1
|
Kang C. 19F NMR in RNA structural biology: exploring structures, dynamics, and small molecule interactions. Eur J Med Chem 2025; 292:117682. [PMID: 40300458 DOI: 10.1016/j.ejmech.2025.117682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 05/01/2025]
Abstract
RNA molecules play essential roles in numerous biological pathways, making them attractive targets for drug discovery. Despite the challenges in developing small molecules targeting RNA, the success in developing compounds that modulate RNA function underscores its therapeutic potential. 19F NMR spectroscopy has emerged as a powerful tool in structural biology and drug discovery, particularly for studying macromolecular structures and ligand interactions. As RNA continues to gain prominence as a drug target, 19F NMR is expected to play a pivotal role in advancing RNA-focused drug discovery. This review describes the diverse applications of 19F NMR in RNA biology, including its use in characterizing RNA structures, probing molecular dynamics, identifying small-molecule binders, and investigating interaction mechanisms of small-molecule ligands. By providing detailed structural and ligand binding insights, 19F NMR will facilitate the discovery of RNA-targeting therapeutics and deepen our understanding of RNA modulatory mechanisms.
Collapse
Affiliation(s)
- CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A∗STAR), 10 Biopolis Road, #05-01, 138670, Singapore.
| |
Collapse
|
2
|
Boeszoermenyi A, Radeva DL, Schindler S, Valadares V, Padmanabha Das KM, Dubey A, Viennet T, Schmitt M, Kast P, Gelev VM, Stoyanov N, Burdzhiev N, Petrov O, Ficarro S, Marto J, Geffken EA, Dhe-Paganon S, Seo HS, Alexander ND, Cooley RB, Mehl RA, Kovacs H, Anklin C, Bermel W, Kuprov I, Takeuchi K, Arthanari H. Leveraging relaxation-optimized 1H- 13C F correlations in 4- 19F-phenylalanine as atomic beacons for probing structure and dynamics of large proteins. Nat Chem 2025:10.1038/s41557-025-01818-8. [PMID: 40325144 DOI: 10.1038/s41557-025-01818-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 03/28/2025] [Indexed: 05/07/2025]
Abstract
NMR spectroscopy of biomolecules provides atomic level information into their structure, dynamics and interactions with their binding partners. However, signal attenuation from line broadening caused by fast relaxation and signal overlap often limits the application of NMR to large macromolecular systems. Here we leverage the slow relaxation properties of 13C nuclei attached to 19F in aromatic 19F-13C spin pairs as well as the spin-spin coupling between the fluorinated 13C nucleus and the hydrogen atom at the meta-position to record two-dimensional 1H-13CF correlation spectra with transverse relaxation-optimized spectroscopy selection on 13CF. To accomplish this, we synthesized [4-19F13Cζ; 3,5-2H2ε] Phe, engineered for optimal relaxation properties, and adapted a residue-specific route to incorporate this residue globally into proteins and a site-specific 4-19F Phe encoding strategy. This approach resulted in narrow linewidths for proteins ranging from 30 kDa to 180 kDa, enabling interaction studies with small-molecule ligands without requiring specialized 19F-compatible probes.
Collapse
Affiliation(s)
- Andras Boeszoermenyi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| | - Denitsa L Radeva
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | | | - Veronica Valadares
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Krishna M Padmanabha Das
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Abhinav Dubey
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Thibault Viennet
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry | iNANO, Aarhus University, Aarhus, Denmark
| | - Max Schmitt
- Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland
| | - Peter Kast
- Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland
| | - Vladimir M Gelev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Nikolay Stoyanov
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Nikola Burdzhiev
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Ognyan Petrov
- Faculty of Chemistry and Pharmacy, Sofia University, Sofia, Bulgaria
| | - Scott Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jarred Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ezekiel A Geffken
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nathan D Alexander
- Department of Biochemistry and Biophysics, Oregon State University, GCE4All Research Center, Corvallis, OR, USA
| | - Richard B Cooley
- Department of Biochemistry and Biophysics, Oregon State University, GCE4All Research Center, Corvallis, OR, USA
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, GCE4All Research Center, Corvallis, OR, USA
| | | | | | | | - Ilya Kuprov
- School of Chemistry and Chemical Engineering, University of Southampton, Southampton, UK
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan.
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Attionu SK, Dill R, Summers MF, Case DA, Marchant J, Dayie TK. Selective [9- 15N] Guanosine for Nuclear Magnetic Resonance Studies of Large Ribonucleic Acids. Chembiochem 2025:e2500206. [PMID: 40320375 DOI: 10.1002/cbic.202500206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Revised: 05/01/2025] [Indexed: 05/24/2025]
Abstract
RNAs regulate various cellular processes using malleable 3D structures, and understanding the factors that control RNA structure and dynamics is critical for understanding their mechanisms of action. To mitigate factors that have limited studies of large, functionally relevant RNAs by solution nuclear magnetic resonance (NMR) spectroscopy, we have extended a recently described 2H-enhanced, 1H-15N correlation approach that used uniformly 15N-labeled guanosine triphosphate (GTP) by developing a chemoenzymatic labeling technology that grafts selectively labeled [9-15N]-Guanine on to any labeled ribose to make [9-15N]-GTP. The approach exploits advantageous NMR properties of the N9 nucleus which, when combined with extensive ribose deuteration and optimized NMR pulse sequences, affords sharp signals without complications that can arise using uniform [15N]-guanine labeling. The utility of the approach for NMR signal assignment and dynamics analysis is demonstrated for three large RNAs (20-78 kDa) that play critical roles in viral replication. With this approach, NMR studies of RNAs comprising 200 nt or more should now be feasible.
