1
|
Reichert D, Sharma R, May-Simera H, Bharti K. Role of Primary Cilia in the Eye. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:441-445. [PMID: 39930235 DOI: 10.1007/978-3-031-76550-6_72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Primary cilia are evolutionarily conserved organelles that regulate various aspects of cell development, differentiation, and function. Defects in primary cilia lead to diseases known as ciliopathies, with vision loss as one of the most frequent manifestations. Increasing evidence suggests that in addition to the connecting cilium of photoreceptors in the retina, ciliary defects in other ocular tissues contribute toward the vision loss phenotype seen in ciliopathy patients. This review explores the current literature on the role of primary cilia in the anterior chamber, including the cornea, trabecular meshwork, iris, and ciliary body, and in retinal non-photoreceptor cells, and retinal pigment epithelium.
Collapse
Affiliation(s)
- Dominik Reichert
- Ocular and Stem Cell Translational Research Section, National Eye Institute, Bethesda, MD, USA
- Institute of Molecular Physiology, Johannes Gutenberg Universität, Mainz, Germany
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research Section, National Eye Institute, Bethesda, MD, USA
| | - Helen May-Simera
- Institute of Molecular Physiology, Johannes Gutenberg Universität, Mainz, Germany
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, National Eye Institute, Bethesda, MD, USA.
| |
Collapse
|
2
|
Wang Z, Wang W, Luo Q, Song G. Plectin: Dual Participation in Tumor Progression. Biomolecules 2024; 14:1050. [PMID: 39334817 PMCID: PMC11430127 DOI: 10.3390/biom14091050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The plectin gene can encode a cytoskeletal linking protein, plectin, known for its interaction with three critical components of the cellular cytoskeleton: intermediate filaments, microtubules, and actin filaments. In recent years, more and more studies have reported that plectin is closely related to tumorigenesis and development, exhibiting both tumor-suppressive and tumor-promoting functions. Here, we first introduce the molecular structure and function of plectin, and then we summarize the current understanding of the crucial role of plectin in cancer progression. Finally, we also discuss the possible reasons for the different roles of plectin expression in various types of cancer and highlight the double-edged sword role of plectin in tumor progression. The review aims to deepen the comprehensive understanding of plectin's role in cancer and further help to develop novel therapeutic strategies and drug targets.
Collapse
Affiliation(s)
- Zhihui Wang
- College of Bioengineering, Chongqing University, Chongqing 400030, China
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, Chongqing University, Chongqing 400030, China
| | - Wenbin Wang
- College of Bioengineering, Chongqing University, Chongqing 400030, China
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, Chongqing University, Chongqing 400030, China
| | - Qing Luo
- College of Bioengineering, Chongqing University, Chongqing 400030, China
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, Chongqing University, Chongqing 400030, China
| | - Guanbin Song
- College of Bioengineering, Chongqing University, Chongqing 400030, China
- Key Laboratory of Biorheological Science & Technology, Ministry of Education, Chongqing University, Chongqing 400030, China
| |
Collapse
|
3
|
Kulbay M, Tuli N, Akdag A, Kahn Ali S, Qian CX. Optogenetics and Targeted Gene Therapy for Retinal Diseases: Unravelling the Fundamentals, Applications, and Future Perspectives. J Clin Med 2024; 13:4224. [PMID: 39064263 PMCID: PMC11277578 DOI: 10.3390/jcm13144224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
With a common aim of restoring physiological function of defective cells, optogenetics and targeted gene therapies have shown great clinical potential and novelty in the branch of personalized medicine and inherited retinal diseases (IRDs). The basis of optogenetics aims to bypass defective photoreceptors by introducing opsins with light-sensing capabilities. In contrast, targeted gene therapies, such as methods based on CRISPR-Cas9 and RNA interference with noncoding RNAs (i.e., microRNA, small interfering RNA, short hairpin RNA), consists of inducing normal gene or protein expression into affected cells. Having partially leveraged the challenges limiting their prompt introduction into the clinical practice (i.e., engineering, cell or tissue delivery capabilities), it is crucial to deepen the fields of knowledge applied to optogenetics and targeted gene therapy. The aim of this in-depth and novel literature review is to explain the fundamentals and applications of optogenetics and targeted gene therapies, while providing decision-making arguments for ophthalmologists. First, we review the biomolecular principles and engineering steps involved in optogenetics and the targeted gene therapies mentioned above by bringing a focus on the specific vectors and molecules for cell signalization. The importance of vector choice and engineering methods are discussed. Second, we summarize the ongoing clinical trials and most recent discoveries for optogenetics and targeted gene therapies for IRDs. Finally, we then discuss the limits and current challenges of each novel therapy. We aim to provide for the first time scientific-based explanations for clinicians to justify the specificity of each therapy for one disease, which can help improve clinical decision-making tasks.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada;
| | - Nicolas Tuli
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada (A.A.)
