1
|
Bauernfeind V, Ronikier A, Ronikier M, Kozlowski G, Steiner U, Wilts BD. Thin film structural color is widespread in slime molds (Myxomycetes, Amoebozoa). OPTICS EXPRESS 2024; 32:5429-5443. [PMID: 38439270 DOI: 10.1364/oe.511875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/02/2024] [Indexed: 03/06/2024]
Abstract
Brilliant colors in nature arise from the interference of light with periodic nanostructures resulting in structural color. While such biological photonic structures have long attracted interest in insects and plants, they are little known in other groups of organisms. Unexpected in the kingdom of Amoebozoa, which assembles unicellular organisms, structural colors were observed in myxomycetes, an evolutionary group of amoebae forming macroscopic, fungal-like structures. Previous work related the sparkling appearance of Diachea leucopodia to thin film interference. Using optical and ultrastructural characterization, we here investigated the occurrence of structural color across 22 species representing two major evolutionary clades of myxomycetes including 14 genera. All investigated species showed thin film interference at the peridium, producing colors with hues distributed throughout the visible range that were altered by pigmentary absorption. A white reflective layer of densely packed calcium-rich shells is observed in a compound peridium in Metatrichia vesparium, whose formation and function are still unknown. These results raise interesting questions on the biological relevance of thin film structural colors in myxomycetes, suggesting they may be a by-product of their reproductive cycle.
Collapse
|
2
|
Guidetti G, Kim T, Dutcher A, Presti ML, Ovstrovsky-Snider N, Omenetto FG. Co-modulation of structural and pigmentary coloration in Lyropteryx apollonia butterfly. OPTICS EXPRESS 2023; 31:43712-43721. [PMID: 38178461 DOI: 10.1364/oe.500130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/09/2023] [Indexed: 01/06/2024]
Abstract
Nature produces some of the most striking optical effects through the combination of structural and chemical principles to give rise to a wide range of colors. However, creating non-spectral colors that extend beyond the color spectrum is a challenging task, as it requires meeting the requirements of both structural and pigmentary coloration. In this study, we investigate the magenta non-spectral color found in the scales of the ventral spots of the Lyropteryx apollonia butterfly. By employing correlated optical and electron microscopy, as well as pigment extraction techniques, we reveal how this color arises from the co-modulation of pigmentary and structural coloration. Specifically, the angle-dependent blue coloration results from the interference of visible light with chitin-based nanostructures, while the diffused red coloration is generated by an ommochrome pigment. The ability to produce such highly conspicuous non-spectral colors provides insights for the development of hierarchical structures with precise control over their optical response. These structures can be used to create hierarchically-arranged systems with a broadened color palette.
Collapse
|
3
|
McCoy DE, Shneidman AV, Davis AL, Aizenberg J. Finite-difference Time-domain (FDTD) Optical Simulations: A Primer for the Life Sciences and Bio-Inspired Engineering. Micron 2021; 151:103160. [PMID: 34678583 DOI: 10.1016/j.micron.2021.103160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
Light influences most ecosystems on earth, from sun-dappled forests to bioluminescent creatures in the ocean deep. Biologists have long studied nano- and micro-scale organismal adaptations to manipulate light using ever-more sophisticated microscopy, spectroscopy, and other analytical equipment. In combination with experimental tools, simulations of light interacting with objects can help researchers determine the impact of observed structures and explore how variations affect optical function. In particular, the finite-difference time-domain (FDTD) method is widely used throughout the nanophotonics community to efficiently simulate light interacting with a variety of materials and optical devices. More recently, FDTD has been used to characterize optical adaptations in nature, such as camouflage in fish and other organisms, colors in sexually-selected birds and spiders, and photosynthetic efficiency in plants. FDTD is also common in bioengineering, as the design of biologically-inspired engineered structures can be guided and optimized through FDTD simulations. Parameter sweeps are a particularly useful application of FDTD, which allows researchers to explore a range of variables and modifications in natural and synthetic systems (e.g., to investigate the optical effects of changing the sizes, shape, or refractive indices of a structure). Here, we review the use of FDTD simulations in biology and present a brief methods primer tailored for life scientists, with a focus on the commercially available software Lumerical FDTD. We give special attention to whether FDTD is the right tool to use, how experimental techniques are used to acquire and import the structures of interest, and how their optical properties such as refractive index and absorption are obtained. This primer is intended to help researchers understand FDTD, implement the method to model optical effects, and learn about the benefits and limitations of this tool. Altogether, FDTD is well-suited to (i) characterize optical adaptations and (ii) provide mechanistic explanations; by doing so, it helps (iii) make conclusions about evolutionary theory and (iv) inspire new technologies based on natural structures.
