1
|
Lv H, Zhang Q, Liu J, Si G, Gong Y, Zhong G, Zhang Y, Qiu CW, Ou Q, Yang Y. Tailoring Phonon Polaritons with a Single-Layer Photonics-Empowered Polaritonic Crystal. NANO LETTERS 2025; 25:4946-4953. [PMID: 40079332 DOI: 10.1021/acs.nanolett.5c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Photonic crystals (PhCs) are artificial periodic structures that can compress and control light at the nanoscale. Recently, the emerging van der Waals (vdW) materials with extreme anisotropy exhibit exotic hyperbolic phonon resonances and ray-like propagation. However, localization and manipulation of these hyperbolic phonon polaritons (PhPs) in polaritonic crystals (PoCs) on a scale deeply below the polariton wavelength have remained elusive so far. Here, we experimentally demonstrate tailored PhP localization in a single layer PoC of patterned α-MoO3. The biaxial PoCs have a rotation degree of freedom between the lattice orientation and the optical axis of α-MoO3. By tailoring the rotation angle, the bandgap exhibits a transition from open to closed at certain wavelengths. Two-dimensional localization of PhPs in these rotated PoCs have been directly revealed in real space by infrared nanoimaging. Our work provides a robust platform to construct polaritonic cavities for ultrastrong light-matter interactions and nanoscale polariton manipulation.
Collapse
Affiliation(s)
- Haoran Lv
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qing Zhang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jingying Liu
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao 999078, China
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Zhuhai, 519099, China
| | - Guangyuan Si
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Youning Gong
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gang Zhong
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Yupeng Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Qingdong Ou
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao 999078, China
- Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute, Zhuhai, 519099, China
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yuanjie Yang
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
2
|
Anglhuber S, Zizlsperger M, Pogna EAA, Gerasimenko YA, Koulouklidis AD, Gronwald I, Nerreter S, Viti L, Vitiello MS, Huber R, Huber MA. Spacetime Imaging of Group and Phase Velocities of Terahertz Surface Plasmon Polaritons in Graphene. NANO LETTERS 2025; 25:2125-2132. [PMID: 39746211 PMCID: PMC11827103 DOI: 10.1021/acs.nanolett.4c04615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
Detecting electromagnetic radiation scattered from a tip-sample junction has enabled overcoming the diffraction limit and started the flourishing field of polariton nanoimaging. However, most techniques only resolve amplitude and relative phase of the scattered radiation. Here, we utilize field-resolved detection of ultrashort scattered pulses to map the dynamics of surface polaritons in both space and time. Plasmon polaritons in graphene serve as an ideal model system for the study, demonstrating how propagating modes can be visualized and modeled in the time domain by a straightforward mathematical equation and normalization method. This novel approach enables a direct assessment of the polaritons' group and phase velocities, as well as the damping. Additionally, it is particularly powerful in combination with a pump-probe scheme to trace subcycle changes in the polariton propagation upon photoexcitation. Our method readily applies to other quantum materials, providing a versatile tool to study ultrafast nonequilibrium spatiotemporal dynamics of polaritons.
Collapse
Affiliation(s)
- Simon Anglhuber
- Regensburg
Center for Ultrafast Nanoscopy (RUN) and Department of Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Martin Zizlsperger
- Regensburg
Center for Ultrafast Nanoscopy (RUN) and Department of Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Eva A. A. Pogna
- Istituto
di Fotonica e Nanotecnologie, Consiglio Nazionale delle Ricerche (CNR-IFN), 20133 Milano, Italy
| | - Yaroslav A. Gerasimenko
- Regensburg
Center for Ultrafast Nanoscopy (RUN) and Department of Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Anastasios D. Koulouklidis
- Regensburg
Center for Ultrafast Nanoscopy (RUN) and Department of Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Imke Gronwald
- Regensburg
Center for Ultrafast Nanoscopy (RUN) and Department of Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Svenja Nerreter
- Regensburg
Center for Ultrafast Nanoscopy (RUN) and Department of Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Leonardo Viti
- NEST,
CNR-Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Miriam S. Vitiello
- NEST,
CNR-Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Rupert Huber
- Regensburg
Center for Ultrafast Nanoscopy (RUN) and Department of Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Markus A. Huber
- Regensburg
Center for Ultrafast Nanoscopy (RUN) and Department of Physics, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
3
|
Lee M, Hong H, Yu J, Mujid F, Ye A, Liang C, Park J. Wafer-scale δ waveguides for integrated two-dimensional photonics. Science 2023; 381:648-653. [PMID: 37561867 DOI: 10.1126/science.adi2322] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 08/12/2023]
Abstract
The efficient, large-scale generation and control of photonic modes guided by van der Waals materials remains as a challenge despite their potential for on-chip photonic circuitry. We report three-atom-thick waveguides-δ waveguides-based on wafer-scale molybdenum disulfide (MoS2) monolayers that can guide visible and near-infrared light over millimeter-scale distances with low loss and an efficient in-coupling. The extreme thinness provides a light-trapping mechanism analogous to a δ-potential well in quantum mechanics and enables the guided waves that are essentially a plane wave freely propagating along the in-plane, but confined along the out-of-plane, direction of the waveguide. We further demonstrate key functionalities essential for two-dimensional photonics, including refraction, focusing, grating, interconnection, and intensity modulation, by integrating thin-film optical components with δ waveguides using microfabricated dielectric, metal, or patterned MoS2.
