1
|
Schwer B, Prucker I, Sanchez AM, Babor J, Jessen HJ, Shuman S. Tandem inactivation of inositol pyrophosphatases Asp1, Siw14, and Aps1 illuminates functional redundancies in inositol pyrophosphate catabolism in fission yeast. mBio 2025; 16:e0038925. [PMID: 40237466 PMCID: PMC12077094 DOI: 10.1128/mbio.00389-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Inositol pyrophosphates 5-IP7, 1-IP7, and 1,5-IP8 are eukaryal signaling molecules that influence cell physiology, especially phosphate homeostasis. In fission yeast, 1,5-IP8 and 1-IP7 impact gene expression by acting as agonists of RNA 3'-processing and transcription termination. 1,5-IP8 is synthesized by position-specific kinases Kcs1 and Asp1 that convert IP6 to 5-IP7 and 5-IP7 to 1,5-IP8, respectively. Inositol pyrophosphatase enzymes Asp1 (a histidine acid phosphatase), Siw14 (a cysteinyl phosphatase), and Aps1 (a Nudix hydrolase) are agents of inositol pyrophosphate catabolism in fission yeast. Whereas Asp1, Siw14, and Aps1 are individually inessential, double pyrophosphatase mutants asp1-H397A aps1∆ and siw14∆ aps1∆ display severe growth defects caused by overzealous 3'-processing/termination. By applying CE-ESI-MS to profile the inositol pyrophosphate content of fission yeast mutants in which inositol pyrophosphate toxicity is genetically suppressed, we elucidated the functional redundancies of the Asp1, Siw14, and Aps1 pyrophosphatases. Asp1, which exclusively cleaves the 1-β-phosphate, and Aps1, which prefers to cleave the 1-β-phosphate, play essential overlapping roles in guarding against the accumulation of toxic levels of 1-IP7. Aps1 and Siw14 together catabolize the inositol-5-pyrophosphates, and their simultaneous inactivation results in overaccumulation of 5-IP7. Cells lacking all three pyrophosphatases amass high levels of 1,5-IP8 and 1-IP7, with concomitant depletion of IP6. A genetic screen identified three missense mutations in the catalytic domain of Kcs1 kinase that suppressed inositol-1-pyrophosphate toxicosis. The screen also implicated the 3'-processing factor Swd22, the inositol pyrophosphate sensor Spx1, and the nuclear poly(A)-binding protein Nab2 as mediators of inositol-1-pyrophosphate toxicity.IMPORTANCEInositol pyrophosphates are key effectors of eukaryal cellular phosphate homeostasis. They are synthesized by kinases that add a β-phosphate to the 5- or 1-phosphate groups of IP6 and catabolized by three classes of pyrophosphatases that hydrolyze the β-phosphates of 5-IP7, 1-IP7, or 1,5-IP8. Whereas the fission yeast inositol pyrophosphatases-Asp1 (histidine acid phosphatase), Siw14 (cysteinyl phosphatase), and Aps1 (Nudix hydrolase)-are inessential for growth, Asp1/Aps1 and Aps1/Siw14 double mutations and Asp1/Siw14/Aps1 triple mutations elicit severe or lethal growth defects. By profiling the inositol pyrophosphate content of pyrophosphatase mutants in which this toxicity is genetically suppressed, we reveal the functional redundancies of the Asp1, Siw14, and Aps1 pyrophosphatases. Their synergies are manifested as excess accumulation of 1-IP7 upon dual inactivation of Asp1 and Aps1 or an excess of 5-IP7 in aps1∆ siw14∆ cells. In the absence of all three pyrophosphatases, cells accrue high levels of 1,5-IP8 and 1-IP7 while IP6 declines.
Collapse
Affiliation(s)
- Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Isabel Prucker
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Baden-Württemberg, Germany
| | - Ana M. Sanchez
- Molecular Biology Program, Sloan Kettering Institute, New York, New York, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, USA
| | - Jill Babor
- Molecular Biology Program, Sloan Kettering Institute, New York, New York, USA
| | - Henning J. Jessen
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Baden-Württemberg, Germany
- CIBSS-Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Baden-Württemberg, Germany
| | - Stewart Shuman
- Molecular Biology Program, Sloan Kettering Institute, New York, New York, USA
| |
Collapse
|
2
|
McCarthy L, Baijal K, Downey M. A framework for understanding and investigating polyphosphate-protein interactions. Biochem Soc Trans 2025:BST20240678. [PMID: 39836110 DOI: 10.1042/bst20240678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/22/2025]
Abstract
Many prokaryotic and eukaryotic cells store inorganic phosphate in the form of polymers called polyphosphate (polyP). There has been an explosion of interest in polyP over the past decade, in part due to newly suggested roles related to diverse aspects of human health. The physical interaction of polyP chains with specific proteins has been proposed to regulate cellular homeostasis and modulate signaling pathways in response to environmental changes. Recently, several studies have challenged existing models for how polyP interacts with its protein targets, while identifying new motifs that are capable of binding to polyP. In this review, we summarize these findings, delineate the functional implications for polyP-protein interactions at the molecular level, and define open questions that should be addressed to propel the field forward.
