1
|
Alaniz AJ, Marquet PA, Carvajal MA, Vergara PM, Moreira-Arce D, Muzzio MA, Keith DA. Perspectives on the timing of ecosystem collapse in a changing climate. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14247. [PMID: 38488677 DOI: 10.1111/cobi.14247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/06/2023] [Accepted: 01/04/2024] [Indexed: 07/24/2024]
Abstract
Climate change is one of the most important drivers of ecosystem change, the global-scale impacts of which will intensify over the next 2 decades. Estimating the timing of unprecedented changes is not only challenging but is of great importance for the development of ecosystem conservation guidelines. Time of emergence (ToE) (point at which climate change can be differentiated from a previous climate), a widely applied concept in climatology studies, provides a robust but unexplored approach for assessing the risk of ecosystem collapse, as described by the C criterion of the International Union for Conservation of Nature's Red List of Ecosystems (RLE). We identified 3 main theoretical considerations of ToE for RLE assessment (degree of stability, multifactorial instead of one-dimensional analyses, and hallmarks of ecosystem collapse) and 4 sources of uncertainty when applying ToE methodology (intermodel spread, historical reference period, consensus among variables, and consideration of different scenarios), which aims to avoid misuse and errors while promoting a proper application of the framework by scientists and practitioners. The incorporation of ToE for the RLE assessments adds important information for conservation priority setting that allows prediction of changes within and beyond the time frames proposed by the RLE.
Collapse
Affiliation(s)
- Alberto J Alaniz
- Facultad de Ingeniería, Departamento de Ingeniería Geoespacial y Ambiental, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Facultad Tecnológica, Departamento de Gestión Agraria, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Pablo A Marquet
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Cambio Global UC, Pontificia Universidad Católica de Chile, Santiago, Chile
- The Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Mario A Carvajal
- Facultad Tecnológica, Departamento de Gestión Agraria, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Pablo M Vergara
- Facultad Tecnológica, Departamento de Gestión Agraria, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Darío Moreira-Arce
- Facultad Tecnológica, Departamento de Gestión Agraria, Universidad de Santiago de Chile (USACH), Santiago, Chile
| | - Miguel A Muzzio
- Facultad Tecnológica, Departamento de Gestión Agraria, Universidad de Santiago de Chile (USACH), Santiago, Chile
- Programa de Magíster en Áreas Silvestres y Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile
| | - David A Keith
- Centre for Ecosystem Science, University of NSW, Sydney, Australia
- NSW Department of Planning, Industry & Environment, Parramatta, Australia
| |
Collapse
|
2
|
Edelsparre AH, Fitzpatrick MJ, Saastamoinen M, Teplitsky C. Evolutionary adaptation to climate change. Evol Lett 2024; 8:1-7. [PMID: 38370543 PMCID: PMC10872154 DOI: 10.1093/evlett/qrad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 02/20/2024] Open
Abstract
When the notion of climate change emerged over 200 years ago, few speculated as to the impact of rising atmospheric temperatures on biological life. Tens of decades later, research clearly demonstrates that the impact of climate change on life on Earth is enormous, ongoing, and with foreseen effects lasting well into the next century. Responses to climate change have been widely documented. However, the breadth of phenotypic traits involved with evolutionary adaptation to climate change remains unclear. In addition, it is difficult to identify the genetic and/or epigenetic bases of phenotypes adaptive to climate change, in part because it often is not clear whether this change is plastic, genetic, or some combination of the two. Adaptive responses to climate-driven selection also interact with other processes driving genetic changes in general, including demography as well as selection driven by other factors. In this Special Issue, we explore the factors that will impact the overall outcome of climate change adaptation. Our contributions explain that traits involved in climate change adaptation include not only classic phenomena, such as range shifts and environmentally dependent sex determination, but also often overlooked phenomena such as social and sexual conflicts and the expression of stress hormones. We learn how climate-driven selection can be mediated via both natural and sexual selection, effectively influencing key fitness-related traits such as offspring growth and fertility as well as evolutionary potential. Finally, we explore the limits and opportunities for predicting adaptive responses to climate change. This contribution forms the basis of 10 actions that we believe will improve predictions of when and how organisms may adapt genetically to climate change. We anticipate that this Special Issue will inform novel investigations into how the effects of climate change unfold from phenotypes to genotypes, particularly as methodologies increasingly allow researchers to study selection in field experiments.
