1
|
Xu X, Qiu Y, Chen CY, Carton M, Campbell PMR, Chowdhury AM, Bandyopadhyay BC, Bentley WE, Smith BR, Sochol RD. 3D nanoprinting of PDMS microvessels with tailored tortuosity and microporosity via direct laser writing. LAB ON A CHIP 2025; 25:1947-1958. [PMID: 40104860 PMCID: PMC11921864 DOI: 10.1039/d4lc01051e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/01/2025] [Indexed: 03/20/2025]
Abstract
Microvessels (e.g., capillaries) are ubiquitous throughout human anatomy, yet recreating their three-dimensional (3D) microfluidic and architectural sophistication at biologically accurate length scales has remained a critical challenge. To overcome this barrier, here we report a hybrid additive manufacturing-or "3D printing"-strategy in which "Two-Photon Direct Laser Writing (DLW)" is used to nanoprint microvessels of arbitrary design directly atop "Liquid-Crystal Display (LCD)" 3D-printed microfluidic chips. Fabrication results indicated effective production of 100 μm-diameter 3D polydimethylsiloxane (PDMS) microfluidic vessels with 5 μm-thick walls-featuring arrays of pre-designed 5 μm-diameter micropores-as well as three discrete spiralled, intertwined microvessels. Experimental results with MDA-MB-231 epithelial breast cancer cells revealed the ability for the 3D PDMS microvessels to support cell culture. In combination, these results suggest that the presented strategy for 3D nanoprinting PDMS microvessels with custom-designed architectures and microporosity offers a promising pathway to enable new classes of "organ-on-a-chip (OOC)" systems for wide-ranging biomedical applications.
Collapse
Affiliation(s)
- Xin Xu
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA.
| | - Yunxiu Qiu
- Institute for Quantitative Health Science and Engineering, Department of Chemical Engineering and Material Science, Michigan State University, East Lan-sing, MI, 48824, USA
| | - Chen-Yu Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| | - Molly Carton
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA.
| | - Paige M R Campbell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - A Muhaymin Chowdhury
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA.
| | | | - William E Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| | - Bryan Ronain Smith
- Institute for Quantitative Health Science and Engineering, Department of Chemical Engineering and Material Science, Michigan State University, East Lan-sing, MI, 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Ryan D Sochol
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA.
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
- Maryland Robotics Center, University of Maryland, College Park, MD, 20742, USA
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
2
|
Zhou C, Xu Z, Lin Z, Qin X, Xia J, Ai X, Lou C, Huang Z, Huang S, Liu H, Zou Y, Chen W, Yang GZ, Gao A. Submillimeter fiber robots capable of decoupled macro-micro motion for endoluminal manipulation. SCIENCE ADVANCES 2024; 10:eadr6428. [PMID: 39576861 PMCID: PMC11584019 DOI: 10.1126/sciadv.adr6428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Endoluminal and endocavitary intervention via natural orifices of the body is an emerging trend in medicine, further underpinning the future of early intervention and precision surgery. This motivates the development of small continuum robots to navigate freely in confined and tortuous environment. The trade-off between a large range of motion and high precision with concomitant actuation cross-talk poses a major challenge. Here, we present a submillimeter-scale fiber robot (~1 mm) capable of decoupled macro and micro manipulations for intervention and operation. The thin optical fibers, working both as mechanical tendons and light waveguides, can be pulled/pushed to actuate the macro tendon-driven continuum robot and transmit light to actuate the liquid crystal elastomer-based micro built-in light-driven parallel robot. The combination of the decoupled macro and micro motions can accomplish accurate cross-scale motion from several millimeters down to tens of micrometers. In vivo animal studies are performed to demonstrate its positioning accuracy of precise micro operations in endoluminal or endocavitary intervention.
