1
|
Reuber VM, Westbury MV, Rey-Iglesia A, Asefa A, Farwig N, Miehe G, Opgenoorth L, Šumbera R, Wraase L, Wube T, Lorenzen ED, Schabo DG. Topographic barriers drive the pronounced genetic subdivision of a range-limited fossorial rodent. Mol Ecol 2024; 33:e17271. [PMID: 38279205 DOI: 10.1111/mec.17271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Due to their limited dispersal ability, fossorial species with predominantly belowground activity usually show increased levels of population subdivision across relatively small spatial scales. This may be exacerbated in harsh mountain ecosystems, where landscape geomorphology limits species' dispersal ability and leads to small effective population sizes, making species relatively vulnerable to environmental change. To better understand the environmental drivers of species' population subdivision in remote mountain ecosystems, particularly in understudied high-elevation systems in Africa, we studied the giant root-rat (Tachyoryctes macrocephalus), a fossorial rodent confined to the afro-alpine ecosystem of the Bale Mountains in Ethiopia. Using mitochondrial and low-coverage nuclear genomes, we investigated 77 giant root-rat individuals sampled from nine localities across its entire ~1000 km2 range. Our data revealed a distinct division into a northern and southern group, with no signs of gene flow, and higher nuclear genetic diversity in the south. Landscape genetic analyses of the mitochondrial and nuclear genomes indicated that population subdivision was driven by slope and elevation differences of up to 500 m across escarpments separating the north and south, potentially reinforced by glaciation of the south during the Late Pleistocene (~42,000-16,000 years ago). Despite this landscape-scale subdivision between the north and south, weak geographic structuring of sampling localities within regions indicated gene flow across distances of at least 16 km at the local scale, suggesting high, aboveground mobility for relatively long distances. Our study highlights that despite the potential for local-scale gene flow in fossorial species, topographic barriers can result in pronounced genetic subdivision. These factors can reduce genetic variability, which should be considered when developing conservation strategies.
Collapse
Affiliation(s)
- Victoria M Reuber
- Department of Biology, Conservation Ecology, University of Marburg, Marburg, Germany
| | | | | | - Addisu Asefa
- Department of Biology, Conservation Ecology, University of Marburg, Marburg, Germany
- Ethiopian Wildlife Conservation Authority, Addis Ababa, Ethiopia
| | - Nina Farwig
- Department of Biology, Conservation Ecology, University of Marburg, Marburg, Germany
| | - Georg Miehe
- Department of Geography, Vegetation Geography, University of Marburg, Marburg, Germany
| | - Lars Opgenoorth
- Department of Biology, Plant Ecology & Geobotany, University of Marburg, Marburg, Germany
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Radim Šumbera
- Department of Zoology, University of South Bohemia, České Budějovice, Czech Republic
| | - Luise Wraase
- Department of Geography, Environmental Informatics, University of Marburg, Marburg, Germany
| | - Tilaye Wube
- Department of Zoological Sciences, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | | | - Dana G Schabo
- Department of Biology, Conservation Ecology, University of Marburg, Marburg, Germany
| |
Collapse
|
2
|
Lyra ML, Kirchhof S, Goutte S, Kassie A, Boissinot S. Crossing the Rift valley: using complete mitogenomes to infer the diversification and biogeographic history of ethiopian highlands Ptychadena (anura: Ptychadenidae). Front Genet 2023; 14:1215715. [PMID: 37600664 PMCID: PMC10434514 DOI: 10.3389/fgene.2023.1215715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/03/2023] [Indexed: 08/22/2023] Open
Abstract
The Ethiopian Highlands are considered a biodiversity hotspot, harboring a high number of endemic species. Some of the endemic species probably diversified in situ; this is, for example, the case of a monophyletic clade containing 12 known species of grass frogs of the genus Ptychadena. The different species occur at elevations ranging from 1,500 to above 3,400 m and constitute excellent models to study the process of diversification in the highlands as well as adaptations to high elevations. In this study, we sampled 294 specimens across the distribution of this clade and used complete mitogenomes and genome-wide SNP data to better understand how landscape features influenced the population structure and dispersal of these grass frogs across time and space. Using phylogenetic inference, population structure analyses, and biogeographic reconstructions, we found that the species complex probably first diversified on the south-east side of the Great Rift Valley. Later on, species dispersed to the north-west side, where more recent diversification occurred. We further demonstrate that Ptychadena species have dispersed across the Great Rift Valley at different times. Our analyses allowed for a more complete understanding of the contribution of geological events, biogeographic barriers and climatic changes as drivers of species diversification and adaptation in this important biogeographic region.
Collapse
Affiliation(s)
- M. L. Lyra
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - S. Kirchhof
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - S. Goutte
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - A. Kassie
- Animal Biodiversity Directorate, Ethiopian Biodiversity Institute, Addis Ababa, Ethiopia
- Department of Zoological Sciences, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - S. Boissinot
- New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|