed from indirect evidence. Here, we describe the 2.25 Å resolution cryo-EM structure of a monomeric FRL-PSII core complex from Synechococcus sp. PCC 7335 cells that were acclimated to FRL. We identify one Chl d molecule in the ChlD1 position of the electron transfer chain and four Chl f molecules in the core antenna. We also make observations that enhance our understanding of PSII biogenesis, especially on the acceptor side of the complex where a bicarbonate molecule is replaced by a glutamate side chain in the absence of the assembly factor Psb28. In conclusion, these results provide a structural basis for the lower energy limit required to drive water oxidation, which is the gateway for most solar energy utilization on earth.
Collapse
Affiliation(s)
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ming-Yang Ho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - David A Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | | | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Marilyn R Gunner
- Department of Physics, City College of New York, New York, New York, USA
| | - David J Vinyard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Richard J Debus
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
47
|
Sirohiwal A, Pantazis DA. Electrostatic profiling of photosynthetic pigments: implications for directed spectral tuning. Phys Chem Chem Phys 2021; 23:24677-24684. [PMID: 34708851 DOI: 10.1039/d1cp02580e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photosynthetic pigment-protein complexes harvest solar energy with a high quantum efficiency. Protein scaffolds are known to tune the spectral properties of embedded pigments principally through structured electrostatic environments. Although the physical nature of electrostatic tuning is straightforward, the precise spatial principles of electrostatic preorganization remain poorly explored for different protein matrices and incompletely characterized with respect to the intrinsic properties of different photosynthetic pigments. In this work, we study the electronic structure features associated with the lowest excited state of a series of eight naturally occurring (bacterio)chlorophylls and pheophytins to describe the precise topological differences in electrostatic potentials and hence determine intrinsic differences in the expected mode and impact of electrostatic tuning. The difference electrostatic potentials between the ground and first excited states are used as fingerprints. Both the spatial profile and the propensity for spectral tuning are found to be unique for each pigment, indicating spatially and directionally distinct modes of electrostatic tuning. The results define a specific partitioning of the protein matrix around each pigment as an aid to identify regions with a maximal impact on spectral tuning and have direct implications for dimensionality reduction in protein design and engineering. Thus, a quantum mechanical basis is provided for understanding, predicting, and ultimately designing sequence-modified or pigment-exchanged biological systems, as suggested for selected examples of pigment-reconstituted proteins.
Collapse
Affiliation(s)
- Abhishek Sirohiwal
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
| |
Collapse
|
48
|
Hamaguchi T, Kawakami K, Shinzawa-Itoh K, Inoue-Kashino N, Itoh S, Ifuku K, Yamashita E, Maeda K, Yonekura K, Kashino Y. Structure of the far-red light utilizing photosystem I of Acaryochloris marina. Nat Commun 2021; 12:2333. [PMID: 33879791 PMCID: PMC8058080 DOI: 10.1038/s41467-021-22502-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 03/18/2021] [Indexed: 01/09/2023] Open
Abstract
Acaryochloris marina is one of the cyanobacterial species that can use far-red light to drive photochemical reactions for oxygenic photosynthesis. Here, we report the structure of A. marina photosystem I (PSI) reaction center, determined by cryo-electron microscopy at 2.58 Å resolution. The structure reveals an arrangement of electron carriers and light-harvesting pigments distinct from other type I reaction centers. The paired chlorophyll, or special pair (also referred to as P740 in this case), is a dimer of chlorophyll d and its epimer chlorophyll d'. The primary electron acceptor is pheophytin a, a metal-less chlorin. We show the architecture of this PSI reaction center is composed of 11 subunits and we identify key components that help explain how the low energy yield from far-red light is efficiently utilized for driving oxygenic photosynthesis.
Collapse
Affiliation(s)
- Tasuku Hamaguchi
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo, Japan
| | - Keisuke Kawakami
- Research Center for Artificial Photosynthesis (ReCAP), Osaka City University, Sumiyoshi-ku, Osaka, Japan.
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo, Japan.
| | | | | | - Shigeru Itoh
- Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kentaro Ifuku
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Eiki Yamashita
- Laboratory of Supramolecular Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kou Maeda
- Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo, Japan
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, Sayo, Hyogo, Japan.
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Japan.
| | - Yasuhiro Kashino
- Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo, Japan.
| |
Collapse
|
49
|
Çoruh O, Frank A, Tanaka H, Kawamoto A, El-Mohsnawy E, Kato T, Namba K, Gerle C, Nowaczyk MM, Kurisu G. Cryo-EM structure of a functional monomeric Photosystem I from Thermosynechococcus elongatus reveals red chlorophyll cluster. Commun Biol 2021; 4:304. [PMID: 33686186 PMCID: PMC7940658 DOI: 10.1038/s42003-021-01808-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
A high-resolution structure of trimeric cyanobacterial Photosystem I (PSI) from Thermosynechococcus elongatus was reported as the first atomic model of PSI almost 20 years ago. However, the monomeric PSI structure has not yet been reported despite long-standing interest in its structure and extensive spectroscopic characterization of the loss of red chlorophylls upon monomerization. Here, we describe the structure of monomeric PSI from Thermosynechococcus elongatus BP-1. Comparison with the trimer structure gave detailed insights into monomerization-induced changes in both the central trimerization domain and the peripheral regions of the complex. Monomerization-induced loss of red chlorophylls is assigned to a cluster of chlorophylls adjacent to PsaX. Based on our findings, we propose a role of PsaX in the stabilization of red chlorophylls and that lipids of the surrounding membrane present a major source of thermal energy for uphill excitation energy transfer from red chlorophylls to P700.
Collapse
Affiliation(s)
- Orkun Çoruh
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Anna Frank
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | - Hideaki Tanaka
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Akihiro Kawamoto
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Eithar El-Mohsnawy
- Department of Botany and Microbiology, Faculty of Science, Kafrelsheikh University, Kafr Al Sheikh, Egypt
| | - Takayuki Kato
- Laboratory of CryoEM Structural Biology, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
- RIKEN Center for Biosystems Dynamics Research and SPring-8 Center, Suita, Osaka, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, Japan
| | - Christoph Gerle
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
| | - Marc M Nowaczyk
- Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany.
| | - Genji Kurisu
- Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| |
Collapse
|
50
|
Gisriel CJ, Huang HL, Reiss KM, Flesher DA, Batista VS, Bryant DA, Brudvig GW, Wang J. Quantitative assessment of chlorophyll types in cryo-EM maps of photosystem I acclimated to far-red light. BBA ADVANCES 2021; 1:100019. [PMID: 37082022 PMCID: PMC10074859 DOI: 10.1016/j.bbadva.2021.100019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Chlorophyll cofactors are vital for the metabolism of photosynthetic organisms. Cryo-electron microscopy (cryo-EM) has been used to elucidate molecular structures of pigment-protein complexes, but the minor structural differences between multiple types of chlorophylls make them difficult to distinguish in cryo-EM maps. This is exemplified by inconsistencies in the assignments of chlorophyll f molecules in structures of photosystem I acclimated to far-red light (FRL-PSI). A quantitative assessment of chlorophyll substituents in cryo-EM maps was used to identify chlorophyll f-binding sites in structures of FRL-PSI from two cyanobacteria. The two cryo-EM maps provide direct evidence for chlorophyll f-binding at two and three binding sites, respectively, and three more sites in each structure exhibit strong indirect evidence for chlorophyll f-binding. Common themes in chlorophyll f-binding are described that clarify the current understanding of the molecular basis for FRL photoacclimation in photosystems.
Collapse
|