Collapse
Affiliation(s)
- Dakota E McCoy
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA; Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Anna V Shneidman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, MA, 02138, USA.
| | - Alexander L Davis
- Department of Biology, Duke University, Campus Box 90338, Durham, NC, 27708, USA
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, MA, 02138, USA; Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
4
|
Li Z, Wang J, Xu Y, Shen M, Duan C, Dai L, Ni Y. Green and sustainable cellulose-derived humidity sensors: A review. Carbohydr Polym 2021; 270:118385. [PMID: 34364627 DOI: 10.1016/j.carbpol.2021.118385] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/23/2022]
Abstract
Cellulose, as the most abundant natural polysaccharide, is an excellent material for developing green humidity sensors, especially due to its humidity responsiveness as a result of its rich hydrophilic groups. In combination with other components including carbon materials and polymers, cellulose and its derivatives can be used to design high-performance humidity sensors that meet various application requirements. This review summarizes the recent advances in the field of various cellulose-derived humidity sensors, with particular attention paid to different sensing mechanisms including resistance, capacitance, colorimetry and gravity, and so on. Furthermore, the roles of cellulose and its derivatives are highlighted. This work may promote the development of cellulose-derived humidity sensors, as well as other cellulose-based intelligent materials.
Collapse
Affiliation(s)
- Zixiu Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jian Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yongjian Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Mengxia Shen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Chao Duan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Lei Dai
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China; College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| |
Collapse
|
5
|
Kim M, Lee H, Krecker MC, Bukharina D, Nepal D, Bunning TJ, Tsukruk VV. Switchable Photonic Bio-Adhesive Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103674. [PMID: 34476859 DOI: 10.1002/adma.202103674] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/25/2021] [Indexed: 06/13/2023]
Abstract
A soft photonic bio-adhesive material is designed with real-time colorimetrical monitoring of switchable adhesion by integrating a responsive bio-photonic matrix with mobile hydrogen-binding networking. Synergetic materials sequencing creates a unique iridescent appearance directly coupled with both adhesive ability and shearing strength, in a highly reversible manner. The responsive photonic materials, having a physically hydrogen-bonded chiral nematic organization, vary their adhesion strength due to a transition in cohesive and interfacial failure mechanism in humid surroundings. The bright color appearance shifts from blue to red to transparent and back due to a change in pitch length of the chiral helicoidal organization that also triggers coupled changes in both mechanical strength and interfacial adhesion. Such reversible strength-adhesion-iridescence triple-coupling phenomenon is further explored for design of super-strong switchable bio-adhesives for synthetic/biological surfaces with quick remotely triggered sticky-to-nonsticky transitions, removable conformal soft stickers, and wound dressings with visual monitoring of the healing process, to colorimetric stickers for contaminated respiratory masks.
Collapse
Affiliation(s)
- Minkyu Kim
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hansol Lee
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Michelle C Krecker
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Daria Bukharina
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Dhriti Nepal
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Timothy J Bunning
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
6
|
Hou J, Aydemir BE, Dumanli AG. Understanding the structural diversity of chitins as a versatile biomaterial. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200331. [PMID: 34334022 PMCID: PMC8326827 DOI: 10.1098/rsta.2020.0331] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 05/05/2023]
Abstract
Chitin is one of the most abundant biopolymers, and it has adopted many different structural conformations using a combination of different natural processes like biopolymerization, crystallization and non-equilibrium self-assembly. This leads to a number of striking physical effects like complex light scattering and polarization as well as unique mechanical properties. In doing so, chitin uses a fine balance between the highly ordered chain conformations in the nanofibrils and random disordered structures. In this opinion piece, we discuss the structural hierarchy of chitin, its crystalline states and the natural biosynthesis processes to create such specific structures and diversity. Among the examples we explored, the unified question arises from the generation of completely different bioarchitectures like the Christmas tree-like nanostructures, gyroids or helicoidal geometries using similar dynamic non-equilibrium growth processes. Understanding the in vivo development of such structures from gene expressions, enzymatic activities as well as the chemical matrix employed in different stages of the biosynthesis will allow us to shift the material design paradigms. Certainly, the complexity of the biology requires a collaborative and multi-disciplinary research effort. For the future's advanced technologies, using chitin will ultimately drive many innovations and alternatives using biomimicry in materials science. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Jiaxin Hou