Collapse
Affiliation(s)
- Solomon K Attionu
- Department of Chemistry and Biochemistry, University of Maryland, 8314 Paint Branch Dr, College Park, MD, 20742, USA
| | - Rita Dill
- Department of Chemistry and Biochemistry, University of Maryland, 8314 Paint Branch Dr, College Park, MD, 20742, USA
| | - Michael F Summers
- Howard Hughes Medical Institute, University of Maryland, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
- Department of Chemistry and Biochemistry, University of Maryland, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - David A Case
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ, 08854, USA
| | - Jan Marchant
- Department of Chemistry and Biochemistry, University of Maryland, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Theodore K Dayie
- Department of Chemistry and Biochemistry, University of Maryland, 8314 Paint Branch Dr, College Park, MD, 20742, USA
| |
Collapse
|
4
|
Hilber S, Attionu SK, Dayie TK, Kreutz C. Advances in Isotope Labeling for Solution Nucleic Acid Nuclear Magnetic Resonance Spectroscopy. Chempluschem 2025:e2400752. [PMID: 40202339 DOI: 10.1002/cplu.202400752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/10/2025]
Abstract
The availability of structural biology methods for nucleic acid still lags behind that of proteins, as evidenced by the smaller number of structures (DNA: 2513, RNA: 1899, nucleic acid-protein complexes: 13 842, protein: 196 887) deposited in the protein database. The skewed ratio of nucleic acid structures, relative to proteins (≈1:50), is inverted with respect to the cellular output of RNA and proteins in higher organisms (≈50:1). While nuclear magnetic resonance (NMR) is an attractive biophysical tool capable of bridging this gap at the molecular level, the conformational flexibility, line broadening, and low chemical shift dispersion of nucleic acids have made the NMR method challenging, especially for structures larger than 35 nucleotides. The incorporation of NMR-active isotopes is a f strategy to combat these problems. Significant strides made to push the size limits of nucleic acid structures solved by NMR using chemoenzymatic 13C- methyl and aromatic 15N- and 19F-13C-labeling are reviewed and challenges and opportunities are evaluated. Combining these isotopic labeling patterns with superior NMR spectroscopic properties, and new DNA/RNA synthesis methods (palindrome-nicking-dependent amplification and segmental labeling and site-specific modifications by template-directed tension), may stimulate advances in NMR studies of large DNA/RNA and their complexes with important biological functions.
Collapse
Affiliation(s)
- Stefan Hilber
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain, 80/82, 6020, Innsbruck, Austria
| | - Solomon Kojo Attionu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20782, USA
| | - Theodore Kwaku Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20782, USA
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain, 80/82, 6020, Innsbruck, Austria
| |
Collapse
|
5
|
Juen F, Glänzer D, Plangger R, Kugler V, Fleischmann J, Stefan E, Case DA, Kovacs H, Dayie TK, Kreutz C. Enhanced TROSY Effect in [2- 19 F, 2- 13 C] Adenosine and ATP Analogs Facilitates NMR Spectroscopy of Very Large Biological RNAs in Solution. Angew Chem Int Ed Engl 2024; 63:e202316273. [PMID: 38185473 PMCID: PMC10922520 DOI: 10.1002/anie.202316273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Large RNAs are central to cellular functions, but characterizing such RNAs remains challenging by solution NMR. We present two labeling technologies based on [2-19 F, 2-13 C]-adenosine, which allow the incorporation of aromatic 19 F-13 C spin pairs. The labels when coupled with the transverse relaxation optimized spectroscopy (TROSY) enable us to probe RNAs comprising up to 124 nucleotides. With our new [2-19 F, 2-13 C]-adenosine-phosphoramidite, all resonances of the human hepatitis B virus epsilon RNA could be readily assigned. With [2-19 F, 2-13 C]-adenosine triphosphate, the 124 nt pre-miR-17-NPSL1-RNA was produced via in vitro transcription and the TROSY spectrum of this 40 kDa [2-19 F, 2-13 C]-A-labeled RNA featured sharper resonances than the [2-1 H, 2-13 C]-A sample. The mutual cancelation of the chemical-shift-anisotropy and the dipole-dipole-components of TROSY-resonances leads to narrow linewidths over a wide range of molecular weights. With the synthesis of a non-hydrolysable [2-19 F, 2-13 C]-adenosine-triphosphate, we facilitate the probing of co-factor binding in kinase complexes and NMR-based inhibitor binding studies in such systems. Our labels allow a straightforward assignment for larger RNAs via a divide-and-conquer/mutational approach. The new [2-19 F, 2-13 C]-adenosine precursors are a valuable addition to the RNA NMR toolbox and will allow the study of large RNAs/RNA protein complexes in vitro and in cells.
