1
|
Xiao Y, Li B, Wei C, Oron A, Jiang Y. Quasi-static and dynamic breakdown of superhydrophobicity. J Colloid Interface Sci 2025; 695:137810. [PMID: 40359631 DOI: 10.1016/j.jcis.2025.137810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/16/2025] [Accepted: 05/04/2025] [Indexed: 05/15/2025]
Abstract
HYPOTHESIS The breakdown of superhydrophobicity caused by liquid penetration into microstructures leads to the loss of various surface functionalities but is not fully understood yet. We conjecture that unified criteria for superhydrophobicity breakdown can be established if microscopic liquid penetration processes and the applied macroscopic pressure can be measured simultaneously. EXPERIMENTS Using direct visualization of microscopic liquid penetration dynamics through the bottom of transparent substrates, the critical hydrostatic pressure inducing quasi-static liquid penetration and the critical droplet impact speed causing dynamic liquid penetration on surfaces with pillars and hollowed pillars are measured. FINDINGS The capillary pressure resisting liquid penetration is determined by the force balance between the vertical capillary force along the pillar outer perimeter and the pressure force acting on the voids between pillars. Based on a sudden deceleration of liquid from the impact speed within a time interval governed by compression shockwaves traveling between adjacent micropillars, a water-hammer-type pressure is proposed to explain the additional pressure contributing to dynamic liquid penetration. A predictive model for the critical droplet impact speed accounting only for surface geometrical dimensions is proposed and verified by experiments using water droplets. The amount of liquid experiencing sudden deceleration on hollowed pillars is less than that on regular pillars, which explains why hollowed pillars require a larger droplet impact speed for liquid penetration.
Collapse
Affiliation(s)
- Yilian Xiao
- Department of Mechanical Engineering (Robotics), Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063, China
| | - Baixue Li
- Department of Mechanical Engineering (Robotics), Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063, China; Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Chuanqi Wei
- Department of Mechanical Engineering (Robotics), Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063, China; Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Alexander Oron
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Youhua Jiang
- Department of Mechanical Engineering (Robotics), Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063, China; Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
2
|
Li HL, Wang F, Zhang RG, Guo ML, Wang YZ, Song F. Ex Situ pH-Induced Reversible Wettability Switching for an Environmentally Robust and High-Efficiency Stain-Proof Coating. SMALL METHODS 2025; 9:e2401621. [PMID: 39722168 DOI: 10.1002/smtd.202401621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Developing superwetting coatings with environmental adaptability is critical for sustainable industrial applications. However, traditional anti-wetting coatings often fall short due to their susceptibility to environmental factors (UV light, temperature, mold growth, and abrasion) and inadequate stain resistance in complex media. Herein, a durable ex situ pH-responsive coating with reversible wettability switching, engineered by integrating hydrophobic polydimethylsiloxane and tertiary amine structures is presented. The resulting hierarchical micro-nano surface structure, combined with a trapped air cushion, ensures low water adhesion and stable superhydrophobicity. Notably, after ex situ pH treatment, the modulation of surface N+ content synergistically interacts with polydimethylsiloxane chains, enabling a controlled transition in surface wettability from 150° to 68.5°, which can spontaneously revert to a hydrophobic state upon heating and drying. This transition enhances stain resistance in both air and underwater environments, resulting in a 17.2% increase in detergency compared to superhydrophobic controls. Moreover, the coating demonstrates remarkable durability, with no staining, peeling, or mildew growth (grade 0) even after 1500 h of UV radiation and 28 days of mildew resistance testing. This work offers a highly adaptable and stain-resistant coating for applications in building and infrastructure protection, as well as in smart textiles designed for multi-media decontamination.
