1
|
Viskupicova J, Michel Espinoza-Fonseca L. Allosteric modulation of SERCA pumps in health and disease: structural dynamics, posttranslational modifications, and therapeutic potential. J Mol Biol 2025:169200. [PMID: 40349954 DOI: 10.1016/j.jmb.2025.169200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/29/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Sarco/endoplasmic reticulum (SR/ER) Ca2+-ATPase (SERCA) pumps are ubiquitous membrane proteins in all eukaryotic cells, playing a central role in maintaining intracellular calcium homeostasis by re-sequestering Ca2+ ions from the cytosol into the SR/ER at the expense of ATP hydrolysis. SERCA pumps are well-characterized components of the calcium transport machinery in the cell, playing a role in various physiological processes, including muscle contraction, energy metabolism, secretion exocytosis, gene expression, synaptic transmission, cell survival, and fertilization. Allosteric regulation of SERCA pumps plays a key role in health and disease, and modulation of the SERCA pumps has emerged as a therapeutic approach for the treatment of cardiovascular, muscular, metabolic, and neurodegenerative disorders. In this review, we provide a comprehensive overview of the structural dynamics underlying allosteric modulation of SERCA, focusing on the effects of endogenous regulatory proteins, Ca2+ ions, ATP, and small-molecule effectors on the dynamics and function of the pump. We also examine in detail the role of posttranslational modifications as allosteric modulators of SERCA function, focusing on the oxidative modifications S-glutathionylation, S-nitrosylation, tyrosine nitration, and carbonylation, and non-oxidative modifications that include SUMOylation, acetylation, O-GlcNAcylation, phosphorylation, and ubiquitination. Finally, we discuss the therapeutic potential and challenges of allosteric modulation of SERCA pumps, including the design of small-molecule effectors, microRNA-based interventions, and targeted strategies that modulate SERCA posttranslational regulation. Overall, this review aims to bridge the gap between the mechanisms underlying allosteric modulation of SERCA and the translation of basic science discoveries into effective therapies targeting SERCA pumps.
Collapse
Affiliation(s)
- Jana Viskupicova
- Centre of Experimental Medicine, Institute of Experimental Pharmacology & Toxicology, Slovak Academy of Sciences, 84104 Bratislava, Slovakia.
| | - L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Basse Hansen S, Flygaard RK, Kjaergaard M, Nissen P. Structure of the [Ca]E2P intermediate of Ca 2+-ATPase 1 from Listeria monocytogenes. EMBO Rep 2025; 26:1709-1723. [PMID: 40016426 PMCID: PMC11977196 DOI: 10.1038/s44319-025-00392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/05/2025] [Accepted: 01/22/2025] [Indexed: 03/01/2025] Open
Abstract
Active transport by P-type Ca2+-ATPases maintain internal calcium stores and a low cytosolic calcium concentration. Structural studies of mammalian sarco/endoplasmic reticulum Ca2+-ATPases (SERCA) have revealed several steps of the transport cycle, but a calcium-releasing intermediate has remained elusive. Single-molecule FRET studies of the bacterial Ca2+-ATPase LMCA1 revealed an intermediate of the transition between so-called [Ca]E1P and E2P states and suggested that calcium release from this intermediate was the essentially irreversible step of transport. Here, we present a 3.5 Å resolution cryo-EM structure for a four-glycine insertion mutant of LMCA1 in a lipid nanodisc obtained under conditions with calcium and ATP and adopting such an intermediate state, denoted [Ca]E2P. The cytosolic domains are positioned in the E2P-like conformation, while the calcium-binding transmembrane (TM) domain adopts a calcium-bound E1P-ADP-like conformation. Missing density for the E292 residue at the calcium site (the equivalent of SERCA1a E309) suggests flexibility and a site poised for calcium release and proton uptake. The structure suggests a mechanism where ADP release and re-organization of the cytoplasmic domains precede calcium release.
Collapse
Affiliation(s)
- Sara Basse Hansen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus, Denmark
| | - Rasmus Kock Flygaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus, Denmark
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus, Denmark
- The Danish National Research Foundation Center for Proteins in Memory (PROMEMO), Aarhus, Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
- The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Aarhus, Denmark.
- The Danish National Research Foundation Center for Proteins in Memory (PROMEMO), Aarhus, Denmark.
| |
Collapse
|
3
|
Paula S, Jahani F, Almahmodi D, Sobota S, Devaraja S, O'Brien NS, Young KA, Prichard K, McCluskey A. Quinoline- and Pyrimidine-based Allosteric Modulators of the Sarco/Endoplasmic Reticulum Calcium ATPase. ChemMedChem 2025; 20:e202400763. [PMID: 39499613 DOI: 10.1002/cmdc.202400763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/07/2024]
Abstract
Small-molecule allosteric activators of the enzyme sarco/endoplasmic reticulum calcium ATPase (SERCA) hold promise as novel experimental tools to manipulate intracellular calcium concentrations and as therapeutic agents to treat medical conditions associated with elevated cytosolic calcium levels. Here, we synthesized and characterized 20 analogs of the known allosteric SERCA activator CDN1163 and tested their ability to stimulate SERCA activity. The structures of the compounds varied in the alkyl group of the parent scaffold's ether moiety as well as in the composition of the nitrogenous aromatic ring system. The most active compounds exhibited potencies in the sub-micromolar range while increasing enzyme activity by more than 25 %. The observed structure-activity relationships indicated that bulky alkyl groups in the ether moiety along with a quinoline ring methyl substituent were beneficial for activity. Replacement of the quinoline by a pyrimidine ring system reduced activity. To conceive a potential mechanism of action, we generated a molecular model of the transition state of SERCA when undergoing the rate-limiting step of its catalytic cycle. Subsequent blind docking with CDN1163 identified a high-affinity binding site close to the enzyme's ATP binding pocket, suggesting that the activators may accelerate SERCA's catalytic cycle by aiding in ATP binding and positioning.
Collapse
Affiliation(s)
- Stefan Paula
- Department of Chemistry, California State University Sacramento, 6000 J Street, Sacramento, CA, 95819, USA
| | - Farnaz Jahani
- Department of Chemistry, California State University Sacramento, 6000 J Street, Sacramento, CA, 95819, USA
| | - Dina Almahmodi
- Department of Chemistry, California State University Sacramento, 6000 J Street, Sacramento, CA, 95819, USA
| | - Sydni Sobota
- Department of Chemistry, California State University Sacramento, 6000 J Street, Sacramento, CA, 95819, USA
| | - Shiffany Devaraja
- Department of Chemistry, California State University Sacramento, 6000 J Street, Sacramento, CA, 95819, USA
| | - Nicholas S O'Brien
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Kelly A Young
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Kate Prichard
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| |
Collapse
|
4
|
De Bei O, Marchetti M, Guglielmo S, Gianquinto E, Spyrakis F, Campanini B, Bettati S, Levantino M, Ronda L. Time-resolved X-ray solution scattering unveils the events leading to hemoglobin heme capture by staphylococcal IsdB. Nat Commun 2025; 16:1361. [PMID: 39962089 PMCID: PMC11832919 DOI: 10.1038/s41467-024-54949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/25/2024] [Indexed: 02/20/2025] Open
Abstract
Infections caused by Staphylococcus aureus depend on its ability to acquire nutrients. One essential nutrient is iron, which is obtained from the heme of the human host hemoglobin (Hb) through a protein machinery called Iron-regulated surface determinant (Isd) system. IsdB is the protein in charge of heme extraction from Hb, which is the first step of the chain of events leading to iron transfer to the bacterium cell interior. In order to elucidate the molecular events leading from the formation of the initial IsdB:Hb complex to heme extraction, we use time-resolved X-ray solution scattering (TR-XSS) in combination with rapid mixing triggering. We succeed in defining the stoichiometry of IsdB:Hb binding and in describing the kinetics of the subsequent structural changes. The presented approach is potentially applicable to unveil the complex kinetic pathways generated by protein-protein interaction in different biological systems.