Collapse
Affiliation(s)
- Allan H Edelsparre
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Mark J Fitzpatrick
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Marjo Saastamoinen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
3
|
Riva F, Graco-Roza C, Daskalova GN, Hudgins EJ, Lewthwaite JM, Newman EA, Ryo M, Mammola S. Toward a cohesive understanding of ecological complexity. SCIENCE ADVANCES 2023; 9:eabq4207. [PMID: 37343095 PMCID: PMC10284553 DOI: 10.1126/sciadv.abq4207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
Ecological systems are quintessentially complex systems. Understanding and being able to predict phenomena typical of complex systems is, therefore, critical to progress in ecology and conservation amidst escalating global environmental change. However, myriad definitions of complexity and excessive reliance on conventional scientific approaches hamper conceptual advances and synthesis. Ecological complexity may be better understood by following the solid theoretical basis of complex system science (CSS). We review features of ecological systems described within CSS and conduct bibliometric and text mining analyses to characterize articles that refer to ecological complexity. Our analyses demonstrate that the study of complexity in ecology is a highly heterogeneous, global endeavor that is only weakly related to CSS. Current research trends are typically organized around basic theory, scaling, and macroecology. We leverage our review and the generalities identified in our analyses to suggest a more coherent and cohesive way forward in the study of complexity in ecology.
Collapse
Affiliation(s)
- Federico Riva
- Geomatics and Landscape Ecology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario K1S 5B6, Canada
- Insectarium, Montreal Space for Life, 4581 Sherbrooke St E, Montreal, Quebec H1X 2B2, Canada
- Spatial Ecology Group, Department of Ecology and Evolution, Université de Lausanne, Lausanne, Switzerland
| | - Caio Graco-Roza
- Aquatic Community Ecology Group, Department of Geosciences and Geography, University of Helsinki, Gustaf Hällströmin katu 2, 00560 Helsinki, Finland
- Laboratory of Ecology and Physiology of Phytoplankton, Department of Plant Biology, State University of Rio de Janeiro, Rua São Francisco Xavier 524, PHLC, Sala 511a, 20550-900 Rio de Janeiro, Brazil
| | - Gergana N. Daskalova
- Biodiversity and Ecology Group, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Emma J. Hudgins
- Geomatics and Landscape Ecology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, Ontario K1S 5B6, Canada
| | - Jayme M. M. Lewthwaite
- Marine and Environmental Biology, University of Southern California, 3616 Trousdale Pkwy, Los Angeles, CA 90089-0371, USA
| | - Erica A. Newman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Masahiro Ryo
- Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Muencheberg, Germany
- Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, 03046 Cottbus, Germany
| | - Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Pohjoinen Rautatiekatu 13, Helsinki 00100, Finland
- Molecular Ecology Group (MEG), Water Research Institute (IRSA), National Research Council (CNR), Corso Tonolli, 50, Pallanza 28922, Italy
- National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
4
|
Belgrano A, Lindmark M. Biodiversity transformations in the global ocean: A climate change and conservation management perspective. GLOBAL CHANGE BIOLOGY 2023; 29:3235-3236. [PMID: 36880894 DOI: 10.1111/gcb.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 05/16/2023]
Abstract
Understanding the biological diversity of different communities and evaluating the risks to biological sustainability in a time of rapid environmental change is a key challenge for providing an adapting management approach for biodiversity transformations in the ocean linked to human well-being. (Photo credit: Andrea Belgrano).
Collapse
Affiliation(s)
- Andrea Belgrano
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Lysekil, Sweden
- Swedish Institute for the Marine Environment (SIME), University of Gothenburg, Gothenburg, Sweden
| | - Max Lindmark
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Lysekil, Sweden
| |
Collapse
|