Collapse
Affiliation(s)
- Hang-Lin Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Fang Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610064, China
| | - Rong-Gang Zhang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Mei-Lin Guo
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Fei Song
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
3
|
Lu T, Li X, Lu M, Lv W, Liu W, Dong X, Liu Z, Xie S, Lv S. Flexible and scalable photothermal/electro thermal anti-icing/de-icing metamaterials for effective large-scale preparation. iScience 2024; 27:111086. [PMID: 39507248 PMCID: PMC11539719 DOI: 10.1016/j.isci.2024.111086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024] Open
Abstract
Anti-icing and de-icing are vital for infrastructure maintenance. While carbon-based materials with photothermal or electrothermal effects have advanced, they face challenges like environmental dependence, poor resistance, high energy consumption, and complex manufacturing. Here, we developed a scalable, hybrid metamaterial driven by photothermal/electrothermal for all-weather anti-icing/de-icing. Its nanostructured surface delays icing by 360 s at -30°C, breaking records across a wide temperature range. The porous structure enhances light absorption, achieving a delayed icing time of 2500 s at -20°C under one sunlight. The graphene film's high conductivity allows rapid de-icing with 1.6W power. After 720 h of outdoor exposure, the metamaterial retained a contact angle above 150°, confirming durability. More critically, we have demonstrated that the metamaterial can be manufactured on a large scale, which is essential for improving the economics of the anti-icing/de-icing sector.
Collapse
Affiliation(s)
- Tonghui Lu
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Xianglin Li
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Mengying Lu
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Wenhao Lv
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Wenzhuo Liu
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Xuanchen Dong
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Zhe Liu
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China
| | - Shangzhen Xie
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, China
| | - Song Lv
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430063, China
| |
Collapse
|
4
|
Cao Y, Liu X, Zhang L, Wu Y, You C, Li H, Duan H, Huang J, Lv P. Water Impalement Resistance and Drag Reduction of the Superhydrophobic Surface with Hydrophilic Strips. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16973-16982. [PMID: 38502909 DOI: 10.1021/acsami.3c18905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Superhydrophobic surfaces (SHS) offer versatile applications by trapping an air layer within microstructures, while water jet impact can destabilize this air layer and deactivate the functions of the SHS. The current work presents for the first time that introducing parallel hydrophilic strips to SHS (SHS-s) can simultaneously improve both water impalement resistance and drag reduction (DR). Compared with SHS, SHS-s demonstrates a 125% increase in the enduring time against the impact of water jet with velocity of 11.9 m/s and a 97% improvement in DR at a Reynolds number of 1.4 × 104. The key mechanism lies in the enhanced stability of the air layer due to air confinement by the adjacent three-phase contact lines. These lines not only impede air drainage through the surface microstructures during water jet impact, entrapping the air layer to resist water impalement, but also prevent air floating up due to buoyancy in Taylor-Couette flow, ensuring an even spread of the air layer all over the rotor, boosting DR. Moreover, failure modes of SHS under water jet impact are revealed to be related to air layer decay and surface structure destruction. This mass-producible structured surface holds the potential for widespread use in DR for hulls, autonomous underwater vehicles, and submarines.
Collapse
Affiliation(s)
- Yanlin Cao
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
- Laoshan Laboratory, Qingdao 266237, People's Republic of China
| | - Xiaochao Liu
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
- Laoshan Laboratory, Qingdao 266237, People's Republic of China
| | - Liangpei Zhang
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Yanchen Wu
- Institute for Applied Materials-Microstructure Modeling and Simulation, Karlsruhe Institute of Technology, Strasse am Forum 7, Karlsruhe 76131, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Pl. 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Chenxi You
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Hongyuan Li
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
- Laoshan Laboratory, Qingdao 266237, People's Republic of China
| | - Huiling Duan
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Jianyong Huang
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
| | - Pengyu Lv
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, BIC-ESAT, College of Engineering, Peking University, Beijing 100871, China
- Laoshan Laboratory, Qingdao 266237, People's Republic of China
| |
Collapse
|
5
|
Shang X, Wang N, Cao S, Chen H, Fan D, Zhou N, Qiu M. Fiber-Integrated Force Sensor using 3D Printed Spring-Composed Fabry-Perot Cavities with a High Precision Down to Tens of Piconewton. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305121. [PMID: 37985176 DOI: 10.1002/adma.202305121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/23/2023] [Indexed: 11/22/2023]
Abstract
Developing microscale sensors capable of force measurements down to the scale of piconewtons is of fundamental importance for a wide range of applications. To date, advanced instrumentations such as atomic force microscopes and other specifically developed micro/nano-electromechanical systems face challenges such as high cost, complex detection systems and poor electromagnetic compatibility. Here, it presents the unprecedented design and 3D printing of general fiber-integrated force sensors using spring-composed Fabry-Perot cavities. It calibrates these microscale devices employing varied-diameter μ $\umu$ m-scale silica particles as standard weights. The force sensitivity and resolution reach values of (0.436 ± 0.007) nmnN-1 and (40.0 ± 0.7) pN, respectively, which are the best resolutions among all fiber-based nanomechanical probes so far. It also measured the non-linear airflow force distributions produced from a nozzle with an orifice of 2 μ $\umu$ m, which matches well with the full-sized simulations. With further customization of their geometries and materials, it anticipates the easy-to-use force probe can well extend to many other applications such as air/fluidic turbulences sensing, micro-manipulations, and biological sensing.