Collapse
Affiliation(s)
- Liam McCarthy
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Kanchi Baijal
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Michael Downey
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Freed C, Craige B, Donahue J, Cridland C, Williams SP, Pereira C, Kim J, Blice H, Owen J, Gillaspy G. Using native and synthetic genes to disrupt inositol pyrophosphates and phosphate accumulation in plants. PLANT PHYSIOLOGY 2024; 197:kiae582. [PMID: 39474910 DOI: 10.1093/plphys/kiae582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/28/2024] [Indexed: 12/24/2024]
Abstract
Inositol pyrophosphates are eukaryotic signaling molecules that have been recently identified as key regulators of plant phosphate sensing and homeostasis. Given the importance of phosphate to current and future agronomic practices, we sought to design plants, which could be used to sequester phosphate, as a step in a phytoremediation strategy. To achieve this, we expressed diadenosine and diphosphoinositol polyphosphate phosphohydrolase (DDP1), a yeast (Saccharomyces cerevisiae) enzyme demonstrated to hydrolyze inositol pyrophosphates, in Arabidopsis thaliana and pennycress (Thlaspi arvense), a spring annual cover crop with emerging importance as a biofuel crop. DDP1 expression in Arabidopsis decreased inositol pyrophosphates, activated phosphate starvation response marker genes, and increased phosphate accumulation. These changes corresponded with alterations in plant growth and sensitivity to exogenously applied phosphate. Pennycress plants expressing DDP1 displayed increases in phosphate accumulation, suggesting that these plants could potentially serve to reclaim phosphate from phosphate-polluted soils. We also identified a native Arabidopsis gene, Nucleoside diphosphate-linked moiety X 13 (NUDIX13), which we show encodes an enzyme homologous to DDP1 with similar substrate specificity. Arabidopsis transgenics overexpressing NUDIX13 had lower inositol pyrophosphate levels and displayed phenotypes similar to DDP1-overexpressing transgenics, while nudix13-1 mutants had increased levels of inositol pyrophosphates. Taken together, our data demonstrate that DDP1 and NUDIX13 can be used in strategies to regulate plant inositol pyrophosphates and could serve as potential targets for engineering plants to reclaim phosphate from polluted environments.
Collapse
Affiliation(s)
- Catherine Freed
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Branch Craige
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Janet Donahue
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Caitlin Cridland
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Chris Pereira
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jiwoo Kim
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Hannah Blice
- Application Technology Research Unit, US Department of Agriculture, Agricultural Research Service, Wooster, OH 44691, USA
| | - James Owen
- Application Technology Research Unit, US Department of Agriculture, Agricultural Research Service, Wooster, OH 44691, USA
| | - Glenda Gillaspy
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
4
|
Yagisawa F, Fujiwara T, Yamashita S, Hirooka S, Tamashiro K, Izumi J, Kanesaki Y, Onuma R, Misumi O, Nakamura S, Yoshikawa H, Kuroiwa H, Kuroiwa T, Miyagishima SY. A fusion protein of polyphosphate kinase 1 (PPK1) and a Nudix hydrolase is involved in inorganic polyphosphate accumulation in the unicellular red alga Cyanidioschyzon merolae. PLANT MOLECULAR BIOLOGY 2024; 115:9. [PMID: 39699696 DOI: 10.1007/s11103-024-01539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
Inorganic polyphosphate (polyP) is a linear polymer of phosphate that plays various roles in cells, including in phosphate and metal homeostasis. Homologs of the vacuolar transporter chaperone 4 (VTC4), catalyzing polyP synthesis in many eukaryotes, are absent in red algae, which are among the earliest divergent plant lineages. We identified homologs of polyphosphate kinase 1 (PPK1), a conserved polyP synthase in bacteria, in 42 eukaryotic genomes, including 31 species detected in this study and 12 species of red algae. Phylogenetic analysis suggested that most eukaryotic PPK1 homologs originated from horizontal gene transfer from a prokaryote to a plant before the divergence of red algae and Viridiplantae. In red algae, the homologs were fused to a nucleoside diphosphate-linked moiety X (Nudix) hydrolase of the diphosphoinositol polyphosphate phosphohydrolase (DIPP) family. We characterized the fusion protein CmPPK1 in the unicellular red alga Cyanidioschyzon merolae, which has been used in studies on basic features of eukaryotes. In the knockout strain ∆CmPPK1, polyP was undetectable, suggesting a primary role for CmPPK1 in polyP synthesis. In addition, ∆CmPPK1 showed altered metal balance. Mutations in the catalytically important residues of the Nudix hydrolase domain (NHD) either increased or decreased polyP contents. Both high and low polyP NHD mutants were susceptible to phosphate deprivation, indicating that adequate NHD function is necessary for normal phosphate starvation responses. The results reveal the unique features of PPK1 in red algae and promote further investigation of polyP metabolism and functions in red algae and eukaryotic evolution.