Collapse
Affiliation(s)
- Fabian Juen
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - David Glänzer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Raphael Plangger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Valentina Kugler
- Institute of Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Jakob Fleischmann
- Institute of Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Eduard Stefan
- Institute of Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020 Innsbruck, Austria
| | - David A. Case
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Theodore Kwaku Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20782, USA
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
6
|
Kara H, Axer A, Muskett FW, Bueno-Alejo CJ, Paschalis V, Taladriz-Sender A, Tubasum S, Vega MS, Zhao Z, Clark AW, Hudson AJ, Eperon IC, Burley GA, Dominguez C. 2'- 19F labelling of ribose in RNAs: a tool to analyse RNA/protein interactions by NMR in physiological conditions. Front Mol Biosci 2024; 11:1325041. [PMID: 38419689 PMCID: PMC10899400 DOI: 10.3389/fmolb.2024.1325041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Protein-RNA interactions are central to numerous cellular processes. In this work, we present an easy and straightforward NMR-based approach to determine the RNA binding site of RNA binding proteins and to evaluate the binding of pairs of proteins to a single-stranded RNA (ssRNA) under physiological conditions, in this case in nuclear extracts. By incorporation of a 19F atom on the ribose of different nucleotides along the ssRNA sequence, we show that, upon addition of an RNA binding protein, the intensity of the 19F NMR signal changes when the 19F atom is located near the protein binding site. Furthermore, we show that the addition of pairs of proteins to a ssRNA containing two 19F atoms at two different locations informs on their concurrent binding or competition. We demonstrate that such studies can be done in a nuclear extract that mimics the physiological environment in which these protein-ssRNA interactions occur. Finally, we demonstrate that a trifluoromethoxy group (-OCF3) incorporated in the 2'ribose position of ssRNA sequences increases the sensitivity of the NMR signal, leading to decreased measurement times, and reduces the issue of RNA degradation in cellular extracts.
Collapse
Affiliation(s)
- Hesna Kara
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Alexander Axer
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Frederick W Muskett
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Carlos J Bueno-Alejo
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- School of Chemistry, University of Leicester, Leicester, United Kingdom
| | - Vasileios Paschalis
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Andrea Taladriz-Sender
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Sumera Tubasum
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Marina Santana Vega
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Zhengyun Zhao
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Alasdair W Clark
- Biomedical Engineering Research Division, School of Engineering, University of Glasgow, Glasgow, United Kingdom
| | - Andrew J Hudson
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- School of Chemistry, University of Leicester, Leicester, United Kingdom
| | - Ian C Eperon
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Glenn A Burley
- WestCHEM and Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Cyril Dominguez
- Department of Molecular and Cellular Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
- Leicester Institute of Structural and Chemical Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
7
|
Zielinski KA, Sui S, Pabit SA, Rivera DA, Wang T, Hu Q, Kashipathy MM, Lisova S, Schaffer CB, Mariani V, Hunter MS, Kupitz C, Moss FR, Poitevin FP, Grant TD, Pollack L. RNA structures and dynamics with Å resolution revealed by x-ray free-electron lasers. SCIENCE ADVANCES 2023; 9:eadj3509. [PMID: 37756398 PMCID: PMC10530093 DOI: 10.1126/sciadv.adj3509] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
RNA macromolecules, like proteins, fold to assume shapes that are intimately connected to their broadly recognized biological functions; however, because of their high charge and dynamic nature, RNA structures are far more challenging to determine. We introduce an approach that exploits the high brilliance of x-ray free-electron laser sources to reveal the formation and ready identification of angstrom-scale features in structured and unstructured RNAs. Previously unrecognized structural signatures of RNA secondary and tertiary structures are identified through wide-angle solution scattering experiments. With millisecond time resolution, we observe an RNA fold from a dynamically varying single strand through a base-paired intermediate to assume a triple-helix conformation. While the backbone orchestrates the folding, the final structure is locked in by base stacking. This method may help to rapidly characterize and identify structural elements in nucleic acids in both equilibrium and time-resolved experiments.
Collapse
Affiliation(s)
- Kara A. Zielinski
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Shuo Sui
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Suzette A. Pabit
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Daniel A. Rivera
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Tong Wang
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Qingyue Hu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Maithri M. Kashipathy
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Stella Lisova
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Chris B. Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Valerio Mariani
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Frank R. Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Frédéric P. Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Thomas D. Grant
- Department of Structural Biology, Jacobs School of Medicine and Biological Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Zielinski KA, Sui S, Pabit SA, Rivera DA, Wang T, Hu Q, Kashipathy MM, Lisova S, Schaffer CB, Mariani V, Hunter MS, Kupitz C, Moss FR, Poitevin FP, Grant TD, Pollack L. RNA structures and dynamics with Å resolution revealed by x-ray free electron lasers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.541763. [PMID: 37292849 PMCID: PMC10245879 DOI: 10.1101/2023.05.24.541763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA macromolecules, like proteins, fold to assume shapes that are intimately connected to their broadly recognized biological functions; however, because of their high charge and dynamic nature, RNA structures are far more challenging to determine. We introduce an approach that exploits the high brilliance of x-ray free electron laser sources to reveal the formation and ready identification of Å scale features in structured and unstructured RNAs. New structural signatures of RNA secondary and tertiary structures are identified through wide angle solution scattering experiments. With millisecond time resolution, we observe an RNA fold from a dynamically varying single strand through a base paired intermediate to assume a triple helix conformation. While the backbone orchestrates the folding, the final structure is locked in by base stacking. In addition to understanding how RNA triplexes form and thereby function as dynamic signaling elements, this new method can vastly increase the rate of structure determination for these biologically essential, but mostly uncharacterized macromolecules.
