1
|
Luo Y, Zhang Y, Feng Y, Zeng X, Zhu D, Yang Y, Hu H, Wang Q, Guo L, Zou L, Zhong X. Prenatal exposure to low doses of benzophenone-3 elicits disruption of cortical vasculature in fetuses through perturbations in Wnt/β-catenin signaling correlating with depression-like behavior in offspring mice. Toxicology 2024; 509:153960. [PMID: 39343157 DOI: 10.1016/j.tox.2024.153960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Benzophenone-3 (BP-3), commonly used in personal care products, is routinely detected in environmental and human matrices. Evidence delineates a correlation between gestational BP-3 exposure and emotional and social disorders in children and adolescents. However, sensitive target cells and the mode of action underlying the early responses to environmentally relevant level of BP-3 exposure remain unclear. In this study, 0.3 and 3 mg/kg of BP-3 were administered to pregnant mice. Compared with the control group, the cortical blood vessel development process manifested the highest susceptibility to BP-3 exposure using transcriptomic sequencing at embryonic day 14 (E14). Notably, the diminution in vascular density and tight junction proteins presence was observed in the fetal cortex at E14, concomitant with the suppressed transcriptional activity of genes essential to angiogenesis and barrier formation. Strikingly, the investigation revealed that BP-3 exposure impeded vascular sprouting in aortic ring explants and neuroendothelial migration, implicating the Wnt/β-catenin signaling pathway. Moreover, BP-3 exposure compromised perivascular neural stem cell differentiation. Cortical vascular injury correlated with the exhibition of depression-like behavior in four-week postnatal progeny. These insights underscore the cerebrovasculature as an early sensitive target for low doses of BP-3 exposure, fostering the development of biomarkers and the establishment of the adverse outcome pathway framework for BP-3 hazard evaluation.
Collapse
Affiliation(s)
- Yijun Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yangjian Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yang Feng
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, China
| | - Xiangyu Zeng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Dan Zhu
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, China
| | - Ying Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Haichen Hu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Qi Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lan Guo
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Lianhong Zou
- Institute of Clinical and Translational Medicine, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, China; Geriatric Immunization Research Center of Hunan Provincial Geriatric Institute, Changsha, Hunan, China.
| | - Xiali Zhong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Toxicology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
2
|
Lin BB, Huang Q, Yan B, Liu M, Zhang Z, Lei H, Huang R, Dong JT, Pang J. An 18-gene signature of recurrence-associated endothelial cells predicts tumor progression and castration resistance in prostate cancer. Br J Cancer 2024; 131:870-882. [PMID: 38997406 PMCID: PMC11369112 DOI: 10.1038/s41416-024-02761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND The prognostic and therapeutic implications of endothelial cells (ECs) heterogeneity in prostate cancer (PCa) are poorly understood. METHODS We investigated associations of EC heterogeneity with PCa recurrence and castration resistance in 8 bulk transcriptomic and 4 single-cell RNA-seq cohorts. A recurrence-associated EC (RAEC) signature was constructed by comparing 11 machine learning algorithms through nested cross-validation. Functional relevances of RAEC-specific genes were also tested. RESULTS A subset of ECs was significantly associated with recurrence in primary PCa and named RAECs. RAECs were characteristic of tip and immature cells and were enriched in migration, angiogenesis, and collagen-related pathways. We then developed an 18-gene RAEC signature (RAECsig) representative of RAECs. Higher RAECsig scores independently predicted tumor recurrence and performed better or comparably compared to clinicopathological factors and commercial gene signatures in multiple PCa cohorts. Of the 18 RAECsig genes, FSCN1 was upregulated in ECs from PCa with higher Gleason scores; and the silencing of FSCN1, TMEME255B, or GABRD in ECs either attenuated tube formation or inhibited PCa cell proliferation. Finally, higher RAECsig scores predicted castration resistance in both primary and castration-resistant PCa. CONCLUSION This study establishes an endothelial signature that links a subset of ECs to prostate cancer recurrence and castration resistance.