Collapse
Affiliation(s)
- Fumi Yagisawa
- Research Facility Center, University of the Ryukyus, Senbaru-1, Nishihara-Cho, Nakagami-Gun, Okinawa, 903-0213, Japan.
- Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, 903-0213, Japan.
| | - Takayuki Fujiwara
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka, 411-8540, Japan
| | - Shota Yamashita
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, 411-8540, Japan
| | - Shunsuke Hirooka
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, 411-8540, Japan
| | - Kei Tamashiro
- Integrated Technology Center, University of the Ryukyus, Okinawa, 903-0213, Japan
| | - Jin Izumi
- Integrated Technology Center, University of the Ryukyus, Okinawa, 903-0213, Japan
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Ryo Onuma
- Kobe University Research Center for Inland Seas, Hyogo, 656-2401, Japan
| | - Osami Misumi
- Department of Biological Science and Chemistry, Faculty of Science, Yamaguchi University, Yamaguchi, 753-8512, Japan
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| | - Soichi Nakamura
- Laboratory of Cell and Functional Biology, Faculty of Science, University of the Ryukyus, Okinawa, 903-0213, Japan
| | - Hirofumi Yoshikawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Haruko Kuroiwa
- Department of Chemical and Biological Science, Japan Women's University, Tokyo, 112-8681, Japan
| | - Tsuneyoshi Kuroiwa
- Department of Chemical and Biological Science, Japan Women's University, Tokyo, 112-8681, Japan
| | - Shin-Ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Shizuoka, 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), Shizuoka, 411-8540, Japan
| |
Collapse
|
5
|
Kim S, Bhandari R, Brearley CA, Saiardi A. The inositol phosphate signalling network in physiology and disease. Trends Biochem Sci 2024; 49:969-985. [PMID: 39317578 DOI: 10.1016/j.tibs.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024]
Abstract
Combinatorial substitution of phosphate groups on the inositol ring gives rise to a plethora of inositol phosphates (InsPs) and inositol pyrophosphates (PP-InsPs). These small molecules constitute an elaborate metabolic and signalling network that influences nearly every cellular function. This review delves into the knowledge accumulated over the past decades regarding the biochemical principles and significance of InsP metabolism. We focus on the biological actions of InsPs in mammals, with an emphasis on recent findings regarding specific target proteins. We further discuss the roles of InsP metabolism in contributing to physiological homeostasis and pathological conditions. A deeper understanding of InsPs and their metabolic pathways holds the potential to address unresolved questions and propel advances towards therapeutic applications.
Collapse
Affiliation(s)
- Seyun Kim
- Department of Biological Sciences, KAIST Stem Cell Center, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Rashna Bhandari
- Laboratory of Cell Signalling, Centre for DNA Fingerprinting and Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad 500039, India.