Collapse
Affiliation(s)
- Kara A. Zielinski
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Shuo Sui
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Suzette A. Pabit
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Daniel A. Rivera
- Meinig School of Biomedical Engineering, Cornell University; Ithaca NY 14853 USA
| | - Tong Wang
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Qingyue Hu
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| | - Maithri M. Kashipathy
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Stella Lisova
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Chris B. Schaffer
- Meinig School of Biomedical Engineering, Cornell University; Ithaca NY 14853 USA
| | - Valerio Mariani
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Mark S. Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Christopher Kupitz
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Frank R. Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Frédéric P. Poitevin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory; Menlo Park, CA 94025 USA
| | - Thomas D. Grant
- Department of Structural Biology, Jacobs School of Medicine and Biological Sciences; University at Buffalo, Buffalo, NY 14203 USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University; Ithaca NY 14853 USA
| |
Collapse
|
9
|
Wong J, Ganoe B, Liu X, Neudecker T, Lee J, Liang J, Wang Z, Li J, Rettig A, Head-Gordon T, Head-Gordon M. An in-silico NMR laboratory for nuclear magnetic shieldings computed via finite fields: Exploring nucleus-specific renormalizations of MP2 and MP3. J Chem Phys 2023; 158:164116. [PMID: 37114707 PMCID: PMC10148725 DOI: 10.1063/5.0145130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
We developed and implemented a method-independent, fully numerical, finite difference approach to calculating nuclear magnetic resonance shieldings, using gauge-including atomic orbitals. The resulting capability can be used to explore non-standard methods, given only the energy as a function of finite-applied magnetic fields and nuclear spins. For example, standard second-order Møller-Plesset theory (MP2) has well-known efficacy for 1H and 13C shieldings and known limitations for other nuclei such as 15N and 17O. It is, therefore, interesting to seek methods that offer good accuracy for 15N and 17O shieldings without greatly increased compute costs, as well as exploring whether such methods can further improve 1H and 13C shieldings. Using a small molecule test set of 28 species, we assessed two alternatives: κ regularized MP2 (κ-MP2), which provides energy-dependent damping of large amplitudes, and MP2.X, which includes a variable fraction, X, of third-order correlation (MP3). The aug-cc-pVTZ basis was used, and coupled cluster with singles and doubles and perturbative triples [CCSD(T)] results were taken as reference values. Our κ-MP2 results reveal significant improvements over MP2 for 13C and 15N, with the optimal κ value being element-specific. κ-MP2 with κ = 2 offers a 30% rms error reduction over MP2. For 15N, κ-MP2 with κ = 1.1 provides a 90% error reduction vs MP2 and a 60% error reduction vs CCSD. On the other hand, MP2.X with a scaling factor of 0.6 outperformed CCSD for all heavy nuclei. These results can be understood as providing renormalization of doubles amplitudes to partially account for neglected triple and higher substitutions and offer promising opportunities for future applications.
Collapse
Affiliation(s)
- Jonathan Wong
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Brad Ganoe
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Xiao Liu
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Tim Neudecker
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Joonho Lee
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Jiashu Liang
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Zhe Wang
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Jie Li
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Adam Rettig
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | |
Collapse
|
10
|
Marušič M, Toplishek M, Plavec J. NMR of RNA - Structure and interactions. Curr Opin Struct Biol 2023; 79:102532. [PMID: 36746110 DOI: 10.1016/j.sbi.2023.102532] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/11/2022] [Accepted: 12/19/2022] [Indexed: 02/07/2023]
Abstract
RNA was shown to have a more substantial role in the regulation of diverse cellular processes than anticipated until recently. Answers to questions what is the structure of specific RNAs, how structure changes to accommodate different functional roles, and how RNA senses other biomolecules and changes its fold upon interaction create a complete representation of RNA involved in cellular processes. Nuclear magnetic resonance (NMR) spectroscopy encompasses a collection of methods and approaches that offer insight into several structural aspects of RNAs. We review the most recent advances in the field of viral, long non-coding, regulatory, and four-stranded RNAs, with an emphasis on the detection of dynamic sub-states and in view of chemical modifications that expand RNA's function.
Collapse
Affiliation(s)
- Maja Marušič
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Maria Toplishek
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia; University of Ljubljana, Faculty of Chemistry and Chemical Technology, Ljubljana, Slovenia; EN-FIST Centre of Excellence, Cesta OF 13, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Liang J, Wang Z, Li J, Wong J, Liu X, Ganoe B, Head-Gordon T, Head-Gordon M. Efficient Calculation of NMR Shielding Constants Using Composite Method Approximations and Locally Dense Basis Sets. J Chem Theory Comput 2023. [PMID: 36594660 DOI: 10.1021/acs.jctc.2c00933] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This paper presents a systematic study of applying composite method approximations with locally dense basis sets (LDBS) to efficiently calculate NMR shielding constants in small and medium-sized molecules. The pcSseg-n series of basis sets are shown to have similar accuracy to the pcS-n series when n ≥ 1 and can slightly reduce computational costs. We identify two different LDBS partition schemes that perform very effectively for density functional calculations. We select a large subset of the recent NS372 database containing 290 H, C, N, and O shielding values evaluated by reference methods on 106 molecules to carefully assess methods of the high, medium, and low computational costs to make practical recommendations. Our assessment covers conventional electronic structure methods (density functional theory and wave function) with global basis calculations, as well as their use in one of the satisfactory LDBS approaches, and a range of composite approaches, also with and without LDBS. Altogether 99 methods are evaluated. On this basis, we recommend different methods to reach three different levels of accuracy and time requirements across the four nuclei considered.