Collapse
Affiliation(s)
- Bing-Biao Lin
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518000, China
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd, Shenzhen, 518055, China
- Department of Radiotherapy, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Qingqing Huang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd, Shenzhen, 518055, China
| | - Binyuan Yan
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518000, China
| | - Mingcheng Liu
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd, Shenzhen, 518055, China
| | - Zhiqian Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd, Shenzhen, 518055, China
| | - Hanqi Lei
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518000, China
| | - Ronghua Huang
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515000, China
| | - Jin-Tang Dong
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Blvd, Shenzhen, 518055, China.
| | - Jun Pang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518000, China.
| |
Collapse
|
3
|
Astigiano C, Piacente F, Laugieri ME, Benzi A, Di Buduo CA, Miguel CP, Soncini D, Cea M, Antonelli A, Magnani M, Balduini A, De Flora A, Bruzzone S. Sirtuin 6 Regulates the Activation of the ATP/Purinergic Axis in Endothelial Cells. Int J Mol Sci 2023; 24:ijms24076759. [PMID: 37047732 PMCID: PMC10095398 DOI: 10.3390/ijms24076759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
Sirtuin 6 (SIRT6) is a member of the mammalian NAD+-dependent deac(et)ylase sirtuin family. SIRT6’s anti-inflammatory roles are emerging increasingly often in different diseases and cell types, including endothelial cells. In this study, the role of SIRT6 in pro-inflammatory conditions was investigated by engineering human umbilical vein endothelial cells to overexpress SIRT6 (SIRT6+ HUVECs). Our results showed that SIRT6 overexpression affected the levels of adhesion molecules and sustained megakaryocyte proliferation and proplatelet formation. Interestingly, the pro-inflammatory activation of the ATP/purinergic axis was reduced in SIRT6+ HUVECs. Specifically, the TNFα-induced release of ATP in the extracellular space and the increase in pannexin-1 hemichannel expression, which mediates ATP efflux, were hampered in SIRT6+ cells. Instead, NAD+ release and Connexin43 expression were not modified by SIRT6 levels. Moreover, the Ca2+ influx in response to ATP and the expression of the purinergic receptor P2X7 were decreased in SIRT6+ HUVECs. Contrary to extracellular ATP, extracellular NAD+ did not evoke pro-inflammatory responses in HUVECs. Instead, NAD+ administration reduced endothelial cell proliferation and motility and counteracted the TNFα-induced angiogenesis. Altogether, our data reinforce the view of SIRT6 activation as an anti-inflammatory approach in vascular endothelium.
Collapse
Affiliation(s)
- Cecilia Astigiano
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy
| | - Francesco Piacente
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy
| | - Maria Elena Laugieri
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy
| | - Andrea Benzi
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy
| | - Christian A. Di Buduo
- Department of Molecular Medicine, University of Pavia, Via C. Forlanini 6, 27100 Pavia, Italy
| | - Carolina P. Miguel
- Department of Molecular Medicine, University of Pavia, Via C. Forlanini 6, 27100 Pavia, Italy
| | - Debora Soncini
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Michele Cea
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo R. Benzi, 16132 Genova, Italy
| | - Antonella Antonelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029 Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Via Saffi 2, 61029 Urbino, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Via C. Forlanini 6, 27100 Pavia, Italy
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Antonio De Flora
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy
| | - Santina Bruzzone
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo R. Benzi, 16132 Genova, Italy
| |
Collapse
|
4
|
Jiao L, Gong M, Yang X, Li M, Shao Y, Wang Y, Li H, Yu Q, Sun L, Xuan L, Huang J, Wang Y, Liu D, Qu Y, Lan X, Zhang Y, Zhang X, Sun H, Zhang Y, Zhang Y, Yang B. NAD + attenuates cardiac injury after myocardial infarction in diabetic mice through regulating alternative splicing of VEGF in macrophages. Vascul Pharmacol 2022; 147:107126. [PMID: 36351515 DOI: 10.1016/j.vph.2022.107126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/16/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