Collapse
Affiliation(s)
- Omar De Bei
- Department of Medicine and Surgery, University of Parma, Via Volturno, 39, Parma, Italy
| | - Marialaura Marchetti
- Department of Medicine and Surgery, University of Parma, Via Volturno, 39, Parma, Italy
| | - Stefano Guglielmo
- Department of Drug Science and Technology, University of Turin, Via Giuria, 9, Turin, Italy
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, Via Giuria, 9, Turin, Italy
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Via Giuria, 9, Turin, Italy
| | - Barbara Campanini
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 27/A, Parma, Italy
| | - Stefano Bettati
- Department of Medicine and Surgery, University of Parma, Via Volturno, 39, Parma, Italy
- Institute of Biophysics, CNR, Via G. Moruzzi, 1, Pisa, Italy
| | - Matteo Levantino
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043, Grenoble, Cedex, France.
| | - Luca Ronda
- Department of Medicine and Surgery, University of Parma, Via Volturno, 39, Parma, Italy.
- Institute of Biophysics, CNR, Via G. Moruzzi, 1, Pisa, Italy.
| |
Collapse
|
5
|
Rayevsky A, Platonov M, Elijah B, Volochnyuk D, Veklich T, Cherenok S, Rodik R, Kalchenko V, Kosterin S. Structural Insight on the Selectivity of Calyx[4]Arene-Based Inhibitors of Mg 2+-Dependent Atp-Hydrolases. Mol Inform 2025; 44:e202400200. [PMID: 39635768 DOI: 10.1002/minf.202400200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Located in plasma membranes, ATP hydrolases are involved in several dynamic transport processes, helping to control the movement of ions across cell membranes. ATP hydrolase acts as a transport protein, converting energy from ATP hydrolysis into transport molecules against their concentration gradients. In addition to energy metabolism and active transport, ATP hydrolase is essential for maintaining cellular homeostasis and cell function. This study focused on the domain architecture model of P-type ATPases, which participate in the reaction cycles of ATP hydrolysis carried out by membrane transport systems - Na+, K+-ATPase and Ca2+, Mg2+-ATPase. Targeted modulation of Na+, K+-ATPase and Ca2+, Mg2+-ATPase by unnatural drugs is of greatest interest due to the lack of known effectors. This new discovery presents a convenient model based on our recent experimental studies of the membrane structures and myocytes of the uterine smooth muscle, the myometrium. This current study strongly supports the fact that nanosized calix[4]arenes functionalised on the upper rings of the macrocycle with biologically active phosphonic acid fragments can serve as selective and potent inhibitors of cation-transporting electroenzymes. This is how we discovered that calix[4]arene of methylenebisphosphonic acid C-97 and calix[4]arene of bis-aminophosphonic acid C-107 selectively and effectively (I0.5 <100 nM) inhibit the activity of Mg2+, ATP-dependent electrogenic Na+ K+ plasma membrane pump. As drug discovery in the field of Mg2+-ATPase inhibitors is uncharted territory, basic research holds the key to explaining and predicting the mechanism of interaction and action of different classes of compounds. In light of the presented results, new calix[4]arene compounds can be used as potent inhibitors of Mg2+, ATP-dependent electrogenic ion pumps.
Collapse
Affiliation(s)
- Alexey Rayevsky
- Institute of Food Biotechnology and Genomics, Natl. Academy of Sciences of Ukraine, Osypovskoho Str., 2 A, Kyiv, 04123, Ukraine
- Institute of Molecular Biology and Genetics, Natl. Academy of Sciences of Ukraine, Zabolotnogo Str., 150, Kyiv, 03143, Ukraine
- Enamine Ltd., 78 Chervonotkatska Str., Kyiv, 02660, Ukraine
| | - Maksym Platonov
- Institute of Molecular Biology and Genetics, Natl. Academy of Sciences of Ukraine, Zabolotnogo Str., 150, Kyiv, 03143, Ukraine
- Enamine Ltd., 78 Chervonotkatska Str., Kyiv, 02660, Ukraine
| | - Bulgakov Elijah
- Institute of Food Biotechnology and Genomics, Natl. Academy of Sciences of Ukraine, Osypovskoho Str., 2 A, Kyiv, 04123, Ukraine
- Enamine Ltd., 78 Chervonotkatska Str., Kyiv, 02660, Ukraine
| | - Dmytro Volochnyuk
- Enamine Ltd., 78 Chervonotkatska Str., Kyiv, 02660, Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv, Glushkova Ave, Kyiv, 03022, Ukraine
- Institute of Organic Chemistry NAS of Ukraine, 5 Murmanska Str., Kyiv, 02660, Ukraine
| | - Tetyana Veklich
- Palladin Institute of Biochemistry NAS of Ukraine, 9 Leontovich str., Kyiv, 01054, Ukraine
| | - Sergiy Cherenok
- Institute of Organic Chemistry NAS of Ukraine, 5 Murmanska Str., Kyiv, 02660, Ukraine
| | - Roman Rodik
- Institute of Organic Chemistry NAS of Ukraine, 5 Murmanska Str., Kyiv, 02660, Ukraine
| | - Vitaliy Kalchenko
- Institute of Organic Chemistry NAS of Ukraine, 5 Murmanska Str., Kyiv, 02660, Ukraine
| | - Sergiy Kosterin
- Palladin Institute of Biochemistry NAS of Ukraine, 9 Leontovich str., Kyiv, 01054, Ukraine
| |
Collapse
|
6
|
Prabudiansyah I, Orädd F, Magkakis K, Pounot K, Levantino M, Andersson M. Dephosphorylation and ion binding in prokaryotic calcium transport. SCIENCE ADVANCES 2024; 10:eadp2916. [PMID: 39908574 PMCID: PMC11468904 DOI: 10.1126/sciadv.adp2916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/11/2024] [Indexed: 02/07/2025]
Abstract
Calcium (Ca2+) signaling is fundamental to cellular processes in both eukaryotic and prokaryotic organisms. While the mechanisms underlying eukaryotic Ca2+ transport are well documented, an understanding of prokaryotic transport remains nascent. LMCA1, a Ca2+ adenosine triphosphatase (ATPase) from Listeria monocytogenes, has emerged as a prototype for elucidating structure and dynamics in prokaryotic Ca2+ transport. Here, we used a multidisciplinary approach integrating kinetics, structure, and dynamics to unravel the intricacies of LMCA1 function. A cryo-electron microscopy (cryo-EM) structure of a Ca2+-bound E1 state showed ion coordination by Asp720, Asn716, and Glu292. Time-resolved x-ray solution scattering experiments identified phosphorylation as the rate-determining step. A cryo-EM E2P state structure exhibited remarkable similarities to a SERCA1a E2-P* state, which highlights the essential role of the unique P-A domain interface in enhancing dephosphorylation rates and reconciles earlier proposed mechanisms. Our study underscores the distinctiveness between eukaryotic and prokaryotic Ca2+ ATPase transport systems and positions LMCA1 as a promising drug target for developing antimicrobial strategies.