Collapse
Affiliation(s)
- Jiashu Liang
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California at Berkeley, Berkeley, California94720, United States
| | - Zhe Wang
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California at Berkeley, Berkeley, California94720, United States
| | - Jie Li
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California at Berkeley, Berkeley, California94720, United States
| | - Jonathan Wong
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California at Berkeley, Berkeley, California94720, United States
| | - Xiao Liu
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California at Berkeley, Berkeley, California94720, United States
| | - Brad Ganoe
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California at Berkeley, Berkeley, California94720, United States
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California at Berkeley, Berkeley, California94720, United States
| | - Martin Head-Gordon
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California at Berkeley, Berkeley, California94720, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| |
Collapse
|
12
|
Li Q, Trajkovski M, Fan C, Chen J, Zhou Y, Lu K, Li H, Su X, Xi Z, Plavec J, Zhou C. 4'-SCF 3 -Labeling Constitutes a Sensitive 19 F NMR Probe for Characterization of Interactions in the Minor Groove of DNA. Angew Chem Int Ed Engl 2022; 61:e202201848. [PMID: 36163470 PMCID: PMC9828712 DOI: 10.1002/anie.202201848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 01/12/2023]
Abstract
Fluorinated nucleotides are invaluable for 19 F NMR studies of nucleic acid structure and function. Here, we synthesized 4'-SCF3 -thymidine (T 4 ' - SCF 3 ${{^{4{^\prime}\hbox{-}{\rm SCF}{_{3}}}}}$ ) and incorporated it into DNA by means of solid-phase DNA synthesis. NMR studies showed that the 4'-SCF3 group exhibited a flexible orientation in the minor groove of DNA duplexes and was well accommodated by various higher order DNA structures. The three magnetically equivalent fluorine atoms in 4'-SCF3 -DNA constitute an isolated spin system, offering high 19 F NMR sensitivity and excellent resolution of the positioning of T 4 ' - SCF 3 ${{^{4{^\prime}\hbox{-}{\rm SCF}{_{3}}}}}$ within various secondary and tertiary DNA structures. The high structural adaptability and high sensitivity of T 4 ' - SCF 3 ${{^{4{^\prime}\hbox{-}{\rm SCF}{_{3}}}}}$ make it a valuable 19 F NMR probe for quantitatively distinguishing diverse DNA structures with single-nucleotide resolution and for monitoring the dynamics of interactions in the minor groove of double-stranded DNA.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China,Slovenian NMR CentreNational Institute of ChemistryHajdrihova 19SI-1000LjubljanaSlovenia
| | - Marko Trajkovski
- Slovenian NMR CentreNational Institute of ChemistryHajdrihova 19SI-1000LjubljanaSlovenia
| | - Chaochao Fan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Jialiang Chen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Yifei Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Kuan Lu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Hongjun Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Xuncheng Su
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Janez Plavec
- Slovenian NMR CentreNational Institute of ChemistryHajdrihova 19SI-1000LjubljanaSlovenia
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
13
|
Taiwo KM, Nam H, LeBlanc RM, Longhini AP, Dayie TK. Cross-correlated relaxation rates provide facile exchange signature in selectively labeled RNA. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 342:107245. [PMID: 35908529 DOI: 10.1016/j.jmr.2022.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Gerhard Wagner has made numerous contributions to NMR spectroscopy, particularly his developments in the field of spin-relaxation stand out in directly mapping the spectral density functions of proteins. He and his group developed experimental techniques to reveal the importance of dynamics to protein biological function and drug discovery. On his 75th birthday, we take this opportunity to highlight how some of those seminal ideas developed for proteins are being extended to RNAs. The role of dynamics in the structure and function of RNA has been a major interest in drug design and therapeutics. Here we present the use of cross-correlated relaxation rates (ηxy) from anti-TROSY (R2α) and TROSY (R2β) to rapidly obtain qualitative information about the chemical exchange taking place within the bacterial and human A-site RNA system while reducing the sets of relaxation experiments required to map dynamics. We show that ηxy correlates with the order parameter which gives information on how flexible or rigid a residue is. We further show R2β/ηxy can rapidly be used to probe chemical exchange as seen from its agreement with Rex. In addition, we report the ability of R2β/ηxy to determine chemical exchange taking place within the bacterial A-site RNA during structural transitions at pH 6.2 and 6.5. Finally, comparison of the R2β/ηxy ratios indicates bacterial A-site has greater R2β/ηxy values for G19 (1.34 s-1), A20 (1.38 s-1), U23 (1.63 s-1) and C24 (1.51 s-1) than human A-site [A19 (0.76 s-1), A20 (1.01 s-1), U23 (0.74 s-1) and C24 (0.71 s-1)]. Taken together, we have shown that the chemical exchange can quickly be analyzed for RNA systems from cross-correlated relaxation rates.
Collapse
Affiliation(s)
- Kehinde M Taiwo
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States.
| | - Hyeyeon Nam
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Regan M LeBlanc
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Andrew P Longhini
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States
| | - Theodore K Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
14
|
Dayie TK, Olenginski LT, Taiwo KM. Isotope Labels Combined with Solution NMR Spectroscopy Make Visible the Invisible Conformations of Small-to-Large RNAs. Chem Rev 2022; 122:9357-9394. [PMID: 35442658 PMCID: PMC9136934 DOI: 10.1021/acs.chemrev.1c00845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 02/07/2023]
Abstract
RNA is central to the proper function of cellular processes important for life on earth and implicated in various medical dysfunctions. Yet, RNA structural biology lags significantly behind that of proteins, limiting mechanistic understanding of RNA chemical biology. Fortunately, solution NMR spectroscopy can probe the structural dynamics of RNA in solution at atomic resolution, opening the door to their functional understanding. However, NMR analysis of RNA, with only four unique ribonucleotide building blocks, suffers from spectral crowding and broad linewidths, especially as RNAs grow in size. One effective strategy to overcome these challenges is to introduce NMR-active stable isotopes into RNA. However, traditional uniform labeling methods introduce scalar and dipolar couplings that complicate the implementation and analysis of NMR measurements. This challenge can be circumvented with selective isotope labeling. In this review, we outline the development of labeling technologies and their application to study biologically relevant RNAs and their complexes ranging in size from 5 to 300 kDa by NMR spectroscopy.