Diabetic mellitus (DM) complicated with myocardial infarction (MI) is a serious clinical issue that remained poorly comprehended. The aim of the present study was to investigate the role of NAD+ in attenuating cardiac damage following MI in diabetic mice. The cardiac dysfunction in DM mice with MI was more severe compared with the non-diabetic mice and NAD+ administration could significantly improve the cardiac function in both non-diabetic and diabetic mice after MI for both 7 days and 28 days. Moreover, application of NAD+ could markedly reduce the cardiac injury area of DM complicated MI mice. Notably, the level of NAD+ was robustly decreased in the cardiac tissue of MI mice, which was further reduced in the DM complicated mice and NAD+ administration could significantly restore the NAD+ level. Furthermore, NAD+ was verified to facilitate the angiogenesis in the MI area of both diabetic mice and non-diabetic mice by microfil perfusion assay and immunofluorescence. Additionally, we demonstrated that NAD+ promoted cardiac angiogenesis after myocardial infarction in diabetic mice by promoting the M2 polarization of macrophages. At the molecular level, NAD+ promoted the secretion of VEGF in macrophages and therefore facilitating migration and tube formation of endothelial cells. Mechanistically, NAD+ was found to promote the generation of pro-angionesis VEGF165 and inhibit the generation of anti-angionesis VEGF165b via regulating the alternative splicing factors of VEGF (SRSF1 and SRSF6) in macrophages. The effects of NAD+ were readily reversible on deficiency of it. Collectively, our data showed that NAD+ could attenuate myocardial injury via regulating the alternative splicing of VEGF and promoting angiogenesis in diabetic mice after myocardial infarction. NAD+ administration may therefore be considered a potential new approach for the treatment of diabetic patients with myocardial infarction.
Collapse
Affiliation(s)
- Lei Jiao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Manyu Gong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Xuewen Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Mengmeng Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Yingchun Shao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Yaqi Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Haodong Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Qi Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Lihua Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Lina Xuan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Jian Huang
- The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, PR China
| | - Yanying Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Dongping Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Yunmeng Qu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Xiuwen Lan
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin 150040, PR China
| | - Yanwei Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Xiyang Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Han Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China
| | - Ying Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, PR China; Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia; Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019RU070, PR China.
| |
Collapse
|
5
|
Chi DH, Kahyo T, Islam A, Hasan MM, Waliullah ASM, Mamun MA, Nakajima M, Ikoma T, Akita K, Maekawa Y, Sato T, Setou M. NAD + Levels Are Augmented in Aortic Tissue of ApoE -/- Mice by Dietary Omega-3 Fatty Acids. Arterioscler Thromb Vasc Biol 2022; 42:395-406. [PMID: 35139656 DOI: 10.1161/atvbaha.121.317166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Maintaining bioenergetic homeostasis provides a means to reduce the risk of cardiovascular events during chronological aging. Nicotinamide adenine dinucleotide (NAD+) acts as a signaling molecule, and its levels were used to govern several biological pathways, for example, promoting angiogenesis by SIRT1 (sirtuin 1)-mediated inhibition of Notch signaling to rejuvenate capillary density of old-aged mice. NAD+ modulation shows promise in the vascular remodeling of endothelial cells. However, NAD+ distribution in atherosclerotic regions remains uncharacterized. Omega-3 polyunsaturated fatty acids consumption, such as docosahexaenoic acid and eicosapentaenoic acid, might increase the abundance of cofactors in blood vessels due to omega-3 polyunsaturated fatty acids metabolism. METHODS Apolipoprotein E-deficient (ApoE-/-) mice were fed a Western diet, and the omega-3 polyunsaturated fatty acids-treated groups were supplemented with docosahexaenoic acid (1%, w/w) or eicosapentaenoic acid (1%, w/w) for 3 weeks. Desorption electrospray ionization mass spectrometry imaging was exploited to detect exogenous and endogenous NAD+ imaging. RESULTS NAD+, NADH, NADP+, NADPH, FAD+, FADH, and nicotinic acid adenine dinucleotide of the aortic arches were detected higher in the omega-3 polyunsaturated fatty acids-treated mice than the nontreated control. Comparing the distribution in the outer and inner layers of the arterial walls, only NADPH was detected slightly higher in the outer part in eicosapentaenoic acid-treated mice. CONCLUSIONS Supplementation of adding docosahexaenoic acid or eicosapentaenoic acid to the Western diet led to a higher NAD+, FAD+, and their metabolites in the aortic arch. Considering the pleiotropic roles of NAD+ in biology, this result serves as a beneficial therapeutic strategy in the animal model counter to pathological conditions.