| | - Arjin Akdag
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada (A.A.)
| | - Shigufa Kahn Ali
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, QC H1T 2M4, Canada;
| | - Cynthia X. Qian
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, QC H1T 2M4, Canada;
- Department of Ophthalmology, Centre Universitaire d’Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, QC H1T 2M4, Canada
| |
Collapse
|
4
|
Ning K, Tran M, Kowal TJ, Mesentier-Louro LA, Sendayen BE, Wang Q, Lo CH, Li T, Majumder R, Luo J, Hu Y, Liao YJ, Sun Y. Compartmentalized ciliation changes of oligodendrocytes in aged mouse optic nerve. J Neurosci Res 2024; 102:e25273. [PMID: 38284846 PMCID: PMC10827352 DOI: 10.1002/jnr.25273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 10/11/2023] [Accepted: 10/28/2023] [Indexed: 01/30/2024]
Abstract
Primary cilia are microtubule-based sensory organelles that project from the apical surface of most mammalian cells, including oligodendrocytes, which are myelinating cells of the central nervous system (CNS) that support critical axonal function. Dysfunction of CNS glia is associated with aging-related white matter diseases and neurodegeneration, and ciliopathies are known to affect CNS white matter. To investigate age-related changes in ciliary profile, we examined ciliary length and frequency in the retinogeniculate pathway, a white matter tract commonly affected by diseases of aging but in which expression of cilia has not been characterized. We found expression of Arl13b, a marker of primary cilia, in a small group of Olig2-positive oligodendrocytes in the optic nerve, optic chiasm, and optic tract in young and aged C57BL/6 wild-type mice. While the ciliary length and ciliated oligodendrocyte cells were constant in young mice in the retinogeniculate pathway, there was a significant increase in ciliary length in the anterior optic nerve as compared to the aged animals. Morphometric analysis confirmed a specific increase in the ciliation rate of CC1+ /Olig2+ oligodendrocytes in aged mice compared with young mice. Thus, the prevalence of primary cilia in oligodendrocytes in the visual pathway and the age-related changes in ciliation suggest that they may play important roles in white matter and age-associated optic neuropathies.
Collapse
Affiliation(s)
- Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Matthew Tran
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tia J. Kowal
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
- Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA
| | | | - Brent E. Sendayen
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Qing Wang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Chien-Hui Lo
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tingting Li
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Rishab Majumder
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
- Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA
| | - Jian Luo
- Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yaping Joyce Liao
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
- Veterans Administration Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
5
|
Wood EH, Kreymerman A, Kowal T, Buickians D, Sun Y, Muscat S, Mercola M, Moshfeghi DM, Goldberg JL. Cellular and subcellular optogenetic approaches towards neuroprotection and vision restoration. Prog Retin Eye Res 2023; 96:101153. [PMID: 36503723 PMCID: PMC10247900 DOI: 10.1016/j.preteyeres.2022.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Optogenetics is defined as the combination of genetic and optical methods to induce or inhibit well-defined events in isolated cells, tissues, or animals. While optogenetics within ophthalmology has been primarily applied towards treating inherited retinal disease, there are a myriad of other applications that hold great promise for a variety of eye diseases including cellular regeneration, modulation of mitochondria and metabolism, regulation of intraocular pressure, and pain control. Supported by primary data from the authors' work with in vitro and in vivo applications, we introduce a novel approach to metabolic regulation, Opsins to Restore Cellular ATP (ORCA). We review the fundamental constructs for ophthalmic optogenetics, present current therapeutic approaches and clinical trials, and discuss the future of subcellular and signaling pathway applications for neuroprotection and vision restoration.
