1
|
Cao X, Sun J, Fang Y, Qiao X, Cai S, Qiu Y, Chen X, Sun Y, Huang J, Ding X, Sun J, Wan C, Zhang Z. Electrically Controlled Metal-Insulator Heterogeneous Evolution for Infrared Switch and Perfect Absorption. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416420. [PMID: 39999299 PMCID: PMC12021118 DOI: 10.1002/advs.202416420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/27/2025] [Indexed: 02/27/2025]
Abstract
Active switching, which enables multifunctionality within a single optical component, is essential for reconfigurable infrared photonic systems such as radiation engineering, sensing, and communication. Metamaterials offer a solution but involve complex design and fabrication. A simpler approach with a planar layered structure becomes promising for offering economical manufacturing, easier integration, and scalability. However, it requires an active medium with giant tunability and effective modulation mechanisms. Here, an electrically controlled reversible infrared switching is demonstrated via a single layer of perovskite nickelate on an opaque substrate. Driven by the evolution of the refractive index during an electrically triggered proton-mediated metal-to-insulator transition, the device transforms from a high reflective (R ≈0.74) to a low reflective state (R ≈0.09) at λ = 7-10 µm. A temperature-independent perfect absorption (A > 0.99 at λ = 11.6-12.1 µm) emerges in the partially hydrogenated state with the mixture of the metal and insulator phases, which results in a modulation of emissivity ≈0.623 at λ = 7-14 µm. The switching behavior is tunable over a wide temperature and wavelength range, offering a versatile path for adaptive infrared applications.
Collapse
Affiliation(s)
- Xuefeng Cao
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Jiahui Sun
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Yuan Fang
- School of MaterialsShenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Xurong Qiao
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Shenghao Cai
- Center of Free Electron Laser & High Magnetic FieldLeibniz International Joint Research Center of Materials Sciences of Anhui ProvinceHefei230601China
- Information Materials and Intelligent Sensing Laboratory of Anhui ProvinceAnhui Key Laboratory of Magnetic Functional Materials and DevicesAnhui UniversityHefei230601China
| | - Yuhao Qiu
- Center of Free Electron Laser & High Magnetic FieldLeibniz International Joint Research Center of Materials Sciences of Anhui ProvinceHefei230601China
- Information Materials and Intelligent Sensing Laboratory of Anhui ProvinceAnhui Key Laboratory of Magnetic Functional Materials and DevicesAnhui UniversityHefei230601China
| | - Xuegang Chen
- Center of Free Electron Laser & High Magnetic FieldLeibniz International Joint Research Center of Materials Sciences of Anhui ProvinceHefei230601China
- Information Materials and Intelligent Sensing Laboratory of Anhui ProvinceAnhui Key Laboratory of Magnetic Functional Materials and DevicesAnhui UniversityHefei230601China
| | - Yifei Sun
- College of EnergyXiamen UniversityXiamen3661005China
| | - Jijie Huang
- School of MaterialsShenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Xiangdong Ding
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Jun Sun
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Chenghao Wan
- Department of Electrical EngineeringStanford UniversityStanfordCA94305USA
| | - Zhen Zhang
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| |
Collapse
|
2
|
Tang W, Zhan Y, Yang J, Meng X, Zhu X, Li Y, Lin T, Jiang L, Zhao Z, Wang S. Cascaded Heteroporous Nanocomposites for Thermo-Adaptive Passive Radiation Cooling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310923. [PMID: 39075820 DOI: 10.1002/adma.202310923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 06/25/2024] [Indexed: 07/31/2024]
Abstract
Passive radiative cooling is a promising technology for heat dissipation that does not consume energy. However, current radiative cooling materials can only exhibit subambient cooling under atmospheric conditions and struggle to process specific heat accumulation. Thus, a passive thermal regulation mechanism adapted to wide-temperature-range applications is required to match device heating systems. Herein, a heteroporous nanocomposite film (HENF) with thermo-adaptive radiation cooling performance is reported. Compared to conventional porous cooling films with limited scattering efficiencies, the HENFs with multistage scattering have a strong emissivity of 96.5% (8-13 µm) and a high reflectivity of 97.3% (0.3-2.5 µm), resulting in an ultrahigh cooling power of 114 W m-2. In such HENFs, theoretical analyses have confirmed the spectrum management superiority of the heteroporous unit in terms of the scattering efficiency strength, with their cascading effect enhancing the overall film-cooling efficiency. The high mechanical performance, phase-transition features, and environmental adaptive properties of HENFs are also exhibited. Importantly, HENFs synergistically couple thermal dissipation and absorption to effectively process heat accumulation and counteract thermal shock in heating devices. It is anticipated that thermo-adaptive HENFs will act as a promising platform for device surface thermal regulation over a wide temperature range.