Collapse
Affiliation(s)
- Do Huu Chi
- Department of Cellular and Molecular Anatomy (D.H.C., T.K., A.I., M.M.H., A.S.M.W., M.A.M., M.N., T.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tomoaki Kahyo
- Department of Cellular and Molecular Anatomy (D.H.C., T.K., A.I., M.M.H., A.S.M.W., M.A.M., M.N., T.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan.,International Mass Imaging Center (T.K., M.N., T.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Ariful Islam
- Department of Cellular and Molecular Anatomy (D.H.C., T.K., A.I., M.M.H., A.S.M.W., M.A.M., M.N., T.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Md Mahmudul Hasan
- Department of Cellular and Molecular Anatomy (D.H.C., T.K., A.I., M.M.H., A.S.M.W., M.A.M., M.N., T.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan
| | - A S M Waliullah
- Department of Cellular and Molecular Anatomy (D.H.C., T.K., A.I., M.M.H., A.S.M.W., M.A.M., M.N., T.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Md Al Mamun
- Department of Cellular and Molecular Anatomy (D.H.C., T.K., A.I., M.M.H., A.S.M.W., M.A.M., M.N., T.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Madoka Nakajima
- Department of Cellular and Molecular Anatomy (D.H.C., T.K., A.I., M.M.H., A.S.M.W., M.A.M., M.N., T.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan.,International Mass Imaging Center (T.K., M.N., T.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Takenori Ikoma
- Department of Internal Medicine (T.I., K.A., Y.M.), Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Keitaro Akita
- Department of Internal Medicine (T.I., K.A., Y.M.), Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Yuichiro Maekawa
- Department of Internal Medicine (T.I., K.A., Y.M.), Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Tomohito Sato
- Department of Cellular and Molecular Anatomy (D.H.C., T.K., A.I., M.M.H., A.S.M.W., M.A.M., M.N., T.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan.,International Mass Imaging Center (T.K., M.N., T.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy (D.H.C., T.K., A.I., M.M.H., A.S.M.W., M.A.M., M.N., T.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan.,International Mass Imaging Center (T.K., M.N., T.S., M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan.,Department of Systems Molecular Anatomy, Institute for Medical Photonics Research, Preeminent Medical Photonics Education and Research Center (M.S.), Hamamatsu University School of Medicine, Shizuoka, Japan
| |
Collapse
|
6
|
Salmina AB, Malinovskaya NA, Morgun AV, Khilazheva ED, Uspenskaya YA, Illarioshkin SN. Reproducibility of developmental neuroplasticity in in vitro brain tissue models. Rev Neurosci 2022; 33:531-554. [PMID: 34983132 DOI: 10.1515/revneuro-2021-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/13/2021] [Indexed: 11/15/2022]
Abstract
The current prevalence of neurodevelopmental, neurodegenerative diseases, stroke and brain injury stimulates studies aimed to identify new molecular targets, to select the drug candidates, to complete the whole set of preclinical and clinical trials, and to implement new drugs into routine neurological practice. Establishment of protocols based on microfluidics, blood-brain barrier- or neurovascular unit-on-chip, and microphysiological systems allowed improving the barrier characteristics and analyzing the regulation of local microcirculation, angiogenesis, and neurogenesis. Reconstruction of key mechanisms of brain development and even some aspects of experience-driven brain plasticity would be helpful in the establishment of brain in vitro models with the highest degree of reliability. Activity, metabolic status and expression pattern of cells within the models can be effectively assessed with the protocols of system biology, cell imaging, and functional cell analysis. The next generation of in vitro models should demonstrate high scalability, 3D or 4D complexity, possibility to be combined with other tissues or cell types within the microphysiological systems, compatibility with bio-inks or extracellular matrix-like materials, achievement of adequate vascularization, patient-specific characteristics, and opportunity to provide high-content screening. In this review, we will focus on currently available and prospective brain tissue in vitro models suitable for experimental and preclinical studies with the special focus on models enabling 4D reconstruction of brain tissue for the assessment of brain development, brain plasticity, and drug kinetics.