Collapse
Affiliation(s)
- Myungjae Lee
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea
| | - Hanyu Hong
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Jaehyung Yu
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Fauzia Mujid
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Andrew Ye
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ce Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jiwoong Park
- James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
Lv J, Wu Y, Liu J, Gong Y, Si G, Hu G, Zhang Q, Zhang Y, Tang JX, Fuhrer MS, Chen H, Maier SA, Qiu CW, Ou Q. Hyperbolic polaritonic crystals with configurable low-symmetry Bloch modes. Nat Commun 2023; 14:3894. [PMID: 37393303 DOI: 10.1038/s41467-023-39543-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/17/2023] [Indexed: 07/03/2023] Open
Abstract
Photonic crystals (PhCs) are a kind of artificial structures that can mold the flow of light at will. Polaritonic crystals (PoCs) made from polaritonic media offer a promising route to controlling nano-light at the subwavelength scale. Conventional bulk PhCs and recent van der Waals PoCs mainly show highly symmetric excitation of Bloch modes that closely rely on lattice orders. Here, we experimentally demonstrate a type of hyperbolic PoCs with configurable and low-symmetry deep-subwavelength Bloch modes that are robust against lattice rearrangement in certain directions. This is achieved by periodically perforating a natural crystal α-MoO3 that hosts in-plane hyperbolic phonon polaritons. The mode excitation and symmetry are controlled by the momentum matching between reciprocal lattice vectors and hyperbolic dispersions. We show that the Bloch modes and Bragg resonances of hyperbolic PoCs can be tuned through lattice scales and orientations while exhibiting robust properties immune to lattice rearrangement in the hyperbolic forbidden directions. Our findings provide insights into the physics of hyperbolic PoCs and expand the categories of PhCs, with potential applications in waveguiding, energy transfer, biosensing and quantum nano-optics.
Collapse
Affiliation(s)
- Jiangtao Lv
- College of Information Science and Engineering, Northeastern University, Shenyang, 110004, China
- School of Control Engineering, Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Yingjie Wu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
| | - Jingying Liu
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao, 999078, China
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Youning Gong
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guangyuan Si
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, 3168, VIC, Australia
| | - Guangwei Hu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qing Zhang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yupeng Zhang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jian-Xin Tang
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao, 999078, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Jiangsu, 215123, China
| | - Michael S Fuhrer
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, VIC, 3800, Australia
- School of Physics and Astronomy, Monash University, Clayton, VIC, 3800, Australia
| | - Hongsheng Chen
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Stefan A Maier
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, VIC, 3800, Australia
- School of Physics and Astronomy, Monash University, Clayton, VIC, 3800, Australia
- Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore.
| | - Qingdong Ou
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao, 999078, China.
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, 3800, Australia.