Collapse
Affiliation(s)
- Cheng Zhou
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zheng Xu
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zecai Lin
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaotong Qin
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingyuan Xia
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaojie Ai
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuqian Lou
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyi Huang
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaoping Huang
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huanghua Liu
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yun Zou
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weidong Chen
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang-Zhong Yang
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Anzhu Gao
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Lai YP, Lee T, Sieben D, Gauthier L, Nam J, Diller E. Hybrid Hydrogel-Magnet Actuated Capsule for Automatic Gut Microbiome Sampling. IEEE Trans Biomed Eng 2024; 71:2911-2922. [PMID: 38753479 DOI: 10.1109/tbme.2024.3401681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
OBJECTIVE Non-invasive, pill-sized capsules can provide intestinal fluid sampling to easily retrieve site-specific gut microbiome samples for studies in nutrition and chronic diseases. However, capsules with both automatic sampling and active locomotion are uncommon due to limited onboard space. This paper presents a novel hybrid hydrogel-magnet actuated capsule featuring: i) pH-responsive hydrogels that will automatically trigger fluid sampling at an environmental pH of 6 and ii) active locomotion by an external rotating magnetic field. METHOD Two capsule designs were fabricated (Design A: 31 μL sampling volume with dimensions 8 mm × 19 mm, Design B: 41 μL sampling volume with dimensions 8 mm × 21 mm). They were immersed in simulated gastric (pH = 1.2) and simulated intestinal fluid (pH = 6.8) to test for automatic intestinal fluid sampling. An external rotating magnetic field was applied to test for active locomotion. Finally, seal tests were performed to demonstrate sample contamination mitigation. RESULTS Preliminary experiments showed that sampling occurred quickly and automatically in simulated intestinal fluid at 6-15 hours, active locomotion via rotation, rolling, and tumbling were possible at magnetic field magnitudes 10 mT, oil piston seals were better at mitigating sample contamination than water piston seals, and minimum o-ring seal pressures limits of 1.95 and 1.69 kPa for Design A and B respectively were sufficient against intra-abdominal pressures. SIGNIFICANCE This work presents the ability to impart capsule multi-functionality in a compact manner without onboard electronics or external triggering for sampling.
Collapse
|
4
|
Young OM, Xu X, Sarker S, Sochol RD. Direct laser writing-enabled 3D printing strategies for microfluidic applications. LAB ON A CHIP 2024; 24:2371-2396. [PMID: 38576361 PMCID: PMC11060139 DOI: 10.1039/d3lc00743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 04/22/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Over the past decade, additive manufacturing-or "three-dimensional (3D) printing"-has attracted increasing attention in the Lab on a Chip community as a pathway to achieve sophisticated system architectures that are difficult or infeasible to fabricate via conventional means. One particularly promising 3D manufacturing technology is "direct laser writing (DLW)", which leverages two-photon (or multi-photon) polymerization (2PP) phenomena to enable high geometric versatility, print speeds, and precision at length scales down to the 100 nm range. Although researchers have demonstrated the potential of using DLW for microfluidic applications ranging from organ on a chip and drug delivery to micro/nanoparticle processing and soft microrobotics, such scenarios present unique challenges for DLW. Specifically, microfluidic systems typically require macro-to-micro fluidic interfaces (e.g., inlet and outlet ports) to facilitate fluidic loading, control, and retrieval operations; however, DLW-based 3D printing relies on a micron-to-submicron-sized 2PP volume element (i.e., "voxel") that is poorly suited for manufacturing these larger-scale fluidic interfaces. In this Tutorial Review, we highlight and discuss the four most prominent strategies that researchers have developed to circumvent this trade-off and realize macro-to-micro interfaces for DLW-enabled microfluidic components and systems. In addition, we consider the possibility that-with the advent of next-generation commercial DLW printers equipped with new dynamic voxel tuning, print field, and laser power capabilities-the overall utility of DLW strategies for Lab on a Chip fields may soon expand dramatically.