Collapse
Affiliation(s)
- Xinggang Shang
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Ning Wang
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
- Laboratory of Gravitational Wave Precision Measurement of Zhejiang Province, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
- Taiji Laboratory for Gravitational Wave Universe, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
| | - Simin Cao
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Hehao Chen
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Dixia Fan
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Nanjia Zhou
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
| | - Min Qiu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310024, China
- Westlake Institute for Optoelectronics, Fuyang, Hangzhou, 311421, China
| |
Collapse
|
6
|
Hu Z, Chu F, Shan H, Wu X, Dong Z, Wang R. Understanding and Utilizing Droplet Impact on Superhydrophobic Surfaces: Phenomena, Mechanisms, Regulations, Applications, and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310177. [PMID: 38069449 DOI: 10.1002/adma.202310177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/13/2023] [Indexed: 12/19/2023]
Abstract
Droplet impact is a ubiquitous liquid behavior that closely tied to human life and production, making indispensable impacts on the big world. Nature-inspired superhydrophobic surfaces provide a powerful platform for regulating droplet impact dynamics. The collision between classic phenomena of droplet impact and the advanced manufacture of superhydrophobic surfaces is lighting up the future. Accurately understanding, predicting, and tailoring droplet dynamic behaviors on superhydrophobic surfaces are progressive steps to integrate the droplet impact into versatile applications and further improve the efficiency. In this review, the progress on phenomena, mechanisms, regulations, and applications of droplet impact on superhydrophobic surfaces, bridging the gap between droplet impact, superhydrophobic surfaces, and engineering applications are comprehensively summarized. It is highlighted that droplet contact and rebound are two focal points, and their fundamentals and dynamic regulations on elaborately designed superhydrophobic surfaces are discussed in detail. For the first time, diverse applications are classified into four categories according to the requirements for droplet contact and rebound. The remaining challenges are also pointed out and future directions to trigger subsequent research on droplet impact from both scientific and applied perspectives are outlined. The review is expected to provide a general framework for understanding and utilizing droplet impact.
Collapse
Affiliation(s)
- Zhifeng Hu
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fuqiang Chu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - He Shan
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaomin Wu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhichao Dong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruzhu Wang
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
7
|
Peng N, Wang L, Jiang W, Li G, Chen B, Jiang W, Liu H. Flexible Platform Composed of T-Shaped Micropyramid Patterns toward a Waterproof Sensing Interface. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56537-56546. [PMID: 37992157 DOI: 10.1021/acsami.3c13631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Antifouling is essential to guaranteeing the sensitivity and precision of flexible sensing interfaces. Materials and structures are the two primary strategies. However, optimizing the inherent microstructures to integrate waterproofing and sensing is rarely reported. To improve the liquid repellency of micropyramid structures, this work presents a study of the design and fabrication of T-shaped micropyramid structures. These structures are patterned uniformly and largely on polydimethylsiloxane (PDMS) skin by the new process of two-step magnetic induction. The waterproofing is related to the breakthrough pressure and the liquid repellency, both of which are a function of structural characteristics, D, and material properties, θY. At the breakthrough transition, two failure models distinguished by θY appear: the depinning transition and the sagging transition. Meanwhile, when considering D in practice, some models will shift and occur early. The D value regulates the transition of the material's wettability to the liquid repellency. The influence of the material's inherent nonwettability on liquid repellency diminishes as D decreases, and the transition from completely wetting liquids to super-repellents can be achieved. Experiments demonstrate that for D = 0.3 under water the resistance is approximately 142 times larger than the depth of the structure, considerably facilitating the waterproofing of conventional micropyramid arrays. This work provides a novel method for fabricating flexible T-shaped micropyramid array structures and opens a new window on flexible sensing interfaces with excellent waterproofing.