Collapse
Affiliation(s)
| | - Fredrik Orädd
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | - Kevin Pounot
- ESRF, The European Synchrotron CS40220, 38043 Grenoble Cedex 9, France
| | - Matteo Levantino
- ESRF, The European Synchrotron CS40220, 38043 Grenoble Cedex 9, France
| | | |
Collapse
|
7
|
Magkakis K, Orädd F, Ahn B, Da Silva V, Appio R, Plivelic TS, Andersson M. Real-time structural characterization of protein response to a caged compound by fast detector readout and high-brilliance synchrotron radiation. Structure 2024; 32:1519-1527.e3. [PMID: 38889721 DOI: 10.1016/j.str.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/19/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024]
Abstract
Protein dynamics are essential to biological function, and methods to determine such structural rearrangements constitute a frontier in structural biology. Synchrotron radiation can track real-time protein dynamics, but accessibility to dedicated high-flux single X-ray pulse time-resolved beamlines is scarce and protein targets amendable to such characterization are limited. These limitations can be alleviated by triggering the reaction by laser-induced activation of a caged compound and probing the structural dynamics by fast-readout detectors. In this work, we established time-resolved X-ray solution scattering (TR-XSS) at the CoSAXS beamline at the MAX IV Laboratory synchrotron. Laser-induced activation of caged ATP initiated phosphoryl transfer in the adenylate kinase (AdK) enzyme, and the reaction was monitored up to 50 ms with a 2-ms temporal resolution achieved by the detector readout. The time-resolved structural signal of the protein showed minimal radiation damage effects and excellent agreement to data collected by a single X-ray pulse approach.
Collapse
Affiliation(s)
| | - Fredrik Orädd
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Byungnam Ahn
- MAX IV Laboratory, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
8
|
Kim C, Yun SR, Lee SJ, Kim SO, Lee H, Choi J, Kim JG, Kim TW, You S, Kosheleva I, Noh T, Baek J, Ihee H. Structural dynamics of protein-protein association involved in the light-induced transition of Avena sativa LOV2 protein. Nat Commun 2024; 15:6991. [PMID: 39143073 PMCID: PMC11324726 DOI: 10.1038/s41467-024-51461-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
The Light-oxygen-voltage-sensing domain (LOV) superfamily, found in enzymes and signal transduction proteins, plays a crucial role in converting light signals into structural signals, mediating various biological mechanisms. While time-resolved spectroscopic studies have revealed the dynamics of the LOV-domain chromophore's electronic structures, understanding the structural changes in the protein moiety, particularly regarding light-induced dimerization, remains challenging. Here, we utilize time-resolved X-ray liquidography to capture the light-induced dimerization of Avena sativa LOV2. Our analysis unveils that dimerization occurs within milliseconds after the unfolding of the A'α and Jα helices in the microsecond time range. Notably, our findings suggest that protein-protein interactions (PPIs) among the β-scaffolds, mediated by helix unfolding, play a key role in dimerization. In this work, we offer structural insights into the dimerization of LOV2 proteins following structural changes in the A'α and Jα helices, as well as mechanistic insights into the protein-protein association process driven by PPIs.
Collapse
Affiliation(s)
- Changin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - So Ri Yun
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sang Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Seong Ok Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hyosub Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jungkweon Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jong Goo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Tae Wu Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Seyoung You
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, 60637, USA
| | - Taeyoon Noh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jonghoon Baek
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
9
|
Botha S, Fromme P. Review of serial femtosecond crystallography including the COVID-19 pandemic impact and future outlook. Structure 2023; 31:1306-1319. [PMID: 37898125 PMCID: PMC10842180 DOI: 10.1016/j.str.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/30/2023]
Abstract
Serial femtosecond crystallography (SFX) revolutionized macromolecular crystallography over the past decade by enabling the collection of X-ray diffraction data from nano- or micrometer sized crystals while outrunning structure-altering radiation damage effects at room temperature. The serial manner of data collection from millions of individual crystals coupled with the femtosecond duration of the ultrabright X-ray pulses enables time-resolved studies of macromolecules under near-physiological conditions to unprecedented temporal resolution. In 2020 the rapid spread of the coronavirus SARS-CoV-2 resulted in a global pandemic of coronavirus disease-2019. This led to a shift in how serial femtosecond experiments were performed, along with rapid funding and free electron laser beamtime availability dedicated to SARS-CoV-2-related studies. This review outlines the current state of SFX research, the milestones that were achieved, the impact of the global pandemic on this field as well as an outlook into exciting future directions.
Collapse
Affiliation(s)
- Sabine Botha
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; Department of Physics, Arizona State University, Tempe, AZ 85287-1504, USA.
| | - Petra Fromme
- Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ 85287-5001, USA; School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, USA.
| |
Collapse
|
10
|
Mahato DR, Andersson M. Dynamic lipid interactions in the plasma membrane Na +,K +-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119545. [PMID: 37481079 DOI: 10.1016/j.bbamcr.2023.119545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023]
Abstract
The function of ion-transporting Na+,K+-ATPases depends on the surrounding lipid environment in biological membranes. Two established lipid-interaction sites A and B within the transmembrane domain have been observed to induce protein activation and stabilization, respectively. In addition, lipid-mediated inhibition has been assigned to a site C, but with the exact location not experimentally confirmed. Also, possible effects on lipid interactions by disease mutants dwelling in the membrane-protein interface remain relatively uncharacterized. We simulated human Na+,K+-ATPase α1β1FXYD homology models in E1 and E2 states in an asymmetric, multicomponent plasma membrane to determine both wild-type and disease mutant lipid-protein interactions. The simulated wild-type lipid interactions at the established sites A and B were in agreement with experimental results thereby confirming the membrane-protein model system. The less well-characterized, proposed inhibitory site C was dominated by lipids lacking inhibitory properties. Instead, two sites hosting inhibitory lipids were identified at the extracellular side and also a cytoplasmic CHL-binding site that provide putative alternative locations of Na+,K+-ATPase inhibition. Three disease mutations, Leu302Arg, Glu840Arg and Met859Arg resided in the lipid-protein interface and caused drastic changes in the lipid interactions. The simulation results show that lipid interactions to the human Na+,K+-ATPase α1β1FXYD protein in the plasma membrane are highly state-dependent and can be disturbed by disease mutations located in the lipid interface, which can open up for new venues to understand genetic disorders.