Collapse
Affiliation(s)
- Theodore K. Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lukasz T. Olenginski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Kehinde M. Taiwo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
15
|
Xie Y, Janssen KA, Scacchetti A, Porter EG, Lin Z, Bonasio R, Garcia BA. Permethylation of Ribonucleosides Provides Enhanced Mass Spectrometry Quantification of Post-Transcriptional RNA Modifications. Anal Chem 2022; 94:7246-7254. [PMID: 35549217 PMCID: PMC9425437 DOI: 10.1021/acs.analchem.2c00471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemical modifications of RNA are associated with fundamental biological processes such as RNA splicing, export, translation, and degradation, as well as human disease states, such as cancer. However, the analysis of ribonucleoside modifications is hampered by the hydrophilicity of the ribonucleoside molecules. In this work, we used solid-phase permethylation to first efficiently derivatize the ribonucleosides and quantitatively analyze them by liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method. We identified and quantified more than 60 RNA modifications simultaneously by ultrahigh-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QqQ-MS) performed in the dynamic multiple reaction monitoring (dMRM) mode. The increased hydrophobicity of permethylated ribonucleosides significantly enhanced their retention, separation, and ionization efficiency, leading to improved detection and quantification. We further demonstrate that this novel approach is capable of quantifying cytosine methylation and hydroxymethylation in complex RNA samples obtained from mouse embryonic stem cells with genetic deficiencies in the ten-eleven translocation (TET) enzymes. The results match previously performed analyses and highlight the improved sensitivity, efficacy, and robustness of the new method. Our protocol is quantitative and robust and thus provides an augmented approach for comprehensive analysis of RNA modifications in biological samples.
Collapse
Affiliation(s)
- Yixuan Xie
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States.,Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kevin A Janssen
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alessandro Scacchetti
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Elizabeth G Porter
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States.,Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Roberto Bonasio
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States.,Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
16
|
Yang D, Gronenborn AM, Chong LT. Development and Validation of Fluorinated, Aromatic Amino Acid Parameters for Use with the AMBER ff15ipq Protein Force Field. J Phys Chem A 2022; 126:2286-2297. [PMID: 35352936 PMCID: PMC9014858 DOI: 10.1021/acs.jpca.2c00255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/15/2022] [Indexed: 12/27/2022]
Abstract
We developed force field parameters for fluorinated, aromatic amino acids enabling molecular dynamics (MD) simulations of fluorinated proteins. These parameters are tailored to the AMBER ff15ipq protein force field and enable the modeling of 4, 5, 6, and 7F-tryptophan, 3F- and 3,5F-tyrosine, and 4F- or 4-CF3-phenylalanine. The parameters include 181 unique atomic charges derived using the implicitly polarized charge (IPolQ) scheme in the presence of SPC/Eb explicit water molecules and 9 unique bond, angle, or torsion terms. Our simulations of benchmark peptides and proteins maintain expected conformational propensities on the μs time scale. In addition, we have developed an open-source Python program to calculate fluorine relaxation rates from MD simulations. The extracted relaxation rates from protein simulations are in good agreement with experimental values determined by 19F NMR. Collectively, our results illustrate the power and robustness of the IPolQ lineage of force fields for modeling the structure and dynamics of fluorine-containing proteins at the atomic level.
Collapse
Affiliation(s)
- Darian
T. Yang
- Molecular
Biophysics and Structural Biology Graduate Program, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, Pennsylvania 15260, United States
- Department
of Structural Biology, University of Pittsburgh
School of Medicine, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Angela M. Gronenborn
- Department
of Structural Biology, University of Pittsburgh
School of Medicine, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Lillian T. Chong
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
17
|
Gossert AD, Wider G. Relaxation optimized double acquisition (RODA) as an alternative for virtual decoupling of NMR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 337:107177. [PMID: 35290935 DOI: 10.1016/j.jmr.2022.107177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
We introduce an alternative way for spin-state selection, RODA, which yields higher sensitivity for spin systems exhibiting a TROSY effect. With RODA, the TROSY component of a doublet is recorded twice using a double acquisition scheme. RODA works by simple addition of consecutive NMR signals, and does not require any special processing. Thus, this pulse sequence element can seamlessly be integrated into existing experiments. We demonstrate the broad applicability of RODA with several systems exhibiting a TROSY effect on 15N-1H, 19F-13C or 1H-13C moieties. Further, we show that virtual decoupling with increased sensitivity is possible in a single double acquisition experiment in situations as encountered with dissolution DNP.