Collapse
Affiliation(s)
- Niming Peng
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lanlan Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wei Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guojun Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bangdao Chen
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Weitao Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongzhong Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
8
|
Liu H, Zhang Z, Wu C, Su K, Kan X. Biomimetic Superhydrophobic Materials through 3D Printing: Progress and Challenges. MICROMACHINES 2023; 14:1216. [PMID: 37374801 DOI: 10.3390/mi14061216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
Superhydrophobicity, a unique natural phenomenon observed in organisms such as lotus leaves and desert beetles, has inspired extensive research on biomimetic materials. Two main superhydrophobic effects have been identified: the "lotus leaf effect" and the "rose petal effect", both showing water contact angles larger than 150°, but with differing contact angle hysteresis values. In recent years, numerous strategies have been developed to fabricate superhydrophobic materials, among which 3D printing has garnered significant attention due to its rapid, low-cost, and precise construction of complex materials in a facile way. In this minireview, we provide a comprehensive overview of biomimetic superhydrophobic materials fabricated through 3D printing, focusing on wetting regimes, fabrication techniques, including printing of diverse micro/nanostructures, post-modification, and bulk material printing, and applications ranging from liquid manipulation and oil/water separation to drag reduction. Additionally, we discuss the challenges and future research directions in this burgeoning field.
Collapse
Affiliation(s)
- Haishuo Liu
- School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
| | - Zipeng Zhang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Kang Su
- School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
| | - Xiaonan Kan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
9
|
Sharma SK, Grewal HS. Tribological Behavior of Bioinspired Surfaces. Biomimetics (Basel) 2023; 8:biomimetics8010062. [PMID: 36810393 PMCID: PMC9944884 DOI: 10.3390/biomimetics8010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Energy losses due to various tribological phenomena pose a significant challenge to sustainable development. These energy losses also contribute toward increased emissions of greenhouse gases. Various attempts have been made to reduce energy consumption through the use of various surface engineering solutions. The bioinspired surfaces can provide a sustainable solution to address these tribological challenges by minimizing friction and wear. The current study majorly focuses on the recent advancements in the tribological behavior of bioinspired surfaces and bio-inspired materials. The miniaturization of technological devices has increased the need to understand micro- and nano-scale tribological behavior, which could significantly reduce energy wastage and material degradation. Integrating advanced research methods is crucial in developing new aspects of structures and characteristics of biological materials. Depending upon the interaction of the species with the surrounding, the present study is divided into segments depicting the tribological behavior of the biological surfaces inspired by animals and plants. The mimicking of bio-inspired surfaces resulted in significant noise, friction, and drag reduction, promoting the development of anti-wear and anti-adhesion surfaces. Along with the reduction in friction through the bioinspired surface, a few studies providing evidence for the enhancement in the frictional properties were also depicted.
Collapse
Affiliation(s)
- Sachin Kumar Sharma
- Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar 201314, Uttar Pradesh, India
| | - Harpreet Singh Grewal
- Surface Science and Tribology Lab, Department of Mechanical Engineering, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar 201314, Uttar Pradesh, India
| |
Collapse
|
10
|
Han X, Liu J, Wang M, Upmanyu M, Wang H. Second-Level Microgroove Convexity is Critical for Air Plastron Restoration on Immersed Hierarchical Superhydrophobic Surfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52524-52534. [PMID: 36373889 DOI: 10.1021/acsami.2c15929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Air plastrons trapped on the surfaces of underwater superhydrophobic surfaces are critical for their function. Fibrillar morphologies offer a natural pathway, yet they are limited to a narrow range of liquid-surface systems and are vulnerable to pressure fluctuations that irreversibly destroy the air layer plastron. Inspired by the convexly grooved bases of water fern (Salvinia) leaves that support their fibrous outgrowths, we focus on the effect of such second-level grooved structures or microgrooves on the plastron restoration on immersed three-dimensional (3D)-printed hierarchical surfaces. Elliptical, interconnected microgrooves are fabricated with varying surface curvatures to study the effect of their morphology. Immersion experiments reveal that the convex groove curvature stabilizes a seed gas layer (SGL) that facilitates plastron restoration for all immersed hydrophobic surfaces. Theoretical calculations and atomic-scale computations reveal that the SGL storage capacity that sets the SGL robustness follows from the liquid menisci adaption to the groove geometry and pressure, from micro- to nanoscales, and it can be further tuned using separated grooves. Our study highlights groove convexity as a key morphological feature for the design of second-level architectures for underwater air plastron restoration on hierarchical superhydrophobic surfaces.