Collapse
Affiliation(s)
- Dhani Ram Mahato
- Department of Chemistry, Umeå University, Umeå, Sweden; Institut de Química Computacional i Catàlisi, Universitat de Girona, Girona, 17003, Spain
| | | |
Collapse
|
11
|
Pounot K, Schirò G, Levantino M. Tracking the structural dynamics of proteins with time-resolved X-ray solution scattering. Curr Opin Struct Biol 2023; 82:102661. [PMID: 37536065 DOI: 10.1016/j.sbi.2023.102661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/03/2023] [Accepted: 06/29/2023] [Indexed: 08/05/2023]
Abstract
Relevant events during protein function such as ligand binding/release and interaction with substrates or with light are often accompanied by out-of-equilibrium structural dynamics. Time-resolved experimental techniques have been developed to follow protein structural changes as they happen in real time after a given reaction-triggering event. Time-resolved X-ray solution scattering is a promising approach that bears structural sensitivity with temporal resolution in the femto-to-millisecond time range, depending on the X-ray source characteristics and the triggering method. Here we present the basic principles of the technique together with a description of the most relevant results recently published and a discussion on the computational methods currently developed to achieve a structural interpretation of the time-resolved X-ray solution scattering experimental data.
Collapse
Affiliation(s)
- Kevin Pounot
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - Giorgio Schirò
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France.
| | - Matteo Levantino
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France.
| |
Collapse
|
12
|
Downregulation of Sox8 mediates monosodium urate crystal-induced autophagic impairment of cartilage in gout arthritis. Cell Death Discov 2023; 9:95. [PMID: 36918540 PMCID: PMC10015026 DOI: 10.1038/s41420-023-01388-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
The deposition of monosodium urate (MSU) crystals in arthritic joints of gout seriously damages cartilage. This study aimed to investigate whether MSU crystal-induced cartilage impairment was related to autophagic signaling. mRNAs of cartilage from MSU-induced gouty arthritis rat model were sequenced. MSU crystal-treated human chondrocytes were used to evaluate the function of Sox8. The recombinant Sox8 lentiviral vector (lenti-Sox8) was applied to upregulate the expression of Sox8. Transfection of the mRFP-GFP-LC3 plasmid was evaluated by confocal microscopy. The autophagic vacuoles were stained with monodansylcadaverine and examined by flow cytometry. The morphology of autophagosomes was observed by transmission electron microscopy. The ratio of LC3-II/I in the presence or absence of bafilomycin A1 and the expression levels of Beclin1, Sox8, p-PI3K, PI3K, p-AKT, AKT, p-mTOR, and mTOR were detected by Western blot. In vivo, the effect of Sox8 on cartilage of acute gouty model rats was evaluated by safranin-O/fast green staining and Western blot. The expression of Sox8 was significantly downregulated both in vivo and in vitro. In chondrocytes, MSU crystals reduced the expression of Sox8, inhibited the PI3K/AKT/mTOR signaling pathway, and increased the level of autophagy. Overexpression of Sox8 notably inhibited MSU crystal-induced autophagy by rescuing the phosphorylation levels in the PI3K/AKT/mTOR signaling pathway. In vivo, overexpression of Sox8 remarkably alleviated cartilage damage in acute gouty model rats. These results indicate that downregulation of Sox8 plays an important role in MSU-induced chondrocyte autophagy by modulating PI3K/AKT/mTOR signaling, and overexpression of Sox8 may serve as a novel therapy to prevent the impairment of cartilage in gout arthritis.
Collapse
|
13
|
Sun Y, Li X, Chen R, Liu F, Wei S. Recent advances in structural characterization of biomacromolecules in foods via small-angle X-ray scattering. Front Nutr 2022; 9:1039762. [PMID: 36466419 PMCID: PMC9714470 DOI: 10.3389/fnut.2022.1039762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/03/2022] [Indexed: 08/04/2023] Open
Abstract
Small-angle X-ray scattering (SAXS) is a method for examining the solution structure, oligomeric state, conformational changes, and flexibility of biomacromolecules at a scale ranging from a few Angstroms to hundreds of nanometers. Wide time scales ranging from real time (milliseconds) to minutes can be also covered by SAXS. With many advantages, SAXS has been extensively used, it is widely used in the structural characterization of biomacromolecules in food science and technology. However, the application of SAXS in charactering the structure of food biomacromolecules has not been reviewed so far. In the current review, the principle, theoretical calculations and modeling programs are summarized, technical advances in the experimental setups and corresponding applications of in situ capabilities: combination of chromatography, time-resolved, temperature, pressure, flow-through are elaborated. Recent applications of SAXS for monitoring structural properties of biomacromolecules in food including protein, carbohydrate and lipid are also highlighted, and limitations and prospects for developing SAXS based on facility upgraded and artificial intelligence to study the structural properties of biomacromolecules are finally discussed. Future research should focus on extending machine time, simplifying SAXS data treatment, optimizing modeling methods in order to achieve an integrated structural biology based on SAXS as a practical tool for investigating the structure-function relationship of biomacromolecules in food industry.
Collapse
Affiliation(s)
- Yang Sun
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Xiujuan Li
- Pharmaceutical Department, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Ruixin Chen
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Fei Liu
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, China
| | - Song Wei
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| |
Collapse
|
14
|
Sarabi D, Ostojić L, Bosman R, Vallejos A, Linse JB, Wulff M, Levantino M, Neutze R. Modeling difference x-ray scattering observations from an integral membrane protein within a detergent micelle. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2022; 9:054102. [PMID: 36329868 PMCID: PMC9625836 DOI: 10.1063/4.0000157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Time-resolved x-ray solution scattering (TR-XSS) is a sub-field of structural biology, which observes secondary structural changes in proteins as they evolve along their functional pathways. While the number of distinct conformational states and their rise and decay can be extracted directly from TR-XSS experimental data recorded from light-sensitive systems, structural modeling is more challenging. This step often builds from complementary structural information, including secondary structural changes extracted from crystallographic studies or molecular dynamics simulations. When working with integral membrane proteins, another challenge arises because x-ray scattering from the protein and the surrounding detergent micelle interfere and these effects should be considered during structural modeling. Here, we utilize molecular dynamics simulations to explicitly incorporate the x-ray scattering cross term between a membrane protein and its surrounding detergent micelle when modeling TR-XSS data from photoactivated samples of detergent solubilized bacteriorhodopsin. This analysis provides theoretical foundations in support of our earlier approach to structural modeling that did not explicitly incorporate this cross term and improves agreement between experimental data and theoretical predictions at lower x-ray scattering angles.