Collapse
Affiliation(s)
- Edward H Wood
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Alexander Kreymerman
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Tia Kowal
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - David Buickians
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yang Sun
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Stephanie Muscat
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mark Mercola
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Darius M Moshfeghi
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
6
|
Zeng Z, You M, Fan C, Rong R, Li H, Xia X. Pathologically high intraocular pressure induces mitochondrial dysfunction through Drp1 and leads to retinal ganglion cell PANoptosis in glaucoma. Redox Biol 2023; 62:102687. [PMID: 36989574 PMCID: PMC10074988 DOI: 10.1016/j.redox.2023.102687] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023] Open
Abstract
Glaucoma is a common neurodegenerative disease characterized by progressive retinal ganglion cell (RGC) loss and visual field defects. Pathologically high intraocular pressure (ph-IOP) is an important risk factor for glaucoma, and it triggers molecularly distinct cascades that control RGC death and axonal degeneration. Dynamin-related protein 1 (Drp1)-mediated abnormalities in mitochondrial dynamics are involved in glaucoma pathogenesis; however, little is known about the precise pathways that regulate RGC injury and death. Here, we aimed to investigate the role of the ERK1/2-Drp1-reactive oxygen species (ROS) axis in RGC death and the relationship between Drp1-mediated mitochondrial dynamics and PANoptosis in ph-IOP injury. Our results suggest that inhibiting the ERK1/2-Drp1-ROS pathway is a potential therapeutic strategy for treating ph-IOP-induced injuries. Furthermore, inhibiting Drp1 can regulate RGC PANoptosis by modulating caspase3-dependent, nucleotide-binding oligomerization domain-like receptor-containing pyrin domain 3(NLRP3)-dependent, and receptor-interacting protein (RIP)-dependent pathways in the ph-IOP model. Overall, our findings provide new insights into possible protective interventions that could regulate mitochondrial dynamics to improve RGC survival.
Collapse
|
7
|
Ning K, Bhuckory MB, Lo CH, Sendayen BE, Kowal TJ, Chen M, Bansal R, Chang KC, Vollrath D, Berbari NF, Mahajan VB, Hu Y, Sun Y. Cilia-associated wound repair mediated by IFT88 in retinal pigment epithelium. Sci Rep 2023; 13:8205. [PMID: 37211572 PMCID: PMC10200793 DOI: 10.1038/s41598-023-35099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/12/2023] [Indexed: 05/23/2023] Open
Abstract
Primary cilia are conserved organelles that integrate extracellular cues into intracellular signals and are critical for diverse processes, including cellular development and repair responses. Deficits in ciliary function cause multisystemic human diseases known as ciliopathies. In the eye, atrophy of the retinal pigment epithelium (RPE) is a common feature of many ciliopathies. However, the roles of RPE cilia in vivo remain poorly understood. In this study, we first found that mouse RPE cells only transiently form primary cilia. We then examined the RPE in the mouse model of Bardet-Biedl Syndrome 4 (BBS4), a ciliopathy associated with retinal degeneration in humans, and found that ciliation in BBS4 mutant RPE cells is disrupted early during development. Next, using a laser-induced injury model in vivo, we found that primary cilia in RPE reassemble in response to laser injury during RPE wound healing and then rapidly disassemble after the repair is completed. Finally, we demonstrated that RPE-specific depletion of primary cilia in a conditional mouse model of cilia loss promoted wound healing and enhanced cell proliferation. In summary, our data suggest that RPE cilia contribute to both retinal development and repair and provide insights into potential therapeutic targets for more common RPE degenerative diseases.
Collapse
Affiliation(s)
- Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Mohajeet B Bhuckory
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Chien-Hui Lo
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Brent E Sendayen
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
- Palo Alto Veterans Administration, Palo Alto, CA, USA
| | - Tia J Kowal
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Ming Chen
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Ruchi Bansal
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Kun-Che Chang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Douglas Vollrath
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Nicolas F Berbari
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Vinit B Mahajan
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, 1651 Page Mill Road, Rm 2220, Palo Alto, CA, 94304, USA.
- Palo Alto Veterans Administration, Palo Alto, CA, USA.