Collapse
Affiliation(s)
- Xiao Han
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei230027, Anhui, China
| | - Jingnan Liu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei230027, Anhui, China
| | - Mengyuan Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei230027, Anhui, China
| | - Moneesh Upmanyu
- Group for Simulation and Theory of Atomic-Scale Material Phenomena (stAMP), Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts02115, United States
| | - Hailong Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei230027, Anhui, China
| |
Collapse
|
11
|
Jiang S, Diao Y, Yang H. Recent advances of bio-inspired anti-icing surfaces. Adv Colloid Interface Sci 2022; 308:102756. [PMID: 36007284 DOI: 10.1016/j.cis.2022.102756] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/16/2022] [Accepted: 08/11/2022] [Indexed: 11/25/2022]
Abstract
The need for improved anti-icing surfaces is the demand of the time and closely related to many important aspects of our lives as surface icing threatens not only industrial production but also human safety. Freezing on a cold surface is usually a heterogeneous nucleation process induced by the substrate. Creating an anti-icing surface is mainly achieved by changing surface morphology and chemistry to regulate the interaction between the surface and the water/ice to inhibit freezing on the surface. In this paper, recent research progress in the creation of biomimetic anti-icing surfaces is reviewed. Firstly, basic strategies of bionic anti-icing are introduced, and then bionic anti-icing surface strategies are reviewed according to four aspects: the process of ice formation, including condensate self-removing, inhibiting ice nucleation, reducing ice adhesion, and melting accumulated ice on the surface. The remaining challenges and the direction of future development of biomimetic anti-icing surfaces are also discussed.
Collapse
Affiliation(s)
- Shanshan Jiang
- School of Materials Science and Engineering, Zhengzhou University, 450001 Zhengzhou, Henan, China
| | - Yunhe Diao
- School of Materials Science and Engineering, Zhengzhou University, 450001 Zhengzhou, Henan, China
| | - Huige Yang
- School of Materials Science and Engineering, Zhengzhou University, 450001 Zhengzhou, Henan, China.
| |
Collapse
|
12
|
Wang T, Wang Z. Liquid-Repellent Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9073-9084. [PMID: 35857533 DOI: 10.1021/acs.langmuir.2c01533] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surfaces are vibrant sites for various activities with environments, especially as the transfer station for mass and energy exchange. In nature, natural creatures exhibit special wetting and interfacial properties such as water repellency and water affinity to adapt to various environmental challenges by taking advantage of air or liquid infusion media. Inspired by natural surfaces, various engineered liquid-repellent surfaces have been developed with a wide range of applications in both open and closed underwater environments. In particular, underwater conditions are characterized by high viscosity, high pressure, and complex compositions, which pose more challenges for the design of robust and functional repellent surfaces. In this Perspective, we take a parallel approach to introduce two classical liquid-repellent surfaces: an air-infused repellent surface and a lubricated liquid-repellent surface. Then we highlight fundamental challenges and design configurations of robust liquid-repellent surfaces both in air and underwater. We summarize the advantages and drawbacks of two kinds of repellent surfaces and list several applications of liquid-repellent surfaces for use in the ocean, medical care, and energy harvesting. Finally, we provide an outlook of research directions for robust liquid-repellent surfaces.
Collapse
|
13
|
Han X, Li J, Tang X, Li W, Zhao H, Yang L, Wang L. Droplet Bouncing: Fundamentals, Regulations, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200277. [PMID: 35306734 DOI: 10.1002/smll.202200277] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Droplet impact is a ubiquitous phenomenon in nature, daily life, and industrial processes. It is thus crucial to tune the impact outcomes for various applications. As a special outcome of droplet impact, the bouncing of droplets keeps the form of the droplets after the impact and minimizes the energy loss during the impact, being beneficial in many applications. A unified understanding of droplet bouncing is in high demand for effective development of new techniques to serve applications. This review shows the fundamentals, regulations, and applications of millimeter-sized droplet bouncing on solid surfaces and same/miscible liquids (liquid pool and another droplet). Regulation methods and current applications are summarized, and potential directions are proposed.