Collapse
Affiliation(s)
- Alvar D Gossert
- Department of Biology, Biomolecular NMR Spectroscopy Platform, ETH Zürich, 8093 Zürich, Switzerland.
| | - Gerhard Wider
- Department of Biology, Biomolecular NMR Spectroscopy Platform, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
18
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
19
|
Becette OB, Tran A, Jones JW, Marino JP, Brinson RG. Structural Fingerprinting of Short Interfering RNA Therapeutics by Solution Nuclear Magnetic Resonance Spectroscopy. Nucleic Acid Ther 2022; 32:267-279. [PMID: 35263184 PMCID: PMC9416564 DOI: 10.1089/nat.2021.0098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nucleic acids are an increasingly popular platform for the development of biotherapeutics to treat a wide variety of illnesses, including diseases where traditional drug development efforts have failed. To date, there are 14 short oligonucleotide therapeutics and 2 messenger RNA (mRNA) vaccines approved by the U.S. Food and Drug Administration (FDA), which demonstrates the potential of nucleic acids as a platform for the development of safe and effective medicines and vaccines. Despite the increasing popularity of nucleic acid-based drugs, there has been a paucity of high-resolution structural techniques applied to rigorously characterize these molecules during drug development. Here, we present application of nuclear magnetic resonance (NMR) methods to structurally "fingerprint" short oligonucleotide therapeutics at natural isotope abundance under full formulation conditions. The NMR methods described herein leverage signals arising from the native structural features of nucleic acids, including imino, aromatic, and ribose resonances, in addition to non-native chemistries, such as 2'-fluoro (2'-F), 2'-O-methyl (2'-OMe), and phosphorothioate (PS) modifications, introduced during drug development. We demonstrate the utility of the NMR methods to structurally "fingerprint" a model short interfering RNA (siRNA) and a sample that simulated the drug product Givosiran. We anticipate broad applicability of the NMR methods to other nucleic acid-based therapeutics due to the generalized nature of the approach and ability to monitor many quality attributes simultaneously.
Collapse
Affiliation(s)
- Owen B Becette
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, USA
| | - Anh Tran
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - John P Marino
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, USA
| | - Robert G Brinson
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and the University of Maryland, Rockville, Maryland, USA
| |
Collapse
|
20
|
Taiwo KM, Olenginski LT, Nußbaumer F, Nam H, Hilber S, Kreutz C, Dayie TK. Synthesis of [7- 15N]-GTPs for RNA structure and dynamics by NMR spectroscopy. MONATSHEFTE FUR CHEMIE 2022; 153:293-299. [PMID: 35400760 PMCID: PMC8948113 DOI: 10.1007/s00706-022-02892-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 12/23/2022]
Abstract
Several isotope-labeling strategies have been developed for the study of RNA by nuclear magnetic resonance (NMR) spectroscopy. Here, we report a combined chemical and enzymatic synthesis of [7-15N]-guanosine-5'-triphosphates for incorporation into RNA via T7 RNA polymerase-based in vitro transcription. We showcase the utility of these labels to probe both structure and dynamics in two biologically important RNAs. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s00706-022-02892-1.
Collapse
Affiliation(s)
- Kehinde M. Taiwo
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742 USA
| | - Lukasz T. Olenginski
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742 USA
| | - Felix Nußbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Hyeyeon Nam
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742 USA
- Present Address: Center for Cancer Research, National Cancer Institute, Frederick, MD 21702 USA
| | - Stefan Hilber
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - T. Kwaku Dayie
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, College Park, MD 20742 USA
| |
Collapse
|
21
|
Mondal A, Perez A. Simultaneous Assignment and Structure Determination of Proteins From Sparsely Labeled NMR Datasets. Front Mol Biosci 2021; 8:774394. [PMID: 34912846 PMCID: PMC8667806 DOI: 10.3389/fmolb.2021.774394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022] Open
Abstract
Sparsely labeled NMR samples provide opportunities to study larger biomolecular assemblies than is traditionally done by NMR. This requires new computational tools that can handle the sparsity and ambiguity in the NMR datasets. The MELD (modeling employing limited data) Bayesian approach was assessed to be the best performing in predicting structures from sparsely labeled NMR data in the 13th edition of the Critical Assessment of Structure Prediction (CASP) event—and limitations of the methodology were also noted. In this report, we evaluate the nature and difficulty in modeling unassigned sparsely labeled NMR datasets and report on an improved methodological pipeline leading to higher-accuracy predictions. We benchmark our methodology against the NMR datasets provided by CASP 13.
Collapse
Affiliation(s)
- Arup Mondal
- The Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Alberto Perez
- The Quantum Theory Project, Department of Chemistry, University of Florida, Gainesville, FL, United States
| |
Collapse
|
22
|
Su H, Brockman JM, Duan Y, Sen N, Chhabra H, Bazrafshan A, Blanchard AT, Meyer T, Andrews B, Doye JPK, Ke Y, Dyer RB, Salaita K. Massively Parallelized Molecular Force Manipulation with On-Demand Thermal and Optical Control. J Am Chem Soc 2021; 143:19466-19473. [PMID: 34762807 DOI: 10.1021/jacs.1c08796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In single-molecule force spectroscopy (SMFS), a tethered molecule is stretched using a specialized instrument to study how macromolecules extend under force. One problem in SMFS is the serial and slow nature of the measurements, performed one molecule at a time. To address this long-standing challenge, we report on the origami polymer force clamp (OPFC) which enables parallelized manipulation of the mechanical forces experienced by molecules without the need for dedicated SMFS instruments or surface tethering. The OPFC positions target molecules between a rigid nanoscale DNA origami beam and a responsive polymer particle that shrinks on demand. As a proof-of-concept, we record the steady state and time-resolved mechanical unfolding dynamics of DNA hairpins using the fluorescence signal from ensembles of molecules and confirm our conclusion using modeling.