Collapse
Affiliation(s)
- Olivia M Young
- Department of Mechanical Engineering, University of Maryland, College Park, 2147 Glenn L. Martin Hall, College Park, MD, 20742, USA.
| | - Xin Xu
- Department of Mechanical Engineering, University of Maryland, College Park, 2147 Glenn L. Martin Hall, College Park, MD, 20742, USA.
| | - Sunandita Sarker
- Department of Mechanical Engineering, University of Maryland, College Park, 2147 Glenn L. Martin Hall, College Park, MD, 20742, USA.
- Maryland Robotics Center, University of Maryland, College Park, MD, 20742, USA
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, MA, 01003, USA
| | - Ryan D Sochol
- Department of Mechanical Engineering, University of Maryland, College Park, 2147 Glenn L. Martin Hall, College Park, MD, 20742, USA.
- Maryland Robotics Center, University of Maryland, College Park, MD, 20742, USA
- Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
5
|
Sarker S, Forghani K, Wen Z, Halli RN, Hoag S, Flank S, Sochol RD. TOWARD CONTROLLED-RELEASE DRUG DELIVERY MICROCARRIERS ENABLED BY DIRECT LASER WRITING 3D PRINTING. PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS 2024; 2024:433-436. [PMID: 38482161 PMCID: PMC10936737 DOI: 10.1109/mems58180.2024.10439600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Controlled-release, and especially long-acting, drug delivery systems hold promise for improving treatments for numerous medical conditions. Previously, we reported an additive manufacturing or "three-dimensional (3D) printing" approach for fabricating liquid-core-shell-cap microcarriers comprising standard photoresists. Here we explore the potential to extend this strategy to achieve microcarriers comprising biodegradable materials as a new pathway to controlled-release drug delivery options. Specifically, we investigate the use of "Two-Photon Direct Laser Writing (DLW)" as a means to 3D print microcarriers composed of: (i) a bottle-shaped "shell" with an orifice, (ii) an aqueous liquid "core", and (iii) a biodegradable "cap". The cap, which is DLW-printed directly onto the shell's orifice, is designed to degrade over time in the body-e.g., with degradation time proportional to cap thickness-to ultimately facilitate release of the liquid core at desired time points. Fabrication results based on the use of a biodegradable poly(ethylene glycol) diacrylate (PEGDA) photomaterial for the cap revealed that shell designs incorporating microfluidic obstruction structures appeared to limit undesired entry of the liquid-phase PEGDA into the shell (i.e., directly preceding cap printing), thereby resulting in improved retention of the liquid core after completion of the cap printing process. These results mark an important first step toward evaluating the utility of the presented DLW 3D printing strategy for possible drug delivery applications.
Collapse
Affiliation(s)
- Sunandita Sarker
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Kimia Forghani
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Ziteng Wen
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Ryan N Halli
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Stephen Hoag
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | | | - Ryan D Sochol
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
6
|
Felix BM, Young OM, Andreou JT, Sarker S, Fuge MD, Krieger A, Weiss CR, Bailey CR, Sochol RD. FABRICATION OF MULTILUMEN MICROFLUIDIC TUBING FOR EX SITU DIRECT LASER WRITING. PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS 2024; 2024:1158-1161. [PMID: 38516341 PMCID: PMC10955428 DOI: 10.1109/mems58180.2024.10439522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Among the numerous additive manufacturing or "three-dimensional (3D) printing" techniques, two-photon Direct Laser Writing (DLW) is distinctively suited for applications that demand high geometric versatility with micron-to-submicron-scale feature resolutions. Recently, "ex situ DLW (esDLW)" has emerged as a powerful approach for printing 3D microfluidic structures directly atop meso/macroscale fluidic tubing that can be manipulated by hand; however, difficulties in creating custom esDLW-compatible multilumen tubing at such scales has hindered progress. To address this impediment, here we introduce a novel methodology for fabricating submillimeter multilumen tubing for esDLW 3D printing. Preliminary fabrication results demonstrate the utility of the presented strategy for resolving 743 μm-in-diameter tubing with three lumens-each with an inner diameter (ID) of 80 μm. Experimental results not only revealed independent flow of discrete fluorescently labelled fluids through each of the three lumens, but also effective esDLW-printing of a demonstrative 3D "MEMS" microstructure atop the tubing. These results suggest that the presented approach could offer a promising pathway to enable geometrically sophisticated microfluidic systems to be 3D printed with input and/or output ports fully sealed to multiple, distinct lumens of fluidic tubing for emerging applications in fields ranging from drug delivery and medical diagnostics to soft surgical robotics.