Collapse
Affiliation(s)
- Daniel Sarabi
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Lucija Ostojić
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Robert Bosman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Adams Vallejos
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Johanna-Barbara Linse
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Michael Wulff
- European Synchrotron Radiation Facility, 38043 Grenoble Cedex 9, France
| | - Matteo Levantino
- European Synchrotron Radiation Facility, 38043 Grenoble Cedex 9, France
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| |
Collapse
|
15
|
Lee SJ, Kim TW, Kim JG, Yang C, Yun SR, Kim C, Ren Z, Kumarapperuma I, Kuk J, Moffat K, Yang X, Ihee H. Light-induced protein structural dynamics in bacteriophytochrome revealed by time-resolved x-ray solution scattering. SCIENCE ADVANCES 2022; 8:eabm6278. [PMID: 35622911 PMCID: PMC9140987 DOI: 10.1126/sciadv.abm6278] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/13/2022] [Indexed: 05/25/2023]
Abstract
Bacteriophytochromes (BphPs) are photoreceptors that regulate a wide range of biological mechanisms via red light-absorbing (Pr)-to-far-red light-absorbing (Pfr) reversible photoconversion. The structural dynamics underlying Pfr-to-Pr photoconversion in a liquid solution phase are not well understood. We used time-resolved x-ray solution scattering (TRXSS) to capture light-induced structural transitions in the bathy BphP photosensory module of Pseudomonas aeruginosa. Kinetic analysis of the TRXSS data identifies three distinct structural species, which are attributed to lumi-F, meta-F, and Pr, connected by time constants of 95 μs and 21 ms. Structural analysis based on molecular dynamics simulations shows that the light activation of PaBphP accompanies quaternary structural rearrangements from an "II"-framed close form of the Pfr state to an "O"-framed open form of the Pr state in terms of the helical backbones. This study provides mechanistic insights into how modular signaling proteins such as BphPs transmit structural signals over long distances and regulate their downstream biological responses.
Collapse
Affiliation(s)
- Sang Jin Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Tae Wu Kim
- Department of Chemistry, Mokpo National University, Muan-gun, Jeollanam-do, 58554, Republic of Korea
| | - Jong Goo Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Cheolhee Yang
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - So Ri Yun
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Changin Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Zhong Ren
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Indika Kumarapperuma
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jane Kuk
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Keith Moffat
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Vision Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
16
|
Zhang Y, Inaba K. Structural basis of the conformational and functional regulation of human SERCA2b, the ubiquitous endoplasmic reticulum calcium pump. Bioessays 2022; 44:e2200052. [PMID: 35560336 DOI: 10.1002/bies.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/06/2022]
Abstract
Sarco/endoplasmic reticulum Ca2+ ATPase 2b (SERCA2b), a member of the SERCA family, is expressed ubiquitously and transports Ca2+ into the sarco/endoplasmic reticulum using the energy provided by ATP binding and hydrolysis. The crystal structure of SERCA2b in its Ca2+ - and ATP-bound (E1∙2Ca2+ -ATP) state and cryo-electron microscopy (cryo-EM) structures of the protein in its E1∙2Ca2+ -ATP and Ca2+ -unbound phosphorylated (E2P) states have provided essential insights into how the overall conformation and ATPase activity of SERCA2b is regulated by the transmembrane helix 11 and the subsequent luminal extension loop, both of which are specific to this isoform. More recently, our cryo-EM analysis has revealed that SERCA2b likely adopts open and closed conformations of the cytosolic domains in the Ca2+ -bound but ATP-free (E1∙2Ca2+ ) state, and that the closed conformation represents a state immediately prior to ATP binding. This review article summarizes the unique mechanisms underlying the conformational and functional regulation of SERCA2b.
Collapse
Affiliation(s)
- Yuxia Zhang
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi, Japan.,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan.,Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan.,Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Japan
| |
Collapse
|
17
|
Berntsson O, Terry AE, Plivelic TS. A setup for millisecond time-resolved X-ray solution scattering experiments at the CoSAXS beamline at the MAX IV Laboratory. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:555-562. [PMID: 35254321 PMCID: PMC8900842 DOI: 10.1107/s1600577522000996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The function of biomolecules is tightly linked to their structure, and changes therein. Time-resolved X-ray solution scattering has proven a powerful technique for interrogating structural changes and signal transduction in photoreceptor proteins. However, these only represent a small fraction of the biological macromolecules of interest. More recently, laser-induced temperature jumps have been introduced as a more general means of initiating structural changes in biomolecules. Here we present the development of a setup for millisecond time-resolved X-ray solution scattering experiments at the CoSAXS beamline, primarily using infrared laser light to trigger a temperature increase, and structural changes. We present results that highlight the characteristics of this setup along with data showing structural changes in lysozyme caused by a temperature jump. Further developments and applications of the setup are also discussed.
Collapse
Affiliation(s)
| | - Ann E. Terry
- MAX IV Laboratory, Lund University, Lund, Sweden
| | | |
Collapse
|
18
|
Heo J, Kim JG, Choi EH, Ki H, Ahn DS, Kim J, Lee S, Ihee H. Determining the charge distribution and the direction of bond cleavage with femtosecond anisotropic x-ray liquidography. Nat Commun 2022; 13:522. [PMID: 35082327 PMCID: PMC8792042 DOI: 10.1038/s41467-022-28168-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
Energy, structure, and charge are fundamental quantities characterizing a molecule. Whereas the energy flow and structure change in chemical reactions are experimentally characterized, determining the atomic charges of a molecule in solution has been elusive, even for a triatomic molecule such as triiodide ion, I3-. Moreover, it remains to be answered how the charge distribution is coupled to the molecular geometry; which I-I bond, if two I-I bonds are unequal, dissociates depending on the electronic state. Here, femtosecond anisotropic x-ray solution scattering allows us to provide the following answers in addition to the overall rich structural dynamics. The analysis unravels that the negative charge of I3- is highly localized on the terminal iodine atom forming the longer bond with the central iodine atom, and the shorter I-I bond dissociates in the excited state, whereas the longer one in the ground state. We anticipate that this work may open a new avenue for studying the atomic charge distribution of molecules in solution and taking advantage of orientational information in anisotropic scattering data for solution-phase structural dynamics.
Collapse
Affiliation(s)
- Jun Heo
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jong Goo Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Eun Hyuk Choi
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hosung Ki
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Doo-Sik Ahn
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jungmin Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Seonggon Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
19
|
Orädd F, Ravishankar H, Goodman J, Rogne P, Backman L, Duelli A, Nors Pedersen M, Levantino M, Wulff M, Wolf-Watz M, Andersson M. Tracking the ATP-binding response in adenylate kinase in real time. SCIENCE ADVANCES 2021; 7:eabi5514. [PMID: 34788091 PMCID: PMC8597995 DOI: 10.1126/sciadv.abi5514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/27/2021] [Indexed: 05/25/2023]
Abstract
The biological function of proteins is critically dependent on dynamics inherent to the native structure. Such structural dynamics obey a predefined order and temporal timing to execute the specific reaction. Determination of the cooperativity of key structural rearrangements requires monitoring protein reactions in real time. In this work, we used time-resolved x-ray solution scattering (TR-XSS) to visualize structural changes in the Escherichia coli adenylate kinase (AdK) enzyme upon laser-induced activation of a protected ATP substrate. A 4.3-ms transient intermediate showed partial closing of both the ATP- and AMP-binding domains, which indicates a cooperative closing mechanism. The ATP-binding domain also showed local unfolding and breaking of an Arg131-Asp146 salt bridge. Nuclear magnetic resonance spectroscopy data identified similar unfolding in an Arg131Ala AdK mutant, which refolded in a closed, substrate-binding conformation. The observed structural dynamics agree with a “cracking mechanism” proposed to underlie global structural transformation, such as allostery, in proteins.