| |
Collapse
|
8
|
Ding J, Lu J, Zhang Q, Xu Y, Song B, Wu Y, Shi H, Chu B, Wang H, He Y. Camouflage Nanoparticles Enable in Situ Bioluminescence-Driven Optogenetic Therapy of Retinoblastoma. ACS NANO 2023; 17:7750-7764. [PMID: 37022677 DOI: 10.1021/acsnano.3c00470] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Optogenetic therapy has emerged as a promising technique for the treatment of ocular diseases; however, most optogenetic tools rely on external blue light to activate the photoswitch, whose relatively strong phototoxicity may induce retinal damage. Herein, we present the demonstration of camouflage nanoparticle-based vectors for in situ bioluminescence-driven optogenetic therapy of retinoblastoma. In biomimetic vectors, the photoreceptor CRY2 and its interacting partner CIB1 plasmid are camouflaged with folic acid ligands and luciferase NanoLuc-modified macrophage membranes. To conduct proof-of-concept research, this study employs a mouse model of retinoblastoma. In comparison to external blue light irradiation, the developed system enables an in situ bioluminescence-activated apoptotic pathway to inhibit tumor growth with greater therapeutic efficacy, resulting in a significant reduction in ocular tumor size. Furthermore, unlike external blue light irradiation, which causes retinal damage and corneal neovascularization, the camouflage nanoparticle-based optogenetic system maintains retinal structural integrity while avoiding corneal neovascularization.
Collapse
Affiliation(s)
- Jiali Ding
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Jianping Lu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Qian Zhang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Yanan Xu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Yuqi Wu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Haoliang Shi
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Binbin Chu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123, China
| |
Collapse
|
9
|
Sushmita K, Sharma S, Singh Kaushik M, Kateriya S. Algal rhodopsins encoding diverse signal sequence holds potential for expansion of organelle optogenetics. Biophys Physicobiol 2023; 20:e201008. [PMID: 38362319 PMCID: PMC10865886 DOI: 10.2142/biophysico.bppb-v20.s008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Rhodopsins have been extensively employed for optogenetic regulation of bioelectrical activity of excitable cells and other cellular processes across biological systems. Various strategies have been adopted to attune the cellular processes at the desired subcellular compartment (plasma membrane, endoplasmic reticulum, Golgi, mitochondria, lysosome) within the cell. These strategies include-adding signal sequences, tethering peptides, specific interaction sites, or mRNA elements at different sites in the optogenetic proteins for plasma membrane integration and subcellular targeting. However, a single approach for organelle optogenetics was not suitable for the relevant optogenetic proteins and often led to the poor expression, mislocalization, or altered physical and functional properties. Therefore, the current study is focused on the native subcellular targeting machinery of algal rhodopsins. The N- and C-terminus signal prediction led to the identification of rhodopsins with diverse organelle targeting signal sequences for the nucleus, mitochondria, lysosome, endosome, vacuole, and cilia. Several identified channelrhodopsins and ion-pumping rhodopsins possess effector domains associated with DNA metabolism (repair, replication, and recombination) and gene regulation. The identified algal rhodopsins with diverse effector domains and encoded native subcellular targeting sequences hold immense potential to establish expanded organelle optogenetic regulation and associated cellular signaling.
Collapse
Affiliation(s)
- Kumari Sushmita
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sunita Sharma
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manish Singh Kaushik
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Suneel Kateriya
- Laboratory of Optobiotechnology, School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
10
|
Rajala A, Rajala R, Gopinadhan Nair GK, Rajala RVS. Atlas of phosphoinositide signatures in the retina identifies heterogeneity between cell types. PNAS NEXUS 2023; 2:pgad063. [PMID: 37007713 PMCID: PMC10062291 DOI: 10.1093/pnasnexus/pgad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023]
Abstract
Phosphoinositides (PIPs) are a family of minor acidic phospholipids in the cell membrane. Phosphoinositide (PI) kinases and phosphatases can rapidly convert one PIP product into another resulting in the generation of seven distinct PIPs. The retina is a heterogeneous tissue composed of several cell types. In the mammalian genome, around 50 genes encode PI kinases and PI phosphatases; however, there are no studies describing the distribution of these enzymes in the various retinal cell types. Using translating ribosome affinity purification, we have identified the in vivo distribution of PI-converting enzymes from the rod, cone, retinal pigment epithelium (RPE), Müller glia, and retinal ganglion cells, generating a physiological atlas for PI-converting enzyme expression in the retina. The retinal neurons, rods, cones, and RGCs, are characterized by the enrichment of PI-converting enzymes, whereas the Müller glia and RPE are characterized by the depletion of these enzymes. We also found distinct differences between the expression of PI kinases and PI phosphatases in each retinal cell type. Since mutations in PI-converting enzymes are linked to human diseases including retinal diseases, the results of this study will provide a guide for what cell types are likely to be affected by retinal degenerative diseases brought on by changes in PI metabolism.