Collapse
Affiliation(s)
- Xing Han
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Jiaqian Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Xin Tang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Wei Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Haibo Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, Hong Kong
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Ling Yang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, Hong Kong
| | - Liqiu Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, Hong Kong
| |
Collapse
|
14
|
Chen F, Wang Y, Tian Y, Zhang D, Song J, Crick CR, Carmalt CJ, Parkin IP, Lu Y. Robust and durable liquid-repellent surfaces. Chem Soc Rev 2022; 51:8476-8583. [DOI: 10.1039/d0cs01033b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review provides a comprehensive summary of characterization, design, fabrication, and application of robust and durable liquid-repellent surfaces.
Collapse
Affiliation(s)
- Faze Chen
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Yaquan Wang
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Yanling Tian
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Dawei Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Jinlong Song
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Colin R. Crick
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Claire J. Carmalt
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Ivan P. Parkin
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Yao Lu
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
15
|
Zhu P, Wang L. Microfluidics-Enabled Soft Manufacture of Materials with Tailorable Wettability. Chem Rev 2021; 122:7010-7060. [PMID: 34918913 DOI: 10.1021/acs.chemrev.1c00530] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microfluidics and wettability are interrelated and mutually reinforcing fields, experiencing synergistic growth. Surface wettability is paramount in regulating microfluidic flows for processing and manipulating fluids at the microscale. Microfluidics, in turn, has emerged as a versatile platform for tailoring the wettability of materials. We present a critical review on the microfluidics-enabled soft manufacture (MESM) of materials with well-controlled wettability and their multidisciplinary applications. Microfluidics provides a variety of liquid templates for engineering materials with exquisite composition and morphology, laying the foundation for precisely controlling the wettability. Depending on the degree of ordering, liquid templates are divided into individual droplets, one-dimensional (1D) arrays, and two-dimensional (2D) or three-dimensional (3D) assemblies for the modular fabrication of microparticles, microfibers, and monolithic porous materials, respectively. Future exploration of MESM will enrich the diversity of chemical composition and physical structure for wettability control and thus markedly broaden the application horizons across engineering, physics, chemistry, biology, and medicine. This review aims to systematize this emerging yet robust technology, with the hope of aiding the realization of its full potential.
Collapse
Affiliation(s)
- Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Liqiu Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Han X, Tang X, Zhao H, Li W, Li J, Wang L. Spatio-temporal maneuvering of impacting drops. MATERIALS HORIZONS 2021; 8:3133-3140. [PMID: 34570140 DOI: 10.1039/d1mh00836f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Controlling impacting drops on nonwetting surfaces is desired in multifarious processes. Efforts have been made to solely spatially control the drop movement after the impact or solely temporally reduce liquid-solid contact via surface design. We present a fin-stripe nonwetting surface that enables spatial offset maximization and temporal contact minimization simultaneously, just via structure design without the need for external energies. The wetting stripe provides a large wettability gradient for lateral movement, while the macroscale nonwetting fin restricts the drop movement direction and confines drop spreading for contact time reduction. The fin-stripe surface can decrease the contact time by roughly 30% and provide a normalized lateral distance of roughly 20, an order of magnitude larger than the reported values. Our surface enables effective spatio-temporal maneuvering of impacting drops, essential for various applications that involve liquid transport.
Collapse
Affiliation(s)
- Xing Han
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong.
- Zhejiang Institute of Research and Innovation, The University of Hong Kong, 311300 Hangzhou, Zhejiang, China
| | - Xin Tang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong.
- Zhejiang Institute of Research and Innovation, The University of Hong Kong, 311300 Hangzhou, Zhejiang, China
| | - Haibo Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong.
- Zhejiang Institute of Research and Innovation, The University of Hong Kong, 311300 Hangzhou, Zhejiang, China
- Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, 518055 Shenzhen, Guangdong, China
| | - Wei Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong.
- Zhejiang Institute of Research and Innovation, The University of Hong Kong, 311300 Hangzhou, Zhejiang, China
| | - Jiaqian Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong.
- Zhejiang Institute of Research and Innovation, The University of Hong Kong, 311300 Hangzhou, Zhejiang, China
| | - Liqiu Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong.