| | - Charles A Brearley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Adolfo Saiardi
- Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
6
|
Ghosh S, Sanchez AM, Schwer B, Prucker I, Jork N, Jessen HJ, Shuman S. Activities and genetic interactions of fission yeast Aps1, a Nudix-type inositol pyrophosphatase and inorganic polyphosphatase. mBio 2024; 15:e0108424. [PMID: 38940614 PMCID: PMC11323792 DOI: 10.1128/mbio.01084-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024] Open
Abstract
Inositol pyrophosphate 1,5-IP8 regulates expression of a fission yeast phosphate homeostasis regulon, comprising phosphate acquisition genes pho1, pho84, and tgp1, via its action as an agonist of precocious termination of transcription of the upstream lncRNAs that repress PHO mRNA synthesis. 1,5-IP8 levels are dictated by a balance between the Asp1 N-terminal kinase domain that converts 5-IP7 to 1,5-IP8 and three inositol pyrophosphatases-the Asp1 C-terminal domain (a histidine acid phosphatase), Siw14 (a cysteinyl-phosphatase), and Aps1 (a Nudix enzyme). In this study, we report the biochemical and genetic characterization of Aps1 and an analysis of the effects of Asp1, Siw14, and Aps1 mutations on cellular inositol pyrophosphate levels. We find that Aps1's substrate repertoire embraces inorganic polyphosphates, 5-IP7, 1-IP7, and 1,5-IP8. Aps1 displays a ~twofold preference for hydrolysis of 1-IP7 versus 5-IP7 and aps1∆ cells have twofold higher levels of 1-IP7 vis-à-vis wild-type cells. While neither Aps1 nor Siw14 is essential for growth, an aps1∆ siw14∆ double mutation is lethal on YES medium. This lethality is a manifestation of IP8 toxicosis, whereby excessive 1,5-IP8 drives derepression of tgp1, leading to Tgp1-mediated uptake of glycerophosphocholine. We were able to recover an aps1∆ siw14∆ mutant on ePMGT medium lacking glycerophosphocholine and to suppress the severe growth defect of aps1∆ siw14∆ on YES by deleting tgp1. However, the severe growth defect of an aps1∆ asp1-H397A strain could not be alleviated by deleting tgp1, suggesting that 1,5-IP8 levels in this double-pyrophosphatase mutant exceed a threshold beyond which overzealous termination affects other genes, which results in cytotoxicity. IMPORTANCE Repression of the fission yeast PHO genes tgp1, pho1, and pho84 by lncRNA-mediated interference is sensitive to changes in the metabolism of 1,5-IP8, a signaling molecule that acts as an agonist of precocious lncRNA termination. 1,5-IP8 is formed by phosphorylation of 5-IP7 and catabolized by inositol pyrophosphatases from three distinct enzyme families: Asp1 (a histidine acid phosphatase), Siw14 (a cysteinyl phosphatase), and Aps1 (a Nudix hydrolase). This study entails a biochemical characterization of Aps1 and an analysis of how Asp1, Siw14, and Aps1 mutations impact growth and inositol pyrophosphate pools in vivo. Aps1 catalyzes hydrolysis of inorganic polyphosphates, 5-IP7, 1-IP7, and 1,5-IP8 in vitro, with a ~twofold preference for 1-IP7 over 5-IP7. aps1∆ cells have twofold higher levels of 1-IP7 than wild-type cells. An aps1∆ siw14∆ double mutation is lethal because excessive 1,5-IP8 triggers derepression of tgp1, leading to toxic uptake of glycerophosphocholine.
Collapse
Affiliation(s)
- Shreya Ghosh
- Molecular Biology Program, Sloan Kettering Institute, New York, New York, USA
| | - Ana M. Sanchez
- Molecular Biology Program, Sloan Kettering Institute, New York, New York, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Isabel Prucker
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | - Nikolaus Jork
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry, University of Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Stewart Shuman
- Molecular Biology Program, Sloan Kettering Institute, New York, New York, USA
| |
Collapse
|
7
|
Guo B, Hu Q, Wang B, Yao D, Wang H, Kong G, Han C, Dong S, Liu F, Xing W, Wang Y. Oomycete Nudix effectors display WY-Nudix conformation and mRNA decapping activity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1548-1552. [PMID: 38888246 DOI: 10.1111/jipb.13712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
Oomycete Nudix effectors have characteristics of independent evolution, but adopt a conserved WY-Nudix conformation. Furthermore, multiple oomycete Nudix effectors exhibit mRNA decapping activity.