Collapse
Affiliation(s)
- Bailey M Felix
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Olivia M Young
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Jordi T Andreou
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Sunandita Sarker
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Mark D Fuge
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Axel Krieger
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Clifford R Weiss
- Division of Vascular and Interventional Radiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher R Bailey
- Division of Vascular and Interventional Radiology, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan D Sochol
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
7
|
Young OM, Felix BM, Fuge MD, Krieger A, Sochol RD. A 3D-MICROPRINTED COAXIAL NOZZLE FOR FABRICATING LONG, FLEXIBLE MICROFLUIDIC TUBING. PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS 2024; 2024:1174-1177. [PMID: 38482160 PMCID: PMC10936740 DOI: 10.1109/mems58180.2024.10439296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
A variety of emerging applications, particularly those in medical and soft robotics fields, are predicated on the ability to fabricate long, flexible meso/microfluidic tubing with high customization. To address this need, here we present a hybrid additive manufacturing (or "three-dimensional (3D) printing") strategy that involves three key steps: (i) using the "Vat Photopolymerization (VPP) technique, "Liquid-Crystal Display (LCD)" 3D printing to print a bulk microfluidic device with three inlets and three concentric outlets; (ii) using "Two-Photon Direct Laser Writing (DLW)" to 3D microprint a coaxial nozzle directly atop the concentric outlets of the bulk microdevice, and then (iii) extruding paraffin oil and a liquid-phase photocurable resin through the coaxial nozzle and into a polydimethylsiloxane (PDMS) channel for UV exposure, ultimately producing the desired tubing. In addition to fabricating the resulting tubing-composed of polymerized photomaterial-at arbitrary lengths (e.g., > 10 cm), the distinct input pressures can be adjusted to tune the inner diameter (ID) and outer diameter (OD) of the fabricated tubing. For example, experimental results revealed that increasing the driving pressure of the liquid-phase photomaterial from 50 kPa to 100 kPa led to fluidic tubing with IDs and ODs of 291±99 μm and 546±76 μm up to 741±31 μm and 888±39 μm, respectively. Furthermore, preliminary results for DLW-printing a microfluidic "M" structure directly atop the tubing suggest that the tubing could be used for "ex situ DLW (esDLW)" fabrication, which would further enhance the utility of the tubing.
Collapse
Affiliation(s)
- Olivia M Young
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Bailey M Felix
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Mark D Fuge
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Axel Krieger
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ryan D Sochol
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
8
|
Sarker S, Colton A, Wen Z, Xu X, Erdi M, Jones A, Kofinas P, Tubaldi E, Walczak P, Janowski M, Liang Y, Sochol RD. 3D-Printed Microinjection Needle Arrays via a Hybrid DLP-Direct Laser Writing Strategy. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201641. [PMID: 37064271 PMCID: PMC10104452 DOI: 10.1002/admt.202201641] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 06/19/2023]
Abstract
Microinjection protocols are ubiquitous throughout biomedical fields, with hollow microneedle arrays (MNAs) offering distinctive benefits in both research and clinical settings. Unfortunately, manufacturing-associated barriers remain a critical impediment to emerging applications that demand high-density arrays of hollow, high-aspect-ratio microneedles. To address such challenges, here, a hybrid additive manufacturing approach that combines digital light processing (DLP) 3D printing with "ex situ direct laser writing (esDLW)" is presented to enable new classes of MNAs for fluidic microinjections. Experimental results for esDLW-based 3D printing of arrays of high-aspect-ratio microneedles-with 30 μm inner diameters, 50 μm outer diameters, and 550 μm heights, and arrayed with 100 μm needle-to-needle spacing-directly onto DLP-printed capillaries reveal uncompromised fluidic integrity at the MNA-capillary interface during microfluidic cyclic burst-pressure testing for input pressures in excess of 250 kPa (n = 100 cycles). Ex vivo experiments perform using excised mouse brains reveal that the MNAs not only physically withstand penetration into and retraction from brain tissue but also yield effective and distributed microinjection of surrogate fluids and nanoparticle suspensions directly into the brains. In combination, the results suggest that the presented strategy for fabricating high-aspect-ratio, high-density, hollow MNAs could hold unique promise for biomedical microinjection applications.
