1
|
Beaugrand G, Kléparski L, Luczak C, Goberville E, Kirby RR. A niche-based theory of island biogeography. Ecol Evol 2024; 14:e11540. [PMID: 38932973 PMCID: PMC11199848 DOI: 10.1002/ece3.11540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
The equilibrium theory of island biogeography (ETIB) is a widely applied dynamic theory proposed in the 1960s to explain why islands have coherent differences in species richness. The development of the ETIB was temporarily challenged in the 1970s by the alternative static theory of ecological impoverishment (TEI). The TEI suggests that the number of species on an island is determined by its number of habitats or niches but, with no clear evidence relating species richness to the number of niches however, the TEI has been almost dismissed as a theory in favour of the original ETIB. Here, we show that the number of climatic niches on islands is an important predictor of the species richness of plants, herpetofauna and land birds. We therefore propose a model called the niche-based theory of island biogeography (NTIB), based on the MacroEcological Theory on the Arrangement of Life (METAL), which successfully integrates the number of niches sensu Hutchinson into ETIB. To account for greater species turnover at the beginning of colonisation, we include higher initial extinction rates. When we test our NTIB for resident land birds in the Krakatau Islands, it reveals a good correspondence with observed species richness, immigration and extinction rates. Provided the environmental regime remains unchanged, we estimate that the current species richness at equilibrium is ~45 species (range between 38.39 and 61.51). Our NTIB provides better prediction because it counts for changes in species richness with latitude, which is not considered in any theory of island biogeography.
Collapse
Affiliation(s)
- Gregory Beaugrand
- Laboratoire d'Océanologie et de GéosciencesCNRS, Université de Lille, Université du Littoral Côte d'Opale, UMR 8187, LOGWimereuxFrance
| | - Loick Kléparski
- Marine Biological Association, The Continuous Plankton Recorder (CPR) Survey, The LaboratoryPlymouthUK
| | - Christophe Luczak
- Laboratoire d'Océanologie et de GéosciencesCNRS, Université de Lille, Université du Littoral Côte d'Opale, UMR 8187, LOGWimereuxFrance
| | - Eric Goberville
- Unité Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Muséum National d'Histoire Naturelle, CNRS, IRD, Sorbonne Université, Université de Caen Normandie, Université des AntillesParisFrance
| | | |
Collapse
|
2
|
Harvey THP. Colonial green algae in the Cambrian plankton. Proc Biol Sci 2023; 290:20231882. [PMID: 37876191 PMCID: PMC10598416 DOI: 10.1098/rspb.2023.1882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/28/2023] [Indexed: 10/26/2023] Open
Abstract
The fossil record indicates a major turnover in marine phytoplankton across the Ediacaran-Cambrian transition, coincident with the rise of animal-rich ecosystems. However, the diversity, affinities and ecologies of Cambrian phytoplankton are poorly understood, leaving unclear the role of animal interactions and the drivers of diversification. New exceptionally preserved acritarchs (problematic organic-walled microfossils) from the late early Cambrian (around 510 Ma) reveal colonial organization characterized by rings and plates of interconnected, geometrically arranged cells. The assemblage exhibits a wide but gradational variation in cell size, ornamentation and intercell connection, interpreted as representing one or more species with determinate (coenobial) colony formation via cell division, aggregation and growth by cell expansion. An equivalent strategy is known only among green algae, specifically chlorophycean chlorophytes. The fossils differ in detail from modern freshwater examples and apparently represent an earlier convergent radiation in marine settings. Known trade-offs between sinking risk and predator avoidance in colonial phytoplankton point to adaptations triggered by intensifying grazing pressure during a Cambrian metazoan invasion of the water column. The new fossils reveal that not all small acritarchs are unicellular resting cysts, and support an early Palaeozoic prominence of green algal phytoplankton as predicted by molecular biomarkers.
Collapse
Affiliation(s)
- Thomas H. P. Harvey
- Centre for Palaeobiology and Biosphere Evolution, School of Geography, Geology and the Environment, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
3
|
Ontiveros DE, Beaugrand G, Lefebvre B, Marcilly CM, Servais T, Pohl A. Impact of global climate cooling on Ordovician marine biodiversity. Nat Commun 2023; 14:6098. [PMID: 37816739 PMCID: PMC10564867 DOI: 10.1038/s41467-023-41685-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
Global cooling has been proposed as a driver of the Great Ordovician Biodiversification Event, the largest radiation of Phanerozoic marine animal Life. Yet, mechanistic understanding of the underlying pathways is lacking and other possible causes are debated. Here we couple a global climate model with a macroecological model to reconstruct global biodiversity patterns during the Ordovician. In our simulations, an inverted latitudinal biodiversity gradient characterizes the late Cambrian and Early Ordovician when climate was much warmer than today. During the Mid-Late Ordovician, climate cooling simultaneously permits the development of a modern latitudinal biodiversity gradient and an increase in global biodiversity. This increase is a consequence of the ecophysiological limitations to marine Life and is robust to uncertainties in both proxy-derived temperature reconstructions and organism physiology. First-order model-data agreement suggests that the most conspicuous rise in biodiversity over Earth's history - the Great Ordovician Biodiversification Event - was primarily driven by global cooling.