Collapse
Affiliation(s)
- Hanquan Su
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Joshua M Brockman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Yuxin Duan
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Navoneel Sen
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Hemani Chhabra
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Alisina Bazrafshan
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Aaron T Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Travis Meyer
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Brooke Andrews
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Yonggang Ke
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - R Brian Dyer
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
23
|
Lundquist KP, Panchal V, Gotfredsen CH, Brenk R, Clausen MH. Fragment-Based Drug Discovery for RNA Targets. ChemMedChem 2021; 16:2588-2603. [PMID: 34101375 DOI: 10.1002/cmdc.202100324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 12/26/2022]
Abstract
Rapid development within the fields of both fragment-based drug discovery (FBDD) and medicinal targeting of RNA provides possibilities for combining technologies and methods in novel ways. This review provides an overview of fragment-based screening (FBS) against RNA targets, including a discussion of the most recently used screening and hit validation methods such as NMR spectroscopy, X-ray crystallography, and virtual screening methods. A discussion of fragment library design based on research from small-molecule RNA binders provides an overview on both the currently limited guidelines within RNA-targeting fragment library design, and future possibilities. Finally, future perspectives are provided on screening and hit validation methods not yet used in combination with both fragment screening and RNA targets.
Collapse
Affiliation(s)
- Kasper P Lundquist
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| | - Vipul Panchal
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway
| | - Charlotte H Gotfredsen
- NMR Center ⋅ DTU, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway
| | - Mads H Clausen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
24
|
Chemo-enzymatic synthesis of 13C- and 19F-labeled uridine-5′-triphosphate for RNA NMR probing. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02757-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Kim J, Novakovic M, Jayanthi S, Lupulescu A, Kupce E, Grün JT, Mertinkus K, Oxenfarth A, Richter C, Schnieders R, Wirmer-Bartoschek J, Schwalbe H, Frydman L. 3D Heteronuclear Magnetization Transfers for the Establishment of Secondary Structures in SARS-CoV-2-Derived RNAs. J Am Chem Soc 2021; 143:4942-4948. [PMID: 33783202 PMCID: PMC8154514 DOI: 10.1021/jacs.1c01914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multidimensional NOESY experiments targeting correlations between exchangeable imino and amino protons provide valuable information about base pairing in nucleic acids. It has been recently shown that the sensitivity of homonuclear correlations involving RNA's labile imino protons can be significantly enhanced, by exploiting the repolarization brought about by solvent exchanges. Homonuclear correlations, however, are of limited spectral resolution, and usually incapable of tackling relatively large homopolymers with repeating structures like RNAs. This study presents a heteronuclear-resolved version of those NOESY experiments, in which magnetization transfers between the aqueous solvent and the nucleic acid protons are controlled by selecting specific chemical shift combinations of a coupled 1H-15N spin pair. This selective control effectively leads to a pseudo-3D version of HSQC-NOESY, but with cross-peaks enhanced by ∼2-5× as compared with conventional 2D NOESY counterparts. The enhanced signal sensitivity as well as access to both 15N-1H and 1H-1H NOESY dimensions can greatly facilitate RNA assignments and secondary structure determinations, as demonstrated here with the analysis of genome fragments derived from the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mihajlo Novakovic
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sundaresan Jayanthi
- Department of Physics, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram 695 547, Kerala, India
| | - Adonis Lupulescu
- Aleea Nicolae Titulescu nr. 8, Turda, 407405 Judeţul Cluj, Romania
| | - Eriks Kupce
- Bruker Ltd, Banner Lane, Coventry CV4 9GH, United Kingdom
| | - J Tassilo Grün
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, D-60438 Frankfurt/Main, Germany
| | - Klara Mertinkus
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, D-60438 Frankfurt/Main, Germany
| | - Andreas Oxenfarth
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, D-60438 Frankfurt/Main, Germany
| | - Christian Richter
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, D-60438 Frankfurt/Main, Germany
| | - Robbin Schnieders
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, D-60438 Frankfurt/Main, Germany
| | - Julia Wirmer-Bartoschek
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, D-60438 Frankfurt/Main, Germany
| | - Harald Schwalbe
- Institute of Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University, D-60438 Frankfurt/Main, Germany
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
26
|
Liu B, Shi H, Al-Hashimi HM. Developments in solution-state NMR yield broader and deeper views of the dynamic ensembles of nucleic acids. Curr Opin Struct Biol 2021; 70:16-25. [PMID: 33836446 DOI: 10.1016/j.sbi.2021.02.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/21/2022]
Abstract
Nucleic acids do not fold into a single conformation, and dynamic ensembles are needed to describe their propensities to cycle between different conformations when performing cellular functions. We review recent advances in solution-state nuclear magnetic resonance (NMR) methods and their integration with computational techniques that are improving the ability to probe the dynamic ensembles of DNA and RNA. These include computational approaches for predicting chemical shifts from structure and generating conformational libraries from sequence, measurements of exact nuclear Overhauser effects, development of new probes to study chemical exchange using relaxation dispersion, faster and more sensitive real-time NMR techniques, and new NMR approaches to tackle large nucleic acid assemblies. We discuss how these advances are leading to new mechanistic insights into gene expression and regulation.
Collapse
Affiliation(s)
- Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA; Department of Chemistry, Duke University, Durham, NC, USA.
| |
Collapse
|