Collapse
Affiliation(s)
- Ammaji Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Rahul Rajala
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Cardiovascular Biology Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK 73104, USA
| | - Gopa Kumar Gopinadhan Nair
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| | - Raju V S Rajala
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Dean McGee Eye Institute, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104, USA
| |
Collapse
|
11
|
Kim TY, Lee GH, Mun J, Cheong S, Choi I, Kim H, Hahn SK. Smart Contact Lens Systems for Ocular Drug Delivery and Therapy. Adv Drug Deliv Rev 2023; 196:114817. [PMID: 37004938 DOI: 10.1016/j.addr.2023.114817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Ocular drug delivery and therapy systems have been extensively investigated with various methods including direct injections, eye drops and contact lenses. Nowadays, smart contact lens systems are attracting a lot of attention for ocular drug delivery and therapy due to their minimally invasive or non-invasive characteristics, highly enhanced drug permeation, high bioavailability, and on-demand drug delivery. Furthermore, smart contact lens systems can be used for direct light delivery into the eyes for biophotonic therapy replacing the use of drugs. Here, we review smart contact lens systems which can be classified into two groups of drug-eluting contact lens and ocular device contact lens. More specifically, this review covers smart contact lens systems with nanocomposite-laden systems, polymeric film-incorporated systems, micro and nanostructure systems, iontophoretic systems, electrochemical systems, and phototherapy systems for ocular drug delivery and therapy. After that, we discuss the future opportunities, challenges and perspectives of smart contact lens systems for ocular drug delivery and therapy.
Collapse
Affiliation(s)
- Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Geon-Hui Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jonghwan Mun
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sunah Cheong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Inhoo Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyemin Kim
- Department of Cosmetics Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea.
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea; PHI BIOMED Co., 168 Yeoksam-ro, Gangnamgu, Seoul 06248, Republic of Korea.
| |
Collapse
|
12
|
Characterization of Primary Cilia Formation in Human ESC-Derived Retinal Organoids. Stem Cells Int 2023; 2023:6494486. [PMID: 36684387 PMCID: PMC9859708 DOI: 10.1155/2023/6494486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023] Open
Abstract
Objectives Primary cilia are conserved organelles found in polarized mammalian cells that regulate neuronal growth, migration, and differentiation. Proper cilia formation is essential during eye development. Our previous reports found that both amacrine and retinal ganglion cells (RGCs) contain primary cilia in primate and rodent retinas. However, whether primary cilia are present in the inner retina of human retinal organoids remains unknown. The purpose of this study is to characterize the primary cilia distribution in human embryonic stem cell (hESC-derived retinal organoid development. Materials and Methods Retinal organoids were differentiated from a hESC line, harvested at various developmental timepoints (day 44-day 266), and immunostained with antibodies for primary cilia, including Arl13b (for the axoneme), AC3, and Centrin3 (for the basal body). AP2α, Prox1, GAD67, Calretinin, GFAP, PKCα, and Chx10 antibodies as well as Brn3b-promoted tdTomato expression were used to visualize retinal cell types. Results A group of ciliated cells were present in the inner aspects of retinal organoids from day 44 to day 266 in culture. Ciliated Chx10-positive retinal progenitor cells, GFAP-positive astrocytes, and PKCα-positive rod-bipolar cells were detected later during development (day 176 to day 266). Ciliation persisted during all stages of retinal developmental in AP2α-positive amacrine cells, but it was decreased in Brn3b-positive retinal ganglion cells (RGCs) at later time points. Additionally, AC3-positive astrocytes significantly decreased during the later stages of organoid formation. Conclusions Amacrine cells in retinal organoids retain cilia throughout development, whereas RGC ciliation gradually and progressively decreases with organoid maturation.
Collapse
|
13
|
Shim MS, Liton PB. The physiological and pathophysiological roles of the autophagy lysosomal system in the conventional aqueous humor outflow pathway: More than cellular clean up. Prog Retin Eye Res 2022; 90:101064. [PMID: 35370083 PMCID: PMC9464695 DOI: 10.1016/j.preteyeres.2022.101064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/09/2022] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
Abstract
During the last few years, the autophagy lysosomal system is emerging as a central cellular pathway with roles in survival, acting as a housekeeper and stress response mechanism. Studies by our and other labs suggest that autophagy might play an essential role in maintaining aqueous humor outflow homeostasis, and that malfunction of autophagy in outflow pathway cells might predispose to ocular hypertension and glaucoma pathogenesis. In this review, we will collect the current knowledge and discuss the molecular mechanisms by which autophagy does or might regulate normal outflow pathway tissue function, and its response to different types of stressors (oxidative stress and mechanical stress). We will also discuss novel roles of autophagy and lysosomal enzymes in modulation of TGFβ signaling and ECM remodeling, and the link between dysregulated autophagy and cellular senescence. We will examine what we have learnt, using pre-clinical animal models about how dysregulated autophagy can contribute to disease and apply that to the current status of autophagy in human glaucoma. Finally, we will consider and discuss the challenges and the potential of autophagy as a therapeutic target for the treatment of ocular hypertension and glaucoma.