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
5
|
Herzig Sheinfux H, Jung M, Orsini L, Ceccanti M, Mahalanabish A, Martinez-Cercós D, Torre I, Barcons Ruiz D, Janzen E, Edgar JH, Pruneri V, Shvets G, Koppens FHL. Transverse Hypercrystals Formed by Periodically Modulated Phonon Polaritons. ACS NANO 2023; 17:7377-7383. [PMID: 37010352 DOI: 10.1021/acsnano.2c11497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Photonic crystals and metamaterials are two overarching paradigms for manipulating light. By combining these approaches, hypercrystals can be created, which are hyperbolic dispersion metamaterials that undergo periodic modulation and mix photonic-crystal-like aspects with hyperbolic dispersion physics. Despite several attempts, there has been limited experimental realization of hypercrystals due to technical and design constraints. In this work, hypercrystals with nanoscale lattice constants ranging from 25 to 160 nm were created. The Bloch modes of these crystals were then measured directly using scattering near-field microscopy. The dispersion of the Bloch modes was extracted from the frequency dependence of the Bloch modes, revealing a clear switch from positive to negative group velocity. Furthermore, spectral features specific to hypercrystals were observed in the form of sharp density of states peaks, which are a result of intermodal coupling and should not appear in ordinary polaritonic crystals with an equivalent geometry. These findings are in agreement with theoretical predictions that even simple lattices can exhibit a rich hypercrystal bandstructure. This work is of both fundamental and practical interest, providing insight into nanoscale light-matter interactions and the potential to manipulate the optical density of states.
Collapse
Affiliation(s)
| | - Minwoo Jung
- Department of Physics, Cornell University, Ithaca, New York 14853, United States
| | - Lorenzo Orsini
- ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels, Barcelona, Spain
| | - Matteo Ceccanti
- ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels, Barcelona, Spain
| | - Aditya Mahalanabish
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | | | - Iacopo Torre
- ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels, Barcelona, Spain
| | - David Barcons Ruiz
- ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels, Barcelona, Spain
| | - Eli Janzen
- Tim Taylor Department of Chemical Engineering, Kansas State University, Durland Hall, Manhattan, Kansas 66506-5102, United States
| | - James H Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Durland Hall, Manhattan, Kansas 66506-5102, United States
| | - Valerio Pruneri
- ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels, Barcelona, Spain
| | - Gennady Shvets
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, United States
| | - Frank H L Koppens
- ICFO-Institut de Ciencies Fotoniques, 08860 Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
6
|
Guo X, Lyu W, Chen T, Luo Y, Wu C, Yang B, Sun Z, García de Abajo FJ, Yang X, Dai Q. Polaritons in Van der Waals Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2201856. [PMID: 36121344 DOI: 10.1002/adma.202201856] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 08/15/2022] [Indexed: 05/17/2023]
Abstract
2D monolayers supporting a wide variety of highly confined plasmons, phonon polaritons, and exciton polaritons can be vertically stacked in van der Waals heterostructures (vdWHs) with controlled constituent layers, stacking sequence, and even twist angles. vdWHs combine advantages of 2D material polaritons, rich optical structure design, and atomic scale integration, which have greatly extended the performance and functions of polaritons, such as wide frequency range, long lifetime, ultrafast all-optical modulation, and photonic crystals for nanoscale light. Here, the state of the art of 2D material polaritons in vdWHs from the perspective of design principles and potential applications is reviewed. Some fundamental properties of polaritons in vdWHs are initially discussed, followed by recent discoveries of plasmons, phonon polaritons, exciton polaritons, and their hybrid modes in vdWHs. The review concludes with a perspective discussion on potential applications of these polaritons such as nanophotonic integrated circuits, which will benefit from the intersection between nanophotonics and materials science.
Collapse
Affiliation(s)
- Xiangdong Guo
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Lyu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tinghan Chen
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Life Science, Peking University, Beijing, 100871, P. R. China
| | - Yang Luo
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- School of Life Science, Peking University, Beijing, 100871, P. R. China
| | - Chenchen Wu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bei Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhipei Sun
- Department of Electronics and Nanoengineering and QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, 02150, Finland
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, Barcelona, 08010, Spain
| | - Xiaoxia Yang
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Fiedler J, Berland K, Borchert JW, Corkery RW, Eisfeld A, Gelbwaser-Klimovsky D, Greve MM, Holst B, Jacobs K, Krüger M, Parsons DF, Persson C, Presselt M, Reisinger T, Scheel S, Stienkemeier F, Tømterud M, Walter M, Weitz RT, Zalieckas J. Perspectives on weak interactions in complex materials at different length scales. Phys Chem Chem Phys 2023; 25:2671-2705. [PMID: 36637007 DOI: 10.1039/d2cp03349f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nanocomposite materials consist of nanometer-sized quantum objects such as atoms, molecules, voids or nanoparticles embedded in a host material. These quantum objects can be exploited as a super-structure, which can be designed to create material properties targeted for specific applications. For electromagnetism, such targeted properties include field enhancements around the bandgap of a semiconductor used for solar cells, directional decay in topological insulators, high kinetic inductance in superconducting circuits, and many more. Despite very different application areas, all of these properties are united by the common aim of exploiting collective interaction effects between quantum objects. The literature on the topic spreads over very many different disciplines and scientific communities. In this review, we present a cross-disciplinary overview of different approaches for the creation, analysis and theoretical description of nanocomposites with applications related to electromagnetic properties.