Collapse
Affiliation(s)
| | - Gregory Beaugrand
- Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187 LOG, F-62930, Wimereux, France
| | - Bertrand Lefebvre
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, F-69622, Villeurbanne, France
| | | | - Thomas Servais
- Univ. Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000, Lille, France
| | - Alexandre Pohl
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, 6 Boulevard Gabriel, 21000, Dijon, France.
| |
Collapse
|
4
|
Kusumoto B, Chao A, Eiserhardt WL, Svenning JC, Shiono T, Kubota Y. Occurrence-based diversity estimation reveals macroecological and conservation knowledge gaps for global woody plants. SCIENCE ADVANCES 2023; 9:eadh9719. [PMID: 37801494 PMCID: PMC10558125 DOI: 10.1126/sciadv.adh9719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
Incomplete sampling of species' geographic distributions has challenged biogeographers for many years to precisely quantify global-scale biodiversity patterns. After correcting for the spatial inequality of sample completeness, we generated a global species diversity map for woody angiosperms (82,974 species, 13,959,780 occurrence records). The standardized diversity estimated more pronounced latitudinal and longitudinal diversity gradients than the raw data and improved the spatial prediction of diversity based on environmental factors. We identified areas with potentially high species richness and rarity that are poorly explored, unprotected, and threatened by increasing human pressure: They are distributed mostly at low latitudes across central South America, Central Africa, subtropical China, and Indomalayan islands. These priority areas for botanical exploration can help to efficiently fill spatial knowledge gaps for better describing the status of biodiversity and improve the effectiveness of the protected area network for global woody plant conservation.
Collapse
Affiliation(s)
- Buntarou Kusumoto
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Think Nature Inc., Naha City, Japan
- University Museum, University of the Ryukyus, Nishihara, Japan
- Faculty of Science, University of the Ryukyus, Nishihara, Japan
- Royal Botanic Gardens, Kew, UK
| | - Anne Chao
- National Tsing Hua University, Hsinchu, Taiwan
| | - Wolf L. Eiserhardt
- Royal Botanic Gardens, Kew, UK
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jens-Christian Svenning
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Takayuki Shiono
- Think Nature Inc., Naha City, Japan
- Faculty of Science, University of the Ryukyus, Nishihara, Japan
| | - Yasuhiro Kubota
- Think Nature Inc., Naha City, Japan
- Faculty of Science, University of the Ryukyus, Nishihara, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Japan
| |
Collapse
|
5
|
Pohl A, Stockey RG, Dai X, Yohler R, Le Hir G, Hülse D, Brayard A, Finnegan S, Ridgwell A. Why the Early Paleozoic was intrinsically prone to marine extinction. SCIENCE ADVANCES 2023; 9:eadg7679. [PMID: 37647393 PMCID: PMC10468122 DOI: 10.1126/sciadv.adg7679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/26/2023] [Accepted: 07/27/2023] [Indexed: 09/01/2023]
Abstract
The geological record of marine animal biodiversity reflects the interplay between changing rates of speciation versus extinction. Compared to mass extinctions, background extinctions have received little attention. To disentangle the different contributions of global climate state, continental configuration, and atmospheric oxygen concentration (pO2) to variations in background extinction rates, we drive an animal physiological model with the environmental outputs from an Earth system model across intervals spanning the past 541 million years. We find that climate and continental configuration combined to make extinction susceptibility an order of magnitude higher during the Early Paleozoic than during the rest of the Phanerozoic, consistent with extinction rates derived from paleontological databases. The high extinction susceptibility arises in the model from the limited geographical range of marine organisms. It stands even when assuming present-day pO2, suggesting that increasing oxygenation through the Paleozoic is not necessary to explain why extinction rates apparently declined with time.