Collapse
Affiliation(s)
- Myoung Sup Shim
- Duke University, Department of Ophthalmology, Durham, NC, 27705, USA
| | - Paloma B Liton
- Duke University, Department of Ophthalmology, Durham, NC, 27705, USA.
| |
Collapse
|
14
|
Chen Y, Su Y, Wang F. The Piezo1 ion channel in glaucoma: a new perspective on mechanical stress. Hum Cell 2022; 35:1307-1322. [PMID: 35767143 DOI: 10.1007/s13577-022-00738-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Glaucomatous optic nerve damage caused by pathological intraocular pressure elevation is irreversible, and its course is often difficult to control. This group of eye diseases is closely related to biomechanics, and the correlation between glaucoma pathogenesis and mechanical stimulation has been studied in recent decades. The nonselective cation channel Piezo1, the most important known mechanical stress sensor, is a transmembrane protein widely expressed in various cell types. Piezo1 has been detected throughout the eye, and the close relationship between Piezo1 and glaucoma is being confirmed. Pathological changes in glaucoma occur in both the anterior and posterior segments of the eye, and it is of great interest for researchers to determine whether Piezo1 plays a role in these changes and how it functions. The elucidation of the mechanisms of Piezo1 action in nonocular tissues and the reported roles of similar mechanically activated ion channels in glaucoma will provide an appropriate basis for further investigation. From a new perspective, this review provides a detailed description of the current progress in elucidating the role of Piezo1 in glaucoma, including relevant questions and assumptions, the remaining challenging research directions and mechanism-related therapeutic potential.
Collapse
Affiliation(s)
- Yidan Chen
- Department of Ophthalmology, Fourth Affiliated Hospital, Harbin Medical University, Yiyuan Road, Harbin, 150001, China
| | - Ying Su
- Eye Hospital, First Affiliated Hospital, Harbin Medical University, Yiman Road, Harbin, 150007, China.
| | - Feng Wang
- Department of Ophthalmology, Fourth Affiliated Hospital, Harbin Medical University, Yiyuan Road, Harbin, 150001, China.
| |
Collapse
|
15
|
Advances in Ophthalmic Optogenetics: Approaches and Applications. Biomolecules 2022; 12:biom12020269. [PMID: 35204770 PMCID: PMC8961521 DOI: 10.3390/biom12020269] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
Recent advances in optogenetics hold promise for vision restoration in degenerative eye diseases. Optogenetics refers to techniques that use light to control the cellular activity of targeted cells. Although optogenetics is a relatively new technology, multiple therapeutic options are already being explored in pre-clinical and phase I/II clinical trials with the aim of developing novel, safe, and effective treatments for major blinding eye diseases, such as glaucoma and retinitis pigmentosa. Optogenetic approaches to visual restoration are primarily aimed at replacing lost or dysfunctional photoreceptors by inserting light-sensitive proteins into downstream retinal neurons that have no intrinsic light sensitivity. Such approaches are attractive because they are agnostic to the genetic causes of retinal degeneration, which raises hopes that all forms of retinal dystrophic and degenerative diseases could become treatable. Optogenetic strategies can also have a far-reaching impact on translational research by serving as important tools to study the pathogenesis of retinal degeneration and to identify clinically relevant therapeutic targets. For example, the CRY-CIBN optogenetic system has been recently applied to animal models of glaucoma, suggesting a potential role of OCRL in the regulation of intraocular pressure in trabecular meshwork. As optogenetic strategies are being intensely investigated, it appears crucial to consider the opportunities and challenges such therapies may offer. Here, we review the more recent promising optogenetic molecules, vectors, and applications of optogenetics for the treatment of retinal degeneration and glaucoma. We also summarize the preliminary results of ongoing clinical trials for visual restoration.