Collapse
Affiliation(s)
- J Fiedler
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway.
| | - K Berland
- Department of Mechanical Engineering and Technology Management, Norwegian University of Life Sciences, Campus Ås Universitetstunet 3, 1430 Ås, Norway
| | - J W Borchert
- 1st Institute of Physics, Georg-August-University, Göttingen, Germany
| | - R W Corkery
- Surface and Corrosion Science, Department of Chemistry, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden
| | - A Eisfeld
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - D Gelbwaser-Klimovsky
- Schulich Faculty of Chemistry and Helen Diller Quantum Center, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - M M Greve
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway.
| | - B Holst
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway.
| | - K Jacobs
- Experimental Physics, Saarland University, Center for Biophysics, 66123 Saarbrücken, Germany.,Max Planck School Matter to Life, 69120 Heidelberg, Germany
| | - M Krüger
- Institute for Theoretical Physics, Georg-August-Universität Göttingen, 37073 Göttingen, Germany
| | - D F Parsons
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, CA, Italy
| | - C Persson
- Centre for Materials Science and Nanotechnology, University of Oslo, P. O. Box 1048 Blindern, 0316 Oslo, Norway.,Department of Materials Science and Engineering, KTH Royal Institute of Technology, 100 44 Stockholm, Sweden
| | - M Presselt
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - T Reisinger
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - S Scheel
- Institute of Physics, University of Rostock, Albert-Einstein-Str. 23-24, 18059 Rostock, Germany
| | - F Stienkemeier
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - M Tømterud
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway.
| | - M Walter
- Institute of Physics, University of Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
| | - R T Weitz
- 1st Institute of Physics, Georg-August-University, Göttingen, Germany
| | - J Zalieckas
- Department of Physics and Technology, University of Bergen, Allégaten 55, 5007 Bergen, Norway.
| |
Collapse
|
8
|
Li M, Hu G, Chen X, Qiu CW, Chen H, Wang Z. Topologically reconfigurable magnetic polaritons. SCIENCE ADVANCES 2022; 8:eadd6660. [PMID: 36525502 PMCID: PMC9757744 DOI: 10.1126/sciadv.add6660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 11/15/2022] [Indexed: 05/20/2023]
Abstract
Hyperbolic polaritons in extremely anisotropic materials have attracted intensive attention due to their exotic optical features. Recent advances in optical materials reveal unprecedented dispersion engineering of polaritons, resulting in twistronics for photons, canalized phonon polaritons, shear polaritons, and tunable topological polaritons. However, the on-demand reconfigurability of polaritons, especially with magnetic anisotropic dispersions, is restricted by weak natural magnetic anisotropy and hence remains largely unexplored. Here, we show how origami fused with artificial magnetism unveils a versatile pathway to topologically reconfigure magnetic polaritons. We experimentally demonstrate that the three-dimensional origami deformation allows to reconfigure hyperbolic or elliptic topology of polariton dispersion and modulate group velocity. With group velocity transitioning from positive to negative directions, we further report reconfigurable origami polariton circuitry in which the polariton propagation and phase distribution can be tailored. Our findings provide alternative perspectives on on-chip polaritonics, with potential applications in energy transfer, sensing, and information transport.