Collapse
Affiliation(s)
- Sunandita Sarker
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Adira Colton
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Ziteng Wen
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Xin Xu
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Metecan Erdi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Anthony Jones
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Peter Kofinas
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Eleonora Tubaldi
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Piotr Walczak
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Miroslaw Janowski
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yajie Liang
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ryan D Sochol
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
9
|
Shi M, Yeatman EM. A comparative review of artificial muscles for microsystem applications. MICROSYSTEMS & NANOENGINEERING 2021; 7:95. [PMID: 34858630 PMCID: PMC8611050 DOI: 10.1038/s41378-021-00323-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 05/28/2023]
Abstract
Artificial muscles are capable of generating actuation in microsystems with outstanding compliance. Recent years have witnessed a growing academic interest in artificial muscles and their application in many areas, such as soft robotics and biomedical devices. This paper aims to provide a comparative review of recent advances in artificial muscle based on various operating mechanisms. The advantages and limitations of each operating mechanism are analyzed and compared. According to the unique application requirements and electrical and mechanical properties of the muscle types, we suggest suitable artificial muscle mechanisms for specific microsystem applications. Finally, we discuss potential strategies for energy delivery, conversion, and storage to promote the energy autonomy of microrobotic systems at a system level.
Collapse
Affiliation(s)
- Mayue Shi
- Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ UK
| | - Eric M. Yeatman
- Department of Electrical and Electronic Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ UK
| |
Collapse
|
10
|
Barbot A, Wales D, Yeatman E, Yang G. Microfluidics at Fiber Tip for Nanoliter Delivery and Sampling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004643. [PMID: 34026456 PMCID: PMC8132067 DOI: 10.1002/advs.202004643] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/28/2021] [Indexed: 05/04/2023]
Abstract
Delivery and sampling nanoliter volumes of liquid can benefit new invasive surgical procedures. However, the dead volume and difficulty in generating constant pressure flow limits the use of small tubes such as capillaries. This work demonstrates sub-millimeter microfluidic chips assembled directly on the tip of a bundle of two hydrophobic coated 100 µm capillaries to deliver nanoliter droplets in liquid environments. Droplets are created in a specially designed nanopipette and propelled by gas through the capillary to the microfluidic chip where a passive valve mechanism separates liquid from gas, allowing their delivery. By adjusting the driving pressure and microfluidic geometry, both partial and full delivery of 10 nanoliter droplets with 0.4 nanoliter maximum error, as well as sampling from the environment are demonstrated. This system will enable drug delivery and sampling with minimally invasive probes, facilitating continuous liquid biopsy for disease monitoring and in vivo drug screening.
Collapse
Affiliation(s)
| | - Dominic Wales
- Hamlyn Centre, Institute of Global Health Innovation, Imperial College LondonLondonSW7 2AZUK
| | - Eric Yeatman
- Hamlyn Centre, Institute of Global Health Innovation, Imperial College LondonLondonSW7 2AZUK
| | - Guang‐Zhong Yang
- Institute of Medical RoboticsShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|