Collapse
Affiliation(s)
- Weiming Tang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaohui Zhan
- School of Optoelectronic Science and Engineering, Soochow University, Soochow, 215006, P. R. China
| | - Jingrun Yang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xue Meng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingyue Zhu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yong Li
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Tianyi Lin
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ziguang Zhao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Gu Y, Xu H, Li Z. Thermal Emission Modulation by Electron Population in Quantum Dots. PHYSICAL REVIEW LETTERS 2024; 132:216901. [PMID: 38856240 DOI: 10.1103/physrevlett.132.216901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/31/2023] [Accepted: 04/20/2024] [Indexed: 06/11/2024]
Abstract
We report an efficient temperature modulation of thermal emissivity near room temperature using quantum dots. The quantum confinement effects result in a unique feature that resembles a quasi-two-level electronic system (QTLES). The QTLES's dielectric function ϵ(ω) is shown to be dependent on the electron population difference δρ(T), which exhibits strong temperature dependence and can be tuned by adjusting the Fermi-level of the solid. Experiments with the Ag_{2}Se quantum dots confirm the theory and showcase a modulate rate dε/dT≈1.5×10^{-3} K^{-1} that meets the requirements for engineering applications. This study demonstrates an exciting new avenue for temperature modulation of thermal emission and may open up new possibilities for applications like energy harvesting, thermal camouflage, thermal rectifications, and many others.
Collapse
Affiliation(s)
- Yu Gu
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
| | - Haixiao Xu
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
| | - Zhi Li
- Key Laboratory of Advanced Display Materials and Devices, Ministry of Industry and Information Technology, College of Material Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094 China
| |
Collapse
|
4
|
Bao F, Jape S, Schramka A, Wang J, McGraw TE, Jacob Z. Why thermal images are blurry. OPTICS EXPRESS 2024; 32:3852-3865. [PMID: 38297597 DOI: 10.1364/oe.506634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/03/2024] [Indexed: 02/02/2024]
Abstract
The resolution of optical imaging is limited by diffraction as well as detector noise. However, thermal imaging exhibits an additional unique phenomenon of ghosting which results in blurry and low-texture images. Here, we provide a detailed view of thermal physics-driven texture and explain why it vanishes in thermal images capturing heat radiation. We show that spectral resolution in thermal imagery can help recover this texture, and we provide algorithms to recover texture close to the ground truth. We develop a simulator for complex 3D scenes and discuss the interplay of geometric textures and non-uniform temperatures which is common in real-world thermal imaging. We demonstrate the failure of traditional thermal imaging to recover ground truth in multiple scenarios while our thermal perception approach successfully recovers geometric textures. Finally, we put forth an experimentally feasible infrared Bayer-filter approach to achieve thermal perception in pitch darkness as vivid as optical imagery in broad daylight.
Collapse
|
5
|
Bao F, Wang X, Sureshbabu SH, Sreekumar G, Yang L, Aggarwal V, Boddeti VN, Jacob Z. Heat-assisted detection and ranging. Nature 2023; 619:743-748. [PMID: 37495879 DOI: 10.1038/s41586-023-06174-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/05/2023] [Indexed: 07/28/2023]
Abstract
Machine perception uses advanced sensors to collect information about the surrounding scene for situational awareness1-7. State-of-the-art machine perception8 using active sonar, radar and LiDAR to enhance camera vision9 faces difficulties when the number of intelligent agents scales up10,11. Exploiting omnipresent heat signal could be a new frontier for scalable perception. However, objects and their environment constantly emit and scatter thermal radiation, leading to textureless images famously known as the 'ghosting effect'12. Thermal vision thus has no specificity limited by information loss, whereas thermal ranging-crucial for navigation-has been elusive even when combined with artificial intelligence (AI)13. Here we propose and experimentally demonstrate heat-assisted detection and ranging (HADAR) overcoming this open challenge of ghosting and benchmark it against AI-enhanced thermal sensing. HADAR not only sees texture and depth through the darkness as if it were day but also perceives decluttered physical attributes beyond RGB or thermal vision, paving the way to fully passive and physics-aware machine perception. We develop HADAR estimation theory and address its photonic shot-noise limits depicting information-theoretic bounds to HADAR-based AI performance. HADAR ranging at night beats thermal ranging and shows an accuracy comparable with RGB stereovision in daylight. Our automated HADAR thermography reaches the Cramér-Rao bound on temperature accuracy, beating existing thermography techniques. Our work leads to a disruptive technology that can accelerate the Fourth Industrial Revolution (Industry 4.0)14 with HADAR-based autonomous navigation and human-robot social interactions.