Collapse
Affiliation(s)
- Min Li
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing 312000, China
| | - Guangwei Hu
- Engineering, National University of Singapore, Singapore 117583, Singapore
- School of Electrical and Electronic Engineering, 50 Nanyang Avenue, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xuan Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing 312000, China
| | - Cheng-Wei Qiu
- Engineering, National University of Singapore, Singapore 117583, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, 215000 Suzhou, China
- Corresponding author. (C.-W.Q.); (H.C.); (Z.W.)
| | - Hongsheng Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing 312000, China
- Corresponding author. (C.-W.Q.); (H.C.); (Z.W.)
| | - Zuojia Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining 314400, China
- Key Lab. of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua 321099, China
- Corresponding author. (C.-W.Q.); (H.C.); (Z.W.)
| |
Collapse
|
9
|
Hu H, Chen N, Teng H, Yu R, Qu Y, Sun J, Xue M, Hu D, Wu B, Li C, Chen J, Liu M, Sun Z, Liu Y, Li P, Fan S, García de Abajo FJ, Dai Q. Doping-driven topological polaritons in graphene/α-MoO 3 heterostructures. NATURE NANOTECHNOLOGY 2022; 17:940-946. [PMID: 35982316 PMCID: PMC9477736 DOI: 10.1038/s41565-022-01185-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/28/2022] [Indexed: 05/20/2023]
Abstract
Control over charge carrier density provides an efficient way to trigger phase transitions and modulate the optoelectronic properties of materials. This approach can also be used to induce topological transitions in the optical response of photonic systems. Here we report a topological transition in the isofrequency dispersion contours of hybrid polaritons supported by a two-dimensional heterostructure consisting of graphene and α-phase molybdenum trioxide. By chemically changing the doping level of graphene, we observed that the topology of polariton isofrequency surfaces transforms from open to closed shapes as a result of doping-dependent polariton hybridization. Moreover, when the substrate was changed, the dispersion contour became dominated by flat profiles at the topological transition, thus supporting tunable diffractionless polariton propagation and providing local control over the optical contour topology. We achieved subwavelength focusing of polaritons down to 4.8% of the free-space light wavelength by using a 1.5-μm-wide silica substrate as an in-plane lens. Our findings could lead to on-chip applications in nanoimaging, optical sensing and manipulation of energy transfer at the nanoscale.
Collapse
Grants
- National Key Research and Development Program of China (Grant No. 2020YFB2205701), the National Natural Science Foundation of China (Grant Nos. 51902065, 52172139, 51925203, U2032206, 52072083, and 51972072)
- Beijing Municipal Natural Science Foundation (Grant No. 2202062), and Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB36000000, XDB30000000).
- Z.P.S. acknowledges the Academy of Finland (Grant Nos. 314810, 333982, 336144, and 336818), The Business Finland (ALDEL), the Academy of Finland Flagship Programme (320167, PREIN), the European Union’s Horizon 2020 research and innovation program (820423, S2QUIP; 965124, FEMTOCHIP), the EU H2020-MSCA-RISE-872049 (IPN-Bio), and the ERC (834742).
- P.N.L acknowledges the National Natural Science Foundation of China (grantno.62075070)
- S.F. acknowledges the support of the U.S. Department of Energy under Grant No. DE-FG02-07ER46426.
- F.J.G.A. acknowledges the ERC (Advanced Grant 789104-eNANO), the Spanish MINECO (SEV2015-0522), and the CAS President’s International Fellowship Initiative (PIFI) for 2021.
Collapse
Affiliation(s)
- Hai Hu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Na Chen
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hanchao Teng
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Renwen Yu
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain.
- Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, CA, USA.
| | - Yunpeng Qu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jianzhe Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Beijing, People's Republic of China
| | - Mengfei Xue
- The Institute of Physics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Debo Hu
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Bin Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Beijing, People's Republic of China
| | - Chi Li
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jianing Chen
- The Institute of Physics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, NY, USA
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Beijing, People's Republic of China
| | - Peining Li
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shanhui Fan
- Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, CA, USA
| | - F Javier García de Abajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain.
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain.