- Zhejiang Institute of Research and Innovation, The University of Hong Kong, 311300 Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Kim DH, Kim S, Park SR, Fang NX, Cho YT. Shape-Deformed Mushroom-like Reentrant Structures for Robust Liquid-Repellent Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33618-33626. [PMID: 34196537 DOI: 10.1021/acsami.1c06286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Artificial liquid-repellent surfaces inspired by biomimetic structures provide a wide range of functional surfaces for various practical applications, such as self-cleaning, antisticking, oil/water separation, and droplet manipulation. However, functional biomimetic structures cannot be fabricated using conventional techniques. For example, mushroom-like topologies on the skin of springtails, which are referred to as "doubly reentrant structures," have attracted significant attention owing to their extraordinary liquid-repellent properties. Current methods of fabricating these reentrant structures have several limitations, such as complex material systems, processing steps, and additional chemical treatments. This study proposed a simple micro-shape-deformed approach to fabricate mushroom-like reentrant structures by digital light processing, a three-dimensional (3D) printing technique, with volumetric shrinkage. The nonuniform cross-linking process and light propagation during photopolymerization caused the deformation of the topological patterns atop the micropillar arrays, resulting in bent structures for mushroom-like shape-deformed microarchitectures. This 3D-printed shape-deformed microstructure exhibits a highly stable liquid repellency without perfluorinated coatings.
Collapse
Affiliation(s)
- Do Hyeog Kim
- Department of Mechanical Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon-si, Gyeongnam 51140, Republic of Korea
| | - Seok Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States of America
| | - Seo Rim Park
- Department of Smart Manufacturing Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon-si, Gyeongnam 51140, Republic of Korea
| | - Nicholas X Fang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States of America
| | - Young Tae Cho
- Department of Smart Manufacturing Engineering, Changwon National University, 20 Changwondaehak-ro, Uichang-gu, Changwon-si, Gyeongnam 51140, Republic of Korea
| |
Collapse
|
18
|
Hu S, Reddyhoff T, Li J, Cao X, Shi X, Peng Z, deMello AJ, Dini D. Biomimetic Water-Repelling Surfaces with Robustly Flexible Structures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31310-31319. [PMID: 34171192 DOI: 10.1021/acsami.1c10157] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomimetic liquid-repelling surfaces have been the subject of considerable scientific research and technological application. To design such surfaces, a flexibility-based oscillation strategy has been shown to resolve the problem of liquid-surface positioning encountered by the previous, rigidity-based asymmetry strategy; however, its usage is limited by weak mechanical robustness and confined repellency enhancement. Here, we design a flexible surface comprising mesoscale heads and microscale spring sets, in analogy to the mushroomlike geometry discovered on springtail cuticles, and then realize this through three-dimensional projection microstereolithography. Such a surface exhibits strong mechanical robustness against ubiquitous normal and shear compression and even endures tribological friction. Simultaneously, the surface elevates water repellency for impacting droplets by enhancing impalement resistance and reducing contact time, partially reaching an improvement of ∼80% via structural tilting movements. This is the first demonstration of flexible interfacial structures to robustly endure tribological friction as well as to promote water repellency, approaching real-world applications of water repelling. Also, a flexibility gradient is created on the surface to directionally manipulate droplets, paving the way for droplet transport.
Collapse
Affiliation(s)
- Songtao Hu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tom Reddyhoff
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jinbang Li
- School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
| | - Xiaobao Cao
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Xi Shi
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhike Peng
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Andrew J deMello
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
19
|
Hu S, Cao X, Reddyhoff T, Shi X, Peng Z, deMello AJ, Dini D. Flexibility-Patterned Liquid-Repelling Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29092-29100. [PMID: 34078079 DOI: 10.1021/acsami.1c05243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Droplets impacting solid surfaces is ubiquitous in nature and of practical importance in numerous industrial applications. For liquid-repelling applications, rigidity-based asymmetric redistribution and flexibility-based structural oscillation strategies have been proven on artificial surfaces; however, these are limited by strict impacting positioning. Here, we show that the gap between these two strategies can be bridged by a flexibility-patterned design similar to a trampoline park. Such a flexibility-patterned design is realized by three-dimensional projection micro-stereolithography and is shown to enhance liquid repellency in terms of droplet impalement resistance and contact time reduction. This is the first demonstration of the synergistic effect obtained by a hybrid solution that exploits asymmetric redistribution and structural oscillation in liquid-repelling applications, paving the rigidity-flexibility cooperative way of wettability tuning. Also, the flexibility-patterned surface is applied to accelerate liquid evaporation.
Collapse
Affiliation(s)
- Songtao Hu
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaobao Cao
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Tom Reddyhoff
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Xi Shi
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhike Peng
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Andrew J deMello
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|