Collapse
Affiliation(s)
- Alla B Salmina
- Laboratory of Experimental Brain Cytology, Research Center of Neurology, Volokolamskoe Highway 80, Moscow, 125367, Russia.,Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Natalia A Malinovskaya
- Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Andrey V Morgun
- Department of Ambulatory Pediatrics, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zheleznyaka str., 1, Krasnoyarsk 660022, Russia
| | - Elena D Khilazheva
- Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Yulia A Uspenskaya
- Research Institute of Molecular Medicine & Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, P. Zhelenzyaka str., 1, Krasnoyarsk 660022, Russia
| | - Sergey N Illarioshkin
- Department of Brain Studies, Research Center of Neurology, Volokolamskoe Highway, 80, Moscow 125367, Russia
| |
Collapse
|
7
|
Schroeder R, Sridharan P, Nguyen L, Loren A, Williams NS, Kettimuthu KP, Cintrón-Pérez CJ, Vázquez-Rosa E, Pieper AA, Stevens HE. Maternal P7C3-A20 Treatment Protects Offspring from Neuropsychiatric Sequelae of Prenatal Stress. Antioxid Redox Signal 2021; 35:511-530. [PMID: 33501899 PMCID: PMC8388250 DOI: 10.1089/ars.2020.8227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aims: Impaired embryonic cortical interneuron development from prenatal stress is linked to adult neuropsychiatric impairment, stemming in part from excessive generation of reactive oxygen species in the developing embryo. Unfortunately, there are no preventive medicines that mitigate the risk of prenatal stress to the embryo, as the underlying pathophysiologic mechanisms are poorly understood. Our goal was to interrogate the molecular basis of prenatal stress-mediated damage to the embryonic brain to identify a neuroprotective strategy. Results: Chronic prenatal stress in mice dysregulated nicotinamide adenine dinucleotide (NAD+) synthesis enzymes and cortical interneuron development in the embryonic brain, leading to axonal degeneration in the hippocampus, cognitive deficits, and depression-like behavior in adulthood. Offspring were protected from these deleterious effects by concurrent maternal administration of the NAD+-modulating agent P7C3-A20, which crossed the placenta to access the embryonic brain. Prenatal stress also produced axonal degeneration in the adult corpus callosum, which was not prevented by maternal P7C3-A20. Innovation: Prenatal stress dysregulates gene expression of NAD+-synthesis machinery and GABAergic interneuron development in the embryonic brain, which is associated with adult cognitive impairment and depression-like behavior. We establish a maternally directed treatment that protects offspring from these effects of prenatal stress. Conclusion: NAD+-synthesis machinery and GABAergic interneuron development are critical to proper embryonic brain development underlying postnatal neuropsychiatric functioning, and these systems are highly susceptible to prenatal stress. Pharmacologic stabilization of NAD+ in the stressed embryonic brain may provide a neuroprotective strategy that preserves normal embryonic development and protects offspring from neuropsychiatric impairment. Antioxid. Redox Signal. 35, 511-530.