Collapse
Affiliation(s)
- Fredrik Orädd
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Harsha Ravishankar
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Jack Goodman
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Per Rogne
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Lars Backman
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Annette Duelli
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Martin Nors Pedersen
- ESRF—The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble, Cedex 9, France
| | - Matteo Levantino
- ESRF—The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble, Cedex 9, France
| | - Michael Wulff
- ESRF—The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble, Cedex 9, France
| | - Magnus Wolf-Watz
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| | - Magnus Andersson
- Department of Chemistry, Umeå University, Linnaeus Väg 10, 901 87 Umeå, Sweden
| |
Collapse
|
20
|
Zhang Y, Watanabe S, Tsutsumi A, Kadokura H, Kikkawa M, Inaba K. Cryo-EM analysis provides new mechanistic insight into ATP binding to Ca 2+ -ATPase SERCA2b. EMBO J 2021; 40:e108482. [PMID: 34459010 DOI: 10.15252/embj.2021108482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/31/2022] Open
Abstract
Sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA) 2b is a ubiquitous SERCA family member that conducts Ca2+ uptake from the cytosol to the ER. Herein, we present a 3.3 Å resolution cryo-electron microscopy (cryo-EM) structure of human SERCA2b in the E1·2Ca2+ state, revealing a new conformation for Ca2+ -bound SERCA2b with a much closer arrangement of cytosolic domains than in the previously reported crystal structure of Ca2+ -bound SERCA1a. Multiple conformations generated by 3D classification of cryo-EM maps reflect the intrinsically dynamic nature of the cytosolic domains in this state. Notably, ATP binding residues of SERCA2b in the E1·2Ca2+ state are located at similar positions to those in the E1·2Ca2+ -ATP state; hence, the cryo-EM structure likely represents a preformed state immediately prior to ATP binding. Consistently, a SERCA2b mutant with an interdomain disulfide bridge that locks the closed cytosolic domain arrangement displayed significant autophosphorylation activity in the presence of Ca2+ . We propose a novel mechanism of ATP binding to SERCA2b.
Collapse
Affiliation(s)
- Yuxia Zhang
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Satoshi Watanabe
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Akihisa Tsutsumi
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kadokura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Masahide Kikkawa
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| |
Collapse
|
21
|
Cho HS, Schotte F, Stadnytskyi V, Anfinrud P. Time-resolved X-ray scattering studies of proteins. Curr Opin Struct Biol 2021; 70:99-107. [PMID: 34175665 PMCID: PMC8530917 DOI: 10.1016/j.sbi.2021.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 11/24/2022]
Abstract
Time-resolved small- and wide-angle X-ray scattering studies of proteins in solution based on the pump-probe approach unveil structural information from intermediates over a broad range of length and time scales. In spite of the promise of this methodology, only a fraction of the wealth of information encoded in scattering data has been extracted in studies performed thus far. Here, we discuss the methodology, summarize results from recent time-resolved X-ray scattering studies, and examine the potential to extract additional information from these scattering curves.
Collapse
Affiliation(s)
- Hyun Sun Cho
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Friedrich Schotte
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Valentyn Stadnytskyi
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD, 20892-0520, USA
| | - Philip Anfinrud
- Laboratory of Chemical Physics, NIDDK, National Institutes of Health, Bethesda, MD, 20892-0520, USA.
| |
Collapse
|
22
|
Lee SJ, Kim Y, Kim TW, Yang C, Thamilselvan K, Jeong H, Hyun J, Ihee H. Reversible molecular motional switch based on circular photoactive protein oligomers exhibits unexpected photo-induced contraction. CELL REPORTS. PHYSICAL SCIENCE 2021; 2:100512. [PMID: 35509376 PMCID: PMC9062587 DOI: 10.1016/j.xcrp.2021.100512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Molecular switches alterable between two stable states by environmental stimuli, such as light and temperature, offer the potential for controlling biological functions. Here, we report a circular photoswitchable protein complex made of multiple protein molecules that can rapidly and reversibly switch with significant conformational changes. The structural and photochromic properties of photoactive yellow protein (PYP) are harnessed to construct circular oligomer PYPs (coPYPs) of desired sizes. Considering the light-induced N-terminal protrusion of monomer PYP, we expected coPYPs would expand upon irradiation, but time-resolved X-ray scattering data reveal that the late intermediate has a pronounced light-induced contraction motion. This work not only provides an approach to engineering a novel protein-based molecular switch based on circular oligomers of well-known protein units but also demonstrates the importance of characterizing the structural dynamics of designed molecular switches.
Collapse
Affiliation(s)
- Sang Jin Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- These authors contributed equally
| | - Youngmin Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- These authors contributed equally
| | - Tae Wu Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Cheolhee Yang
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Kamatchi Thamilselvan
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hyeongseop Jeong
- Center for Research Equipment, Korea Basic Science Institute (KBSI), Cheongju-si, Chungcheongbuk-do 28119, Republic of Korea
| | - Jaekyung Hyun
- Center for Research Equipment, Korea Basic Science Institute (KBSI), Cheongju-si, Chungcheongbuk-do 28119, Republic of Korea
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology (OIST), Okinawa 904-0495, Japan
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Lead contact
| |
Collapse
|
23
|
Cellini A, Yuan Wahlgren W, Henry L, Pandey S, Ghosh S, Castillon L, Claesson E, Takala H, Kübel J, Nimmrich A, Kuznetsova V, Nango E, Iwata S, Owada S, Stojković EA, Schmidt M, Ihalainen JA, Westenhoff S. The three-dimensional structure of Drosophila melanogaster (6-4) photolyase at room temperature. Acta Crystallogr D Struct Biol 2021; 77:1001-1009. [PMID: 34342273 PMCID: PMC8329860 DOI: 10.1107/s2059798321005830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/06/2021] [Indexed: 11/10/2022] Open
Abstract
(6-4) photolyases are flavoproteins that belong to the photolyase/cryptochrome family. Their function is to repair DNA lesions using visible light. Here, crystal structures of Drosophila melanogaster (6-4) photolyase [Dm(6-4)photolyase] at room and cryogenic temperatures are reported. The room-temperature structure was solved to 2.27 Å resolution and was obtained by serial femtosecond crystallography (SFX) using an X-ray free-electron laser. The crystallization and preparation conditions are also reported. The cryogenic structure was solved to 1.79 Å resolution using conventional X-ray crystallography. The structures agree with each other, indicating that the structural information obtained from crystallography at cryogenic temperature also applies at room temperature. Furthermore, UV-Vis absorption spectroscopy confirms that Dm(6-4)photolyase is photoactive in the crystals, giving a green light to time-resolved SFX studies on the protein, which can reveal the structural mechanism of the photoactivated protein in DNA repair.