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Henry Royce Institute, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Berk Emre Aydemir
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Henry Royce Institute, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Ahu Gümrah Dumanli
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
- Henry Royce Institute, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
7
|
Khalesi Moghaddam R, Bhalla N, Q Shen A, Natale G. Deterministic particle assembly on nanophotonic chips. J Colloid Interface Sci 2021; 603:259-269. [PMID: 34214719 DOI: 10.1016/j.jcis.2021.06.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/14/2021] [Accepted: 06/20/2021] [Indexed: 10/21/2022]
Abstract
HYPOTHESIS Controlled particle assembly from a dilute suspension droplet is challenging yet important for many lab-on-a-chip and biosensing applications. The formation of hot spots on the localized surface plasmonic resonance (LSPR) substrates induced by laser excitation can generate microbubbles. These microbubbles, upon the laser removal, shrink and collapse due to electron energy dissipation, leading to guided particle assembly on the LSPR substrate. EXPERIMENTS After depositing dilute silica particles dispersions on both nanoisland (AuNI) and planar gold (Au) plasmonic substrates (referred to as LSPR and SPR substrates respectively), microbubbles were formed when a laser beam was applied. Particle dispersion concentration, laser power, and the radius of circular laser sequence were varied to produce different sizes of particle clusters on the LSPR substrate after bubble shrinkage upon the laser removal. To stabilize the assembled structures over time, sodium chloride (NaCl) was ad ded to the dispersions. FINDINGS Even though thermo-plasmonic flow and microbubbles can be produced with SPR substrates, particle assembly is only possible on LSPR substrates because of electron energy dissipation via nanoscale air gaps trapped in the LSPR substrate. By tuning the laser power, the radius of the circular laser sequence, and the particle dispersion concentration, the number of particles in the assembled structure can be controlled. The addition of NaCl to the dispersion can screen the electrostatic charges among the particles and between the particles and substrate, favoring hydrogen bonding and stabilizing the assembled structures for hours. These findings establish a new framework for utilizing nanophotonic chips where particle assembly can be achieved by a single source of light.
Collapse
Affiliation(s)
- Razie Khalesi Moghaddam
- Department of Chemical & Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary T2N 1N4, Alberta, Canada
| | - Nikhil Bhalla
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, Shore Road, BT37 0QB Jordanstown, Northern Ireland, United Kingdom; Heathcare Technology Hub, Ulster University, BT37 0QB Jordanstown, Northern Ireland, United Kingdom
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Giovanniantonio Natale
- Department of Chemical & Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary T2N 1N4, Alberta, Canada.
| |
Collapse
|
8
|
Guimarães CF, Ahmed R, Marques AP, Reis RL, Demirci U. Engineering Hydrogel-Based Biomedical Photonics: Design, Fabrication, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006582. [PMID: 33929771 PMCID: PMC8647870 DOI: 10.1002/adma.202006582] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/30/2020] [Indexed: 05/18/2023]
Abstract
Light guiding and manipulation in photonics have become ubiquitous in events ranging from everyday communications to complex robotics and nanomedicine. The speed and sensitivity of light-matter interactions offer unprecedented advantages in biomedical optics, data transmission, photomedicine, and detection of multi-scale phenomena. Recently, hydrogels have emerged as a promising candidate for interfacing photonics and bioengineering by combining their light-guiding properties with live tissue compatibility in optical, chemical, physiological, and mechanical dimensions. Herein, the latest progress over hydrogel photonics and its applications in guidance and manipulation of light is reviewed. Physics of guiding light through hydrogels and living tissues, and existing technical challenges in translating these tools into biomedical settings are discussed. A comprehensive and thorough overview of materials, fabrication protocols, and design architectures used in hydrogel photonics is provided. Finally, recent examples of applying structures such as hydrogel optical fibers, living photonic constructs, and their use as light-driven hydrogel robots, photomedicine tools, and organ-on-a-chip models are described. By providing a critical and selective evaluation of the field's status, this work sets a foundation for the next generation of hydrogel photonic research.
Collapse
Affiliation(s)
- Carlos F. Guimarães
- 3B’s Research Group — Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s – Portuguese Government Associate Laboratory, University of Minho, Braga and Guimarães, Portugal
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, USA
| | - Rajib Ahmed
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, USA
| | - Alexandra P. Marques
- 3B’s Research Group — Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s – Portuguese Government Associate Laboratory, University of Minho, Braga and Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group — Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B’s – Portuguese Government Associate Laboratory, University of Minho, Braga and Guimarães, Portugal
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection Department of Radiology, Stanford School of Medicine, Palo Alto, CA 94304, USA
| |
Collapse
|