Collapse
Affiliation(s)
- Alexandre Pohl
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Richard G. Stockey
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| | - Xu Dai
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Ryan Yohler
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Guillaume Le Hir
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 1 rue Jussieu, 75005 Paris, France
| | - Dominik Hülse
- Max-Planck-Institute for Meteorology, Hamburg, Germany
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA
| | - Arnaud Brayard
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Seth Finnegan
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Andy Ridgwell
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
6
|
Beaugrand G. Towards an Understanding of Large-Scale Biodiversity Patterns on Land and in the Sea. BIOLOGY 2023; 12:biology12030339. [PMID: 36979031 PMCID: PMC10044889 DOI: 10.3390/biology12030339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023]
Abstract
This review presents a recent theory named ‘macroecological theory on the arrangement of life’ (METAL). This theory is based on the concept of the ecological niche and shows that the niche-environment (including climate) interaction is fundamental to explain many phenomena observed in nature from the individual to the community level (e.g., phenology, biogeographical shifts, and community arrangement and reorganisation, gradual or abrupt). The application of the theory in climate change biology as well as individual and species ecology has been presented elsewhere. In this review, I show how METAL explains why there are more species at low than high latitudes, why the peak of biodiversity is located at mid-latitudes in the oceanic domain and at the equator in the terrestrial domain, and finally why there are more terrestrial than marine species, despite the fact that biodiversity has emerged in the oceans. I postulate that the arrangement of planetary biodiversity is mathematically constrained, a constraint we previously called ‘the great chessboard of life’, which determines the maximum number of species that may colonise a given region or domain. This theory also makes it possible to reconstruct past biodiversity and understand how biodiversity could be reorganised in the context of anthropogenic climate change.
Collapse
Affiliation(s)
- Grégory Beaugrand
- CNRS, Univ. Littoral Côte d'Opale, Univ. Lille, UMR 8187 LOG, F-62930 Wimereux, France
| |
Collapse
|
7
|
Brodie JF, Mannion PD. The hierarchy of factors predicting the latitudinal diversity gradient. Trends Ecol Evol 2023; 38:15-23. [PMID: 36089412 DOI: 10.1016/j.tree.2022.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 12/24/2022]
Abstract
The numerous explanations for why Earth's biodiversity is concentrated at low latitudes fail to explain variation in the strength and even direction of the gradient through deep time. Consequently, we do not know if today's gradient is representative of what might be expected on other planets or is merely an idiosyncrasy of Earth's history. We propose a hierarchy of factors driving the latitudinal distribution of diversity: (i) over geologically long time spans, diversity is largely predicted by climate; (ii) when climatic gradients are shallow, diversity tracks habitat area; and (iii) historical contingencies linked to niche conservatism have geologically short-term, transient influence at most. Thus, latitudinal diversity gradients, although variable in strength and direction, are largely predictable on our planet and possibly others.
Collapse
Affiliation(s)
- Jedediah F Brodie
- Division of Biological Sciences & Wildlife Biology Program, University of Montana, Missoula, MT 59812, USA; Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94 300 Kota Samarahan, Malaysia.
| | - Philip D Mannion
- Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
8
|
Shan L, Yan K, Zhang Y, Li J, Servais T. Palaeoecology of Cambrian-Ordovician acritarchs from China: evidence for a progressive invasion of the marine habitats. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210035. [PMID: 35125001 PMCID: PMC8819361 DOI: 10.1098/rstb.2021.0035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Palaeozoic acritarchs mostly represent organic-walled cysts of marine phytoplankton, and therefore, as primary producers, played an important role in the evolution of marine ecosystems. In this study, we use a selection of the most abundant acritarch taxa from the Cambrian and Ordovician of China to understand the evolution of the palaeoecological patterns of the phytoplankton over the period. The taxa are attributed to 40 easily distinguishable morphotypes, of which the precise palaeoenvironmental distribution from 60 localities is available. By placing the 40 morphotypes on inshore-offshore transects it can be concluded that acritarch microfloras were limited to inshore environments during the early Cambrian, and progressively extended from inshore environments to offshore marine habitats during the later parts of the Cambrian and towards the Early Ordovician, with a prominent shift near the Cambrian-Ordovician boundary, confirming the onset of the 'Ordovician plankton revolution'. In addition, the acritarch morphotypes evolved from low-diversity assemblages in the early Cambrian, dominated by simple spherical forms with limited ornamentation and simple process structures, to highly diverse assemblages with very complex morphologies in the Early and Middle Ordovician. During the Ordovician, the complex acritarch assemblages occupied most marine habitats, with palaeoecological distribution patterns similar to modern dinoflagellates. This article is part of the theme issue 'The impact of Chinese palaeontology on evolutionary research'.
Collapse
Affiliation(s)
- Longlong Shan
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Kui Yan
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| | - Yuandong Zhang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jun Li
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| | - Thomas Servais
- CNRS, Université Lille, UMR 8198 - Evo-Eco-Paleo, 59000 Lille, France
| |
Collapse
|