Collapse
Affiliation(s)
- Andrea Cellini
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Weixiao Yuan Wahlgren
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Léocadie Henry
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Suraj Pandey
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Swagatha Ghosh
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Leticia Castillon
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Elin Claesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Heikki Takala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, 40014 Jyvaskyla, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Box 63, 00014 Helsinki, Finland
| | - Joachim Kübel
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Amke Nimmrich
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| | - Valentyna Kuznetsova
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Eriko Nango
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - So Iwata
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Shigeki Owada
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Emina A. Stojković
- Department of Biology, Northeastern Illinois University, 5500 North St Louis Avenue, Chicago, IL 60625, USA
| | - Marius Schmidt
- Physics Department, University of Wisconsin-Milwaukee, 3135 North Maryland Avenue, Milwaukee, WI 53211, USA
| | - Janne A. Ihalainen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, 40014 Jyvaskyla, Finland
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30 Gothenburg, Sweden
| |
Collapse
|
24
|
Angle change of the A-domain in a single SERCA1a molecule detected by defocused orientation imaging. Sci Rep 2021; 11:13672. [PMID: 34211016 PMCID: PMC8249593 DOI: 10.1038/s41598-021-92986-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022] Open
Abstract
The sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) transports Ca2+ ions across the membrane coupled with ATP hydrolysis. Crystal structures of ligand-stabilized molecules indicate that the movement of actuator (A) domain plays a crucial role in Ca2+ translocation. However, the actual structural movements during the transitions between intermediates remain uncertain, in particular, the structure of E2PCa2 has not been solved. Here, the angle of the A-domain was measured by defocused orientation imaging using isotropic total internal reflection fluorescence microscopy. A single SERCA1a molecule, labeled with fluorophore ReAsH on the A-domain in fixed orientation, was embedded in a nanodisc, and stabilized on Ni–NTA glass. Activation with ATP and Ca2+ caused angle changes of the fluorophore and therefore the A-domain, motions lost by inhibitor, thapsigargin. Our high-speed set-up captured the motion during EP isomerization, and suggests that the A-domain rapidly rotates back and forth from an E1PCa2 position to a position close to the E2P state. This is the first report of the detection in the movement of the A-domain as an angle change. Our method provides a powerful tool to investigate the conformational change of a membrane protein in real-time.
Collapse
|
25
|
Hansen SB, Dyla M, Neumann C, Quistgaard EMH, Andersen JL, Kjaergaard M, Nissen P. The Crystal Structure of the Ca 2+-ATPase 1 from Listeria monocytogenes reveals a Pump Primed for Dephosphorylation. J Mol Biol 2021; 433:167015. [PMID: 33933469 DOI: 10.1016/j.jmb.2021.167015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 12/18/2022]
Abstract
Many bacteria export intracellular calcium using active transporters homologous to the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA). Here we present three crystal structures of Ca2+-ATPase 1 from Listeria monocytogenes (LMCA1). Structures with BeF3- mimicking a phosphoenzyme state reveal a closed state, which is intermediate between the outward-open E2P and the proton-occluded E2-P* conformations known for SERCA. It suggests that LMCA1 in the E2P state is pre-organized for dephosphorylation upon Ca2+ release, consistent with the rapid dephosphorylation observed in single-molecule studies. An arginine side-chain occupies the position equivalent to calcium binding site I in SERCA, leaving a single Ca2+ binding site in LMCA1, corresponding to SERCA site II. Observing no putative transport pathways dedicated to protons, we infer a direct proton counter transport through the Ca2+ exchange pathways. The LMCA1 structures provide insight into the evolutionary divergence and conserved features of this important class of ion transporters.
Collapse
Affiliation(s)
- Sara Basse Hansen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark; The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Denmark
| | - Mateusz Dyla
- Department of Molecular Biology and Genetics, Aarhus University, Denmark; The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Denmark
| | - Caroline Neumann
- Department of Molecular Biology and Genetics, Aarhus University, Denmark; The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Denmark
| | - Esben Meldgaard Hoegh Quistgaard
- Department of Molecular Biology and Genetics, Aarhus University, Denmark; The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Denmark
| | - Jacob Lauwring Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark; The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Denmark
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, Denmark; The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Denmark; Aarhus Institute of Advanced Studies (AIAS), Denmark; The Danish National Research Foundation Center for Proteins in Memory (PROMEMO), Denmark
| | - Poul Nissen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark; The Danish Research Institute for Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, Denmark; The Danish National Research Foundation Center for Proteins in Memory (PROMEMO), Denmark.
| |
Collapse
|
26
|
Thirman J, Rui H, Roux B. Elusive Intermediate State Key in the Conversion of ATP Hydrolysis into Useful Work Driving the Ca 2+ Pump SERCA. J Phys Chem B 2021; 125:2921-2928. [PMID: 33720716 DOI: 10.1021/acs.jpcb.1c00558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A key event in the ATP-driven transport cycle of the calcium pump sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) occurs when autophosphorylation of the pump with two bound ions Ca2+ triggers a large conformational change that opens a gate on the luminal side of the membrane allowing the release of the ions. It is believed that this conformational transition proceeds through a two-step mechanism, with an initial rearrangement of the three cytoplasmic domains of the pump responsible for ATP binding and hydrolysis followed by the opening of the gate toward the luminal side in the transmembrane region. Here, molecular dynamics computation of the free energy landscapes associated with this transition show how, in response to phosphorylation, the cytoplasmic domains are partially reconfigured into an intermediate state on the path toward the E2 state with a closed luminal gate. It is suggested that the free energy associated with this conformational reorganization must subsequently be used to drive the opening of the gate on the luminal side.
Collapse
Affiliation(s)
- Jonathan Thirman
- Department of Chemistry, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois 60637, United States
| | - Huan Rui
- Department of Chemistry, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois 60637, United States
| | - Benoît Roux
- Department of Chemistry, Gordon Center for Integrative Science, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
27
|
Orädd F, Andersson M. Tracking Membrane Protein Dynamics in Real Time. J Membr Biol 2021; 254:51-64. [PMID: 33409541 PMCID: PMC7936944 DOI: 10.1007/s00232-020-00165-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Abstract
Abstract Membrane proteins govern critical cellular processes and are central to human health and associated disease. Understanding of membrane protein function is obscured by the vast ranges of structural dynamics—both in the spatial and time regime—displayed in the protein and surrounding membrane. The membrane lipids have emerged as allosteric modulators of membrane protein function, which further adds to the complexity. In this review, we discuss several examples of membrane dependency. A particular focus is on how molecular dynamics (MD) simulation have aided to map membrane protein dynamics and how enhanced sampling methods can enable observing the otherwise inaccessible biological time scale. Also, time-resolved X-ray scattering in solution is highlighted as a powerful tool to track membrane protein dynamics, in particular when combined with MD simulation to identify transient intermediate states. Finally, we discuss future directions of how to further develop this promising approach to determine structural dynamics of both the protein and the surrounding lipids. Graphic Abstract ![]()
Collapse
Affiliation(s)
- Fredrik Orädd
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | |
Collapse
|
28
|
The SERCA residue Glu340 mediates interdomain communication that guides Ca 2+ transport. Proc Natl Acad Sci U S A 2020; 117:31114-31122. [PMID: 33229570 PMCID: PMC7733806 DOI: 10.1073/pnas.2014896117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We present a crystal structure, functional data, and molecular dynamics (MD) simulations of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) mutant E340A. The mutation slows Ca2+-binding kinetics, and the structural differences between wild type and E340A indicate that the mutation disrupts a central interdomain “communication hub” governing Ca2+ binding/dissociation. MD simulations reveal altered dynamics in regions mediating Ca2+ occlusion, a critical step in SERCA’s alternating access mechanism. The mutation stabilizes a more occluded state of the Ca2+ sites. The strict conservation of Glu340 among P-type ATPases is the result of its critical role in interdomain communication between the cytosolic headpiece and the transmembrane domain, ensuring a delicate balance between dynamics of ion binding, occlusion, and release—key steps in the transport process. The sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) is a P-type ATPase that transports Ca2+ from the cytosol into the sarco(endo)plasmic reticulum (SR/ER) lumen, driven by ATP. This primary transport activity depends on tight coupling between movements of the transmembrane helices forming the two Ca2+-binding sites and the cytosolic headpiece mediating ATP hydrolysis. We have addressed the molecular basis for this intramolecular communication by analyzing the structure and functional properties of the SERCA mutant E340A. The mutated Glu340 residue is strictly conserved among the P-type ATPase family of membrane transporters and is located at a seemingly strategic position at the interface between the phosphorylation domain and the cytosolic ends of 5 of SERCA’s 10 transmembrane helices. The mutant displays a marked slowing of the Ca2+-binding kinetics, and its crystal structure in the presence of Ca2+ and ATP analog reveals a rotated headpiece, altered connectivity between the cytosolic domains, and an altered hydrogen bonding pattern around residue 340. Supported by molecular dynamics simulations, we conclude that the E340A mutation causes a stabilization of the Ca2+ sites in a more occluded state, hence displaying slowed dynamics. This finding underpins a crucial role of Glu340 in interdomain communication between the headpiece and the Ca2+-binding transmembrane region.