Collapse
Affiliation(s)
- Fanglin Bao
- Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Xueji Wang
- Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Shree Hari Sureshbabu
- Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | | | - Liping Yang
- Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | - Vaneet Aggarwal
- School of Industrial Engineering and School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
| | | | - Zubin Jacob
- Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
6
|
Dong K, Li J, Zhang T, Gu F, Cai Y, Gupta N, Tang K, Javey A, Yao J, Wu J. Single-pixel reconstructive mid-infrared micro-spectrometer. OPTICS EXPRESS 2023; 31:14367-14376. [PMID: 37157302 DOI: 10.1364/oe.485934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Miniaturized spectrometers in the mid-infrared (MIR) are critical in developing next-generation portable electronics for advanced sensing and analysis. The bulky gratings or detector/filter arrays in conventional micro-spectrometers set a physical limitation to their miniaturization. In this work, we demonstrate a single-pixel MIR micro-spectrometer that reconstructs the sample transmission spectrum by a spectrally dispersed light source instead of spatially grated light beams. The spectrally tunable MIR light source is realized based on the thermal emissivity engineered via the metal-insulator phase transition of vanadium dioxide (VO2). We validate the performance by showing that the transmission spectrum of a magnesium fluoride (MgF2) sample can be computationally reconstructed from sensor responses at varied light source temperatures. With potentially minimum footprint due to the array-free design, our work opens the possibility where compact MIR spectrometers are integrated into portable electronic systems for versatile applications.
Collapse
|
7
|
Shi R, Wu Y, Xin Z, Guo J, Li Z, Zhao B, Peng R, Li C, Wang E, Wang B, Zhang X, Cheng C, Liu K. Liquid Precursor-Guided Phase Engineering of Single-Crystal VO 2 Beams. Angew Chem Int Ed Engl 2023; 62:e202301421. [PMID: 36808416 DOI: 10.1002/anie.202301421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
The study of VO2 flourishes due to its rich competing phases induced by slight stoichiometry variations. However, the vague mechanism of stoichiometry manipulation makes the precise phase engineering of VO2 still challenging. Here, stoichiometry manipulation of single-crystal VO2 beams in liquid-assisted growth is systematically studied. Contrary to previous experience, oxygen-rich VO2 phases are abnormally synthesized under a reduced oxygen concentration, revealing the important function of liquid V2 O5 precursor: It submerges VO2 crystals and stabilizes their stoichiometric phase (M1) by isolating them from the reactive atmosphere, while the uncovered crystals are oxidized by the growth atmosphere. By varying the thickness of liquid V2 O5 precursor and thus the exposure time of VO2 to the atmosphere, various VO2 phases (M1, T, and M2) can be selectively stabilized. Furthermore, this liquid precursor-guided growth can be used to spatially manages multiphase structures in single VO2 beams, enriching their deformation modes for actuation applications.