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
10
|
Aghamiri NA, Hu G, Fali A, Zhang Z, Li J, Balendhran S, Walia S, Sriram S, Edgar JH, Ramanathan S, Alù A, Abate Y. Reconfigurable hyperbolic polaritonics with correlated oxide metasurfaces. Nat Commun 2022; 13:4511. [PMID: 35922424 PMCID: PMC9349304 DOI: 10.1038/s41467-022-32287-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Polaritons enable subwavelength confinement and highly anisotropic flows of light over a wide spectral range, holding the promise for applications in modern nanophotonic and optoelectronic devices. However, to fully realize their practical application potential, facile methods enabling nanoscale active control of polaritons are needed. Here, we introduce a hybrid polaritonic-oxide heterostructure platform consisting of van der Waals crystals, such as hexagonal boron nitride (hBN) or alpha-phase molybdenum trioxide (α-MoO3), transferred on nanoscale oxygen vacancy patterns on the surface of prototypical correlated perovskite oxide, samarium nickel oxide, SmNiO3 (SNO). Using a combination of scanning probe microscopy and infrared nanoimaging techniques, we demonstrate nanoscale reconfigurability of complex hyperbolic phonon polaritons patterned at the nanoscale with high resolution. Hydrogenation and temperature modulation allow spatially localized conductivity modulation of SNO nanoscale patterns, enabling robust real-time modulation and nanoscale reconfiguration of hyperbolic polaritons. Our work paves the way towards nanoscale programmable metasurface engineering for reconfigurable nanophotonic applications. Phonon polaritons in anisotropic van der Waals materials enable subwavelength confinement and controllable flow of light at the nanoscale. Here, the authors exploit correlated perovskite oxide (SmNiO3) substrates with tunable conductivity to obtain real-time modulation and nanoscale reconfiguration of hyperbolic polaritons in hBN and α-MoO3 crystals.
Collapse
Affiliation(s)
| | - Guangwei Hu
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.,Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore, 117583, Singapore
| | - Alireza Fali
- Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602, USA
| | - Zhen Zhang
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiahan Li
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KN, 66506, USA
| | | | - Sumeet Walia
- School of Engineering RMIT University Melbourne, Melbourne, VIC, Australia.,Functional Materials and Microsystems Research Group and the Micro Nano Research Facility RMIT University, Melbourne, VIC, Australia
| | - Sharath Sriram
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility RMIT University, Melbourne, VIC, Australia.,ARC Centre of Excellence for Transformative Meta-Optical Systems, RMIT University, Melbourne, VIC, Australia
| | - James H Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, KN, 66506, USA
| | - Shriram Ramanathan
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA.,Physics Program, Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Yohannes Abate
- Department of Physics and Astronomy, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
11
|
Zhang Q, Ou Q, Si G, Hu G, Dong S, Chen Y, Ni J, Zhao C, Fuhrer MS, Yang Y, Alù A, Hillenbrand R, Qiu CW. Unidirectionally excited phonon polaritons in high-symmetry orthorhombic crystals. SCIENCE ADVANCES 2022; 8:eabn9774. [PMID: 35905184 PMCID: PMC9337755 DOI: 10.1126/sciadv.abn9774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/14/2022] [Indexed: 05/28/2023]
Abstract
Advanced control over the excitation of ultraconfined polaritons-hybrid light and matter waves-empowers unique opportunities for many nanophotonic functionalities, e.g., on-chip circuits, quantum information processing, and controlling thermal radiation. Recent work has shown that highly asymmetric polaritons are directly governed by asymmetries in crystal structures. Here, we experimentally demonstrate extremely asymmetric and unidirectional phonon polariton (PhP) excitation via directly patterning high-symmetry orthorhombic van der Waals (vdW) crystal α-MoO3. This phenomenon results from symmetry breaking of momentum matching in polaritonic diffraction in vdW materials. We show that the propagation of PhPs can be versatile and robustly tailored via structural engineering, while PhPs in low-symmetry (e.g., monoclinic and triclinic) crystals are largely restricted by their naturally occurring permittivities. Our work synergizes grating diffraction phenomena with the extreme anisotropy of high-symmetry vdW materials, enabling unexpected control of infrared polaritons along different pathways and opening opportunities for applications ranging from on-chip photonics to directional heat dissipation.
Collapse
Affiliation(s)
- Qing Zhang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Qingdong Ou
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, Victoria 3800, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Macao Institute of Materials Science and Engineering (MIMSE) , Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Guangyuan Si
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3800, Australia
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Shaohua Dong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Yang Chen
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027 China
| | - Jincheng Ni
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Chen Zhao
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Michael S. Fuhrer
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Clayton, Victoria 3800, Australia
- School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
| | - Yuanjie Yang
- School of Physics, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Andrea Alù
- Advanced Science Research Center, City University of New York, New York, NY 10031, USA
- Physics Program, Graduate Center, City University of New York, New York, NY 10016, USA
| | - Rainer Hillenbrand
- CIC nanoGUNE BRTA and Department of Electricity and Electronics, UPV/EHU, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|