Collapse
Affiliation(s)
- Rachel Schroeder
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
| | - Preethy Sridharan
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA.,Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lynn Nguyen
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Alexandra Loren
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kavitha P Kettimuthu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Coral J Cintrón-Pérez
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA
| | - Edwin Vázquez-Rosa
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA.,Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA.,Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, Ohio, USA.,Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, New York, USA
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
8
|
Early Life Stress and Metabolic Plasticity of Brain Cells: Impact on Neurogenesis and Angiogenesis. Biomedicines 2021; 9:biomedicines9091092. [PMID: 34572278 PMCID: PMC8470044 DOI: 10.3390/biomedicines9091092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 12/15/2022] Open
Abstract
Early life stress (ELS) causes long-lasting changes in brain plasticity induced by the exposure to stress factors acting prenatally or in the early postnatal ontogenesis due to hyperactivation of hypothalamic-pituitary-adrenal axis and sympathetic nervous system, development of neuroinflammation, aberrant neurogenesis and angiogenesis, and significant alterations in brain metabolism that lead to neurological deficits and higher susceptibility to development of brain disorders later in the life. As a key component of complex pathogenesis, ELS-mediated changes in brain metabolism associate with development of mitochondrial dysfunction, loss of appropriate mitochondria quality control and mitochondrial dynamics, deregulation of metabolic reprogramming. These mechanisms are particularly critical for maintaining the pool and development of brain cells within neurogenic and angiogenic niches. In this review, we focus on brain mitochondria and energy metabolism related to tightly coupled neurogenic and angiogenic events in healthy and ELS-affected brain, and new opportunities to develop efficient therapeutic strategies aimed to restore brain metabolism and reduce ELS-induced impairments of brain plasticity.
Collapse
|
9
|
Salmina AB, Kharitonova EV, Gorina YV, Teplyashina EA, Malinovskaya NA, Khilazheva ED, Mosyagina AI, Morgun AV, Shuvaev AN, Salmin VV, Lopatina OL, Komleva YK. Blood-Brain Barrier and Neurovascular Unit In Vitro Models for Studying Mitochondria-Driven Molecular Mechanisms of Neurodegeneration. Int J Mol Sci 2021; 22:4661. [PMID: 33925080 PMCID: PMC8125678 DOI: 10.3390/ijms22094661] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Pathophysiology of chronic neurodegeneration is mainly based on complex mechanisms related to aberrant signal transduction, excitation/inhibition imbalance, excitotoxicity, synaptic dysfunction, oxidative stress, proteotoxicity and protein misfolding, local insulin resistance and metabolic dysfunction, excessive cell death, development of glia-supported neuroinflammation, and failure of neurogenesis. These mechanisms tightly associate with dramatic alterations in the structure and activity of the neurovascular unit (NVU) and the blood-brain barrier (BBB). NVU is an ensemble of brain cells (brain microvessel endothelial cells (BMECs), astrocytes, pericytes, neurons, and microglia) serving for the adjustment of cell-to-cell interactions, metabolic coupling, local microcirculation, and neuronal excitability to the actual needs of the brain. The part of the NVU known as a BBB controls selective access of endogenous and exogenous molecules to the brain tissue and efflux of metabolites to the blood, thereby providing maintenance of brain chemical homeostasis critical for efficient signal transduction and brain plasticity. In Alzheimer's disease, mitochondria are the target organelles for amyloid-induced neurodegeneration and alterations in NVU metabolic coupling or BBB breakdown. In this review we discuss understandings on mitochondria-driven NVU and BBB dysfunction, and how it might be studied in current and prospective NVU/BBB in vitro models for finding new approaches for the efficient pharmacotherapy of Alzheimer's disease.
Collapse
Affiliation(s)
- Alla B. Salmina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
- Research Center of Neurology, 125367 Moscow, Russia
| | - Ekaterina V. Kharitonova
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Yana V. Gorina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Elena A. Teplyashina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Natalia A. Malinovskaya
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Elena D. Khilazheva
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Angelina I. Mosyagina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Andrey V. Morgun
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Anton N. Shuvaev
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Vladimir V. Salmin
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Olga L. Lopatina
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| | - Yulia K. Komleva
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia; (E.V.K.); (Y.V.G.); (E.A.T.); (N.A.M.); (E.D.K.); (A.I.M.); (A.V.M.); (A.N.S.); (V.V.S.); (O.L.L.); (Y.K.K.)
| |
Collapse
|