Collapse
Affiliation(s)
- Run Shi
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Yonghuang Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zeqin Xin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jing Guo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zonglin Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Bochen Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Ruixuan Peng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Chenyu Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Enze Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Bolun Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaolong Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Chun Cheng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Zheng C, Simpson RE, Tang K, Ke Y, Nemati A, Zhang Q, Hu G, Lee C, Teng J, Yang JKW, Wu J, Qiu CW. Enabling Active Nanotechnologies by Phase Transition: From Electronics, Photonics to Thermotics. Chem Rev 2022; 122:15450-15500. [PMID: 35894820 DOI: 10.1021/acs.chemrev.2c00171] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phase transitions can occur in certain materials such as transition metal oxides (TMOs) and chalcogenides when there is a change in external conditions such as temperature and pressure. Along with phase transitions in these phase change materials (PCMs) come dramatic contrasts in various physical properties, which can be engineered to manipulate electrons, photons, polaritons, and phonons at the nanoscale, offering new opportunities for reconfigurable, active nanodevices. In this review, we particularly discuss phase-transition-enabled active nanotechnologies in nonvolatile electrical memory, tunable metamaterials, and metasurfaces for manipulation of both free-space photons and in-plane polaritons, and multifunctional emissivity control in the infrared (IR) spectrum. The fundamentals of PCMs are first introduced to explain the origins and principles of phase transitions. Thereafter, we discuss multiphysical nanodevices for electronic, photonic, and thermal management, attesting to the broad applications and exciting promises of PCMs. Emerging trends and valuable applications in all-optical neuromorphic devices, thermal data storage, and encryption are outlined in the end.
Collapse
Affiliation(s)
- Chunqi Zheng
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.,NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
| | - Robert E Simpson
- Engineering Product Development, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore
| | - Kechao Tang
- Key Laboratory of Microelectronic Devices and Circuits (MOE), School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Yujie Ke
- Engineering Product Development, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore
| | - Arash Nemati
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Qing Zhang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Jinghua Teng
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Joel K W Yang
- Engineering Product Development, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore.,Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Junqiao Wu
- Department of Materials Science and Engineering, University of California, Berkeley, and Lawrence Berkeley National Laboratory, California 94720, United States
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
9
|
Zhu Y, Luo H, Yang C, Qin B, Ghosh P, Kaur S, Shen W, Qiu M, Belov P, Li Q. Color-preserving passive radiative cooling for an actively temperature-regulated enclosure. LIGHT, SCIENCE & APPLICATIONS 2022; 11:122. [PMID: 35508472 PMCID: PMC9068694 DOI: 10.1038/s41377-022-00810-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/20/2022] [Accepted: 04/20/2022] [Indexed: 05/20/2023]
Abstract
Active temperature control devices are widely used for the thermal management of enclosures, including vehicles and buildings. Passive radiative cooling has been extensively studied; however, its integration with existing actively temperature regulated and decorative enclosures has slipped out of the research at status quo. Here, we present a photonic-engineered dual-side thermal management strategy for reducing the active power consumption of the existing temperature-regulated enclosure without sacrificing its aesthetics. By coating the exterior and interior of the enclosure roof with two visible-transparent films with distinctive wavelength-selectivity, simultaneous control over the energy exchange among the enclosure with the hot sun, the cold outer space, the atmosphere, and the active cooler can be implemented. A power-saving of up to 63% for active coolers of the enclosure is experimentally demonstrated by measuring the heat flux compared to the ordinary enclosure when the set temperature is around 26°C. This photonic-engineered dual-side thermal management strategy offers facile integration with the existing enclosures and represents a new paradigm toward carbon neutrality.
Collapse
Affiliation(s)
- Yining Zhu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Hao Luo
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Chenying Yang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Bing Qin
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Pintu Ghosh
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Sandeep Kaur
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Weidong Shen
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Min Qiu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China.
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, 310024, Hangzhou, Zhejiang Province, China.
| | - Pavel Belov
- Department of Physics and Engineering, ITMO University, Saint Petersburg, Russia
| | - Qiang Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, 310027, Hangzhou, China.
| |
Collapse
|
10
|
Zheng S, Zhou C, Jiang X, Huang J, Xu D. Progress on Infrared Imaging Technology in Animal Production: A Review. SENSORS 2022; 22:s22030705. [PMID: 35161450 PMCID: PMC8839879 DOI: 10.3390/s22030705] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/28/2021] [Accepted: 01/13/2022] [Indexed: 02/01/2023]
Abstract
Infrared thermography (IRT) imaging technology, as a convenient, efficient, and contactless temperature measurement technology, has been widely applied to animal production. In this review, we systematically summarized the principles and influencing parameters of IRT imaging technology. In addition, we also summed up recent advances of IRT imaging technology in monitoring the temperature of animal surfaces and core anatomical areas, diagnosing early disease and inflammation, monitoring animal stress levels, identifying estrus and ovulation, and diagnosing pregnancy and animal welfare. Finally, we made prospective forecast for future research directions, offering more theoretical references for related research in this field.