Collapse
|
16
|
Primary cilia and the reciprocal activation of AKT and SMAD2/3 regulate stretch-induced autophagy in trabecular meshwork cells. Proc Natl Acad Sci U S A 2021; 118:2021942118. [PMID: 33753495 DOI: 10.1073/pnas.2021942118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activation of autophagy is one of the responses elicited by high intraocular pressure (IOP) and mechanical stretch in trabecular meshwork (TM) cells. However, the mechanosensor and the molecular mechanisms by which autophagy is induced by mechanical stretch in these or other cell types is largely unknown. Here, we have investigated the mechanosensor and downstream signaling pathway that regulate cyclic mechanical stretch (CMS)-induced autophagy in TM cells. We report that primary cilia act as a mechanosensor for CMS-induced autophagy and identified a cross-regulatory talk between AKT1 and noncanonical SMAD2/3 signaling as critical components of primary cilia-mediated activation of autophagy by mechanical stretch. Furthermore, we demonstrated the physiological significance of our findings in ex vivo perfused eyes. Removal of primary cilia disrupted the homeostatic IOP compensatory response and prevented the increase in LC3-II protein levels in response to elevated pressure challenge, strongly supporting a role of primary cilia-mediated autophagy in regulating IOP homeostasis.
Collapse
|
17
|
Kowal TJ, Prosseda PP, Ning K, Wang B, Alvarado J, Sendayen BE, Jabbehdari S, Stamer WD, Hu Y, Sun Y. Optogenetic Modulation of Intraocular Pressure in a Glucocorticoid-Induced Ocular Hypertension Mouse Model. Transl Vis Sci Technol 2021; 10:10. [PMID: 34111256 PMCID: PMC8107493 DOI: 10.1167/tvst.10.6.10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/22/2021] [Indexed: 01/03/2023] Open
Abstract
Purpose Steroid-induced glaucoma is a common form of secondary open angle glaucoma characterized by ocular hypertension (elevated intraocular pressure [IOP]) in response to prolonged glucocorticoid exposure. Elevated IOP occurs with increased outflow resistance and altered trabecular meshwork (TM) function. Recently, we used an optogenetic approach in TM to regulate the 5-phosphatase, OCRL, which contributes to regulating PI(4,5)P2 levels. Here, we applied this system with the aim of reversing compromised outflow function in a steroid-induced ocular hypertension mouse model. Methods Elevated IOP was induced by chronic subconjunctival dexamethasone injections in wild-type C57Bl/6j mice. AAV2 viruses containing optogenetic modules of cryptochrome 2 (Cry2)-OCRL-5ptase and CIBN-GFP were injected into the anterior chamber. Four weeks after viral expression and dexamethasone exposure, IOP was measured by tonometer and outflow facility was measured by perfusion apparatus. Human TM cells were treated with dexamethasone, stimulated by light and treated with rhodamine-phalloidin to analyze actin structure. Results Dexamethasone treatment elevated IOP and decreased outflow facility in wild-type mice. Optogenetic constructs were expressed in the TM of mouse eyes. Light stimulation caused CRY2-OCRL-5ptase to translocate to plasma membrane (CIBN-CAAX-GFP) and cilia (CIBN-SSTR3-GFP) in TM cells, which rescued the IOP and outflow facility. In addition, aberrant actin structures formed by dexamethasone treatment were reduced by optogenetic stimulation in human TM cells in culture. Conclusions Subcellular targeting of inositol phosphatases to remove PIP2 represents a promising strategy to reverse defective TM function in steroid-induced ocular hypertension. Translational Relevance Targeted modulation of OCRL may be used to decrease steroid-induced elevated IOP.