Collapse
|
29
|
Henry L, Berntsson O, Panman MR, Cellini A, Hughes AJ, Kosheleva I, Henning R, Westenhoff S. New Light on the Mechanism of Phototransduction in Phototropin. Biochemistry 2020; 59:3206-3215. [PMID: 32786255 DOI: 10.1021/acs.biochem.0c00324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Phototropins are photoreceptor proteins that regulate blue light-dependent biological processes for efficient photosynthesis in plants and algae. The proteins consist of a photosensory domain that responds to the ambient light and an output module that triggers cellular responses. The photosensory domain of phototropin from Chlamydomonas reinhardtii contains two conserved LOV (light-oxygen-voltage) domains with flavin chromophores. Blue light triggers the formation of a covalent cysteine-flavin adduct and upregulates the phototropin kinase activity. Little is known about the structural mechanism that leads to kinase activation and how the two LOV domains contribute to this. Here, we investigate the role of the LOV1 domain from C. reinhardtii phototropin by characterizing the structural changes occurring after blue light illumination with nano- to millisecond time-resolved X-ray solution scattering. By structurally fitting the data with atomic models generated by molecular dynamics simulations, we find that adduct formation induces a rearrangement of the hydrogen bond network from the buried chromophore to the protein surface. In particular, the change in conformation and the associated hydrogen bonding of the conserved glutamine 120 induce a global movement of the β-sheet, ultimately driving a change in the electrostatic potential on the protein surface. On the basis of the change in the electrostatics, we propose a structural model of how LOV1 and LOV2 domains interact and regulate the full-length phototropin from C. reinhardtii. This provides a rationale for how LOV photosensor proteins function and contributes to the optimal design of optogenetic tools based on LOV domains.
Collapse
Affiliation(s)
- L Henry
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - O Berntsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden.,MAX IV Laboratory, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| | - M R Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - A Cellini
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - A J Hughes
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - I Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, United States
| | - R Henning
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, Illinois 60637, United States
| | - S Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
30
|
Zhang Y, Inoue M, Tsutsumi A, Watanabe S, Nishizawa T, Nagata K, Kikkawa M, Inaba K. Cryo-EM structures of SERCA2b reveal the mechanism of regulation by the luminal extension tail. SCIENCE ADVANCES 2020; 6:eabb0147. [PMID: 32851169 PMCID: PMC7423393 DOI: 10.1126/sciadv.abb0147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/26/2020] [Indexed: 06/02/2023]
Abstract
Sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) pumps Ca2+ from the cytosol into the ER and maintains the cellular calcium homeostasis. Herein, we present cryo-electron microscopy (cryo-EM) structures of human SERCA2b in E1∙2Ca2+-adenylyl methylenediphosphonate (AMPPCP) and E2-BeF3 - states at 2.9- and 2.8-Å resolutions, respectively. The structures revealed that the luminal extension tail (LE) characteristic of SERCA2b runs parallel to the lipid-water boundary near the luminal ends of transmembrane (TM) helices TM10 and TM7 and approaches the luminal loop flanked by TM7 and TM8. While the LE served to stabilize the cytosolic and TM domain arrangement of SERCA2b, deletion of the LE rendered the overall conformation resemble that of SERCA1a and SERCA2a and allowed multiple conformations. Thus, the LE appears to play a critical role in conformational regulation in SERCA2b, which likely explains the different kinetic properties of SERCA2b from those of other isoforms lacking the LE.
Collapse
Affiliation(s)
- Yuxia Zhang
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Michio Inoue
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Japan
| | - Akihisa Tsutsumi
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Satoshi Watanabe
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Japan
| | - Tomohiro Nishizawa
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuhiro Nagata
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Masahide Kikkawa
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Japan
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
- Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Japan
| |
Collapse
|
31
|
Aguayo-Ortiz R, Espinoza-Fonseca LM. Linking Biochemical and Structural States of SERCA: Achievements, Challenges, and New Opportunities. Int J Mol Sci 2020; 21:ijms21114146. [PMID: 32532023 PMCID: PMC7313052 DOI: 10.3390/ijms21114146] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Sarcoendoplasmic reticulum calcium ATPase (SERCA), a member of the P-type ATPase family of ion and lipid pumps, is responsible for the active transport of Ca2+ from the cytoplasm into the sarcoplasmic reticulum lumen of muscle cells, into the endoplasmic reticulum (ER) of non-muscle cells. X-ray crystallography has proven to be an invaluable tool in understanding the structural changes of SERCA, and more than 70 SERCA crystal structures representing major biochemical states (defined by bound ligand) have been deposited in the Protein Data Bank. Consequently, SERCA is one of the best characterized components of the calcium transport machinery in the cell. Emerging approaches in the field, including spectroscopy and molecular simulation, now help integrate and interpret this rich structural information to understand the conformational transitions of SERCA that occur during activation, inhibition, and regulation. In this review, we provide an overview of the crystal structures of SERCA, focusing on identifying metrics that facilitate structure-based categorization of major steps along the catalytic cycle. We examine the integration of crystallographic data with different biophysical approaches and computational methods to link biochemical and structural states of SERCA that are populated in the cell. Finally, we discuss the challenges and new opportunities in the field, including structural elucidation of functionally important and novel regulatory complexes of SERCA, understanding the structural basis of functional divergence among homologous SERCA regulators, and bridging the gap between basic and translational research directed toward therapeutic modulation of SERCA.
Collapse
|