Collapse
Affiliation(s)
- Shuailong Zheng
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.); (C.Z.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China;
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changfan Zhou
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.); (C.Z.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China;
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xunping Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China;
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingshu Huang
- Agricultural Development Center of Hubei Province, Wuhan 430064, China;
| | - Dequan Xu
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China; (S.Z.); (C.Z.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China;
- Colleges of Animal Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
11
|
Ma H, Xiao X, Wang Y, Sun Y, Wang B, Gao X, Wang E, Jiang K, Liu K, Zhang X. Wafer-scale freestanding vanadium dioxide film. SCIENCE ADVANCES 2021; 7:eabk3438. [PMID: 34878834 PMCID: PMC8654297 DOI: 10.1126/sciadv.abk3438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Vanadium dioxide (VO2), with well-known metal-to-insulator phase transition, has been used to realize intriguing smart functions in photodetectors, modulators, and actuators. Wafer-scale freestanding VO2 (f-VO2) films are desirable for integrating VO2 with other materials into multifunctional devices. Unfortunately, their preparation has yet to be achieved because the wafer-scale etching needs ultralong time and damages amphoteric VO2 whether in acid or alkaline etchants. Here, we achieved wafer-scale f-VO2 films by a nano-pinhole permeation-etching strategy in 6 min, far less than that by side etching (thousands of minutes). The f-VO2 films retain their pristine metal-to-insulator transition and intrinsic mechanical properties and can be conformably transferred to arbitrary substrates. Integration of f-VO2 films into diverse large-scale smart devices, including terahertz modulators, camouflageable photoactuators, and temperature-indicating strips, shows advantages in low insertion loss, fast response, and low triggering power. These f-VO2 films find more intriguing applications by heterogeneous integration with other functional materials.
Collapse
Affiliation(s)
- He Ma
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology, Beijing 100124, P. R. China
| | - Xiao Xiao
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yu Wang
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yufei Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Bolun Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xinyu Gao
- State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua-Foxconn Nanotechnology Research Center, Department of Physics, Collaborative Innovation Center of Quantum Matter, Tsinghua University, Beijing 100084, P. R. China
| | - Enze Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Kaili Jiang
- State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua-Foxconn Nanotechnology Research Center, Department of Physics, Collaborative Innovation Center of Quantum Matter, Tsinghua University, Beijing 100084, P. R. China
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
- Corresponding author. (K.L.); (X.Z.)
| | - Xinping Zhang
- Institute of Information Photonics Technology, Faculty of Science, Beijing University of Technology, Beijing 100124, P. R. China
- Corresponding author. (K.L.); (X.Z.)
| |
Collapse
|
12
|
Wei H, Gu J, Ren F, Zhang L, Xu G, Wang B, Song S, Zhao J, Dou S, Li Y. Smart Materials for Dynamic Thermal Radiation Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100446. [PMID: 34013667 DOI: 10.1002/smll.202100446] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/19/2021] [Indexed: 05/25/2023]
Abstract
Thermal radiation in the mid-infrared region profoundly affects human lives in various fields, including thermal management, imaging, sensing, camouflage, and thermography. Due to their fixed emissivities, radiance features of conventional materials are usually proportional to the quadruplicate of surface temperature, which set the limit, that one type of material can only present a single thermal function. Therefore, it is necessary and urgent to design materials for dynamic thermal radiation regulations to fulfill the demands of the age of intelligent machines. Recently, the ability of some smart materials to dynamically regulate thermal radiation has been evaluated. These materials are found to be competent enough for various commands, thereby, providing better alternatives and tremendously promoting the commercial potentials. In this review, the dynamic regulatory mechanisms and recent progress in the evaluation of these smart materials are summarized, including thermochromic materials, electrochromic materials, mechanically and humidity responsive materials, with the potential applications, insufficient problems, and possible strategies highlighted.
Collapse
Affiliation(s)
- Hang Wei
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150001, China
| | - Jinxin Gu
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Feifei Ren
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150001, China
| | - Leipeng Zhang
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150001, China
| | - Gaoping Xu
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150001, China
| | - Bo Wang
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150001, China
| | - Shanshan Song
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiupeng Zhao
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150001, China
| | - Shuliang Dou
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150001, China
| | - Yao Li
- Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|