Collapse
Affiliation(s)
- Tia J. Kowal
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Philipp P. Prosseda
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ke Ning
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Biao Wang
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jorge Alvarado
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Brent E. Sendayen
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sayena Jabbehdari
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - W. Daniel Stamer
- Duke Eye Center, Department of Ophthalmology, Duke University, Durham, NC, USA
| | - Yang Hu
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, USA
- Palo Alto Veterans Administration, Palo Alto, CA, USA
| |
Collapse
|
18
|
Patel PD, Chen YL, Kasetti RB, Maddineni P, Mayhew W, Millar JC, Ellis DZ, Sonkusare SK, Zode GS. Impaired TRPV4-eNOS signaling in trabecular meshwork elevates intraocular pressure in glaucoma. Proc Natl Acad Sci U S A 2021; 118:e2022461118. [PMID: 33853948 PMCID: PMC8072326 DOI: 10.1073/pnas.2022461118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Primary Open Angle Glaucoma (POAG) is the most common form of glaucoma that leads to irreversible vision loss. Dysfunction of trabecular meshwork (TM) tissue, a major regulator of aqueous humor (AH) outflow resistance, is associated with intraocular pressure (IOP) elevation in POAG. However, the underlying pathological mechanisms of TM dysfunction in POAG remain elusive. In this regard, transient receptor potential vanilloid 4 (TRPV4) cation channels are known to be important Ca2+ entry pathways in multiple cell types. Here, we provide direct evidence supporting Ca2+ entry through TRPV4 channels in human TM cells and show that TRPV4 channels in TM cells can be activated by increased fluid flow/shear stress. TM-specific TRPV4 channel knockout in mice elevated IOP, supporting a crucial role for TRPV4 channels in IOP regulation. Pharmacological activation of TRPV4 channels in mouse eyes also improved AH outflow facility and lowered IOP. Importantly, TRPV4 channels activated endothelial nitric oxide synthase (eNOS) in TM cells, and loss of eNOS abrogated TRPV4-induced lowering of IOP. Remarkably, TRPV4-eNOS signaling was significantly more pronounced in TM cells compared to Schlemm's canal cells. Furthermore, glaucomatous human TM cells show impaired activity of TRPV4 channels and disrupted TRPV4-eNOS signaling. Flow/shear stress activation of TRPV4 channels and subsequent NO release were also impaired in glaucomatous primary human TM cells. Together, our studies demonstrate a central role for TRPV4-eNOS signaling in IOP regulation. Our results also provide evidence that impaired TRPV4 channel activity in TM cells contributes to TM dysfunction and elevated IOP in glaucoma.
Collapse
Affiliation(s)
- Pinkal D Patel
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - Yen-Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908
| | - Ramesh B Kasetti
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - Prabhavathi Maddineni
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - William Mayhew
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - J Cameron Millar
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - Dorette Z Ellis
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107
| | - Swapnil K Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908;
- Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Gulab S Zode
- Department of Pharmacology and Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107;
| |
Collapse
|
19
|
Signal transduction in primary cilia - analyzing and manipulating GPCR and second messenger signaling. Pharmacol Ther 2021; 224:107836. [PMID: 33744260 DOI: 10.1016/j.pharmthera.2021.107836] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
The primary cilium projects from the surface of most vertebrate cells, where it senses extracellular signals to regulate diverse cellular processes during tissue development and homeostasis. Dysfunction of primary cilia underlies the pathogenesis of severe diseases, commonly referred to as ciliopathies. Primary cilia contain a unique protein repertoire that is distinct from the cell body and the plasma membrane, enabling the spatially controlled transduction of extracellular cues. G-protein coupled receptors (GPCRs) are key in sensing environmental stimuli that are transmitted via second messenger signaling into a cellular response. Here, we will give an overview of the role of GPCR signaling in primary cilia, and how ciliary GPCR signaling can be targeted by pharmacology, chemogenetics, and optogenetics.
Collapse
|
20
|
Yang WT, Hong SR, He K, Ling K, Shaiv K, Hu J, Lin YC. The Emerging Roles of Axonemal Glutamylation in Regulation of Cilia Architecture and Functions. Front Cell Dev Biol 2021; 9:622302. [PMID: 33748109 PMCID: PMC7970040 DOI: 10.3389/fcell.2021.622302] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/11/2021] [Indexed: 12/14/2022] Open
Abstract
Cilia, which either generate coordinated motion or sense environmental cues and transmit corresponding signals to the cell body, are highly conserved hair-like structures that protrude from the cell surface among diverse species. Disruption of ciliary functions leads to numerous human disorders, collectively referred to as ciliopathies. Cilia are mechanically supported by axonemes, which are composed of microtubule doublets. It has been recognized for several decades that tubulins in axonemes undergo glutamylation, a post-translational polymodification, that conjugates glutamic acid chains onto the C-terminal tail of tubulins. However, the physiological roles of axonemal glutamylation were not uncovered until recently. This review will focus on how cells modulate glutamylation on ciliary axonemes and how axonemal glutamylation regulates cilia architecture and functions, as well as its physiological importance in human health. We will also discuss the conventional and emerging new strategies used to manipulate glutamylation in cilia.
Collapse
Affiliation(s)
- Wen-Ting Yang
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - Shi-Rong Hong
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - Kai He
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| | - Kritika Shaiv
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
| | - JingHua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, HsinChu City, Taiwan
- Department of Medical Science, National Tsing Hua University, HsinChu City, Taiwan
| |
Collapse
|