Collapse
Affiliation(s)
- Baodian Guo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Qinli Hu
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, 75390, Texas, USA
| | - Bangwei Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Deqiang Yao
- Institute of Aging & Tissue Regeneration, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Haonan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guanghui Kong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenyang Han
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Weiman Xing
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Mihiret YE, Schaaf G, Kamleitner M. Protein pyrophosphorylation by inositol phosphates: a novel post-translational modification in plants? FRONTIERS IN PLANT SCIENCE 2024; 15:1347922. [PMID: 38455731 PMCID: PMC10917965 DOI: 10.3389/fpls.2024.1347922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024]
Abstract
Inositol pyrophosphates (PP-InsPs) are energy-rich molecules harboring one or more diphosphate moieties. PP-InsPs are found in all eukaryotes evaluated and their functional versatility is reflected in the various cellular events in which they take part. These include, among others, insulin signaling and intracellular trafficking in mammals, as well as innate immunity and hormone and phosphate signaling in plants. The molecular mechanisms by which PP-InsPs exert such functions are proposed to rely on the allosteric regulation via direct binding to proteins, by competing with other ligands, or by protein pyrophosphorylation. The latter is the focus of this review, where we outline a historical perspective surrounding the first findings, almost 20 years ago, that certain proteins can be phosphorylated by PP-InsPs in vitro. Strikingly, in vitro phosphorylation occurs by an apparent enzyme-independent but Mg2+-dependent transfer of the β-phosphoryl group of an inositol pyrophosphate to an already phosphorylated serine residue at Glu/Asp-rich protein regions. Ribosome biogenesis, vesicle trafficking and transcription are among the cellular events suggested to be modulated by protein pyrophosphorylation in yeast and mammals. Here we discuss the latest efforts in identifying targets of protein pyrophosphorylation, pointing out the methodological challenges that have hindered the full understanding of this unique post-translational modification, and focusing on the latest advances in mass spectrometry that finally provided convincing evidence that PP-InsP-mediated pyrophosphorylation also occurs in vivo. We also speculate about the relevance of this post-translational modification in plants in a discussion centered around the protein kinase CK2, whose activity is critical for pyrophosphorylation of animal and yeast proteins. This enzyme is widely present in plant species and several of its functions overlap with those of PP-InsPs. Until now, there is virtually no data on pyrophosphorylation of plant proteins, which is an exciting field that remains to be explored.
Collapse
Affiliation(s)
| | | | - Marília Kamleitner
- Department of Plant Nutrition, Institute of Crop Science and Resource Conservation, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
9
|
Zong G, Desfougères Y, Portela-Torres P, Kwon YU, Saiardi A, Shears SB, Wang H. Biochemical and structural characterization of an inositol pyrophosphate kinase from a giant virus. EMBO J 2024; 43:462-480. [PMID: 38216735 PMCID: PMC10897400 DOI: 10.1038/s44318-023-00005-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 01/14/2024] Open
Abstract
Kinases that synthesize inositol phosphates (IPs) and pyrophosphates (PP-IPs) control numerous biological processes in eukaryotic cells. Herein, we extend this cellular signaling repertoire to viruses. We have biochemically and structurally characterized a minimalist inositol phosphate kinase (i.e., TvIPK) encoded by Terrestrivirus, a nucleocytoplasmic large ("giant") DNA virus (NCLDV). We show that TvIPK can synthesize inositol pyrophosphates from a range of scyllo- and myo-IPs, both in vitro and when expressed in yeast cells. We present multiple crystal structures of enzyme/substrate/nucleotide complexes with individual resolutions from 1.95 to 2.6 Å. We find a heart-shaped ligand binding pocket comprising an array of positively charged and flexible side chains, underlying the observed substrate diversity. A crucial arginine residue in a conserved "G-loop" orients the γ-phosphate of ATP to allow substrate pyrophosphorylation. We highlight additional conserved catalytic and architectural features in TvIPK, and support their importance through site-directed mutagenesis. We propose that NCLDV inositol phosphate kinases may have assisted evolution of inositol pyrophosphate signaling, and we discuss the potential biogeochemical significance of TvIPK in soil niches.
Collapse
Affiliation(s)
- Guangning Zong
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Yann Desfougères
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Paloma Portela-Torres
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Yong-Uk Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Stephen B Shears
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| | - Huanchen Wang
- Inositol Signaling Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
10
|
Hostachy S, Wang H, Zong G, Franke K, Riley AM, Schmieder P, Potter BVL, Shears SB, Fiedler D. Fluorination Influences the Bioisostery of Myo-Inositol Pyrophosphate Analogs. Chemistry 2023; 29:e202302426. [PMID: 37773020 PMCID: PMC7615343 DOI: 10.1002/chem.202302426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 09/30/2023]
Abstract
Inositol pyrophosphates (PP-IPs) are densely phosphorylated messenger molecules involved in numerous biological processes. PP-IPs contain one or two pyrophosphate group(s) attached to a phosphorylated myo-inositol ring. 5PP-IP5 is the most abundant PP-IP in human cells. To investigate the function and regulation by PP-IPs in biological contexts, metabolically stable analogs have been developed. Here, we report the synthesis of a new fluorinated phosphoramidite reagent and its application for the synthesis of a difluoromethylene bisphosphonate analog of 5PP-IP5 . Subsequently, the properties of all currently reported analogs were benchmarked using a number of biophysical and biochemical methods, including co-crystallization, ITC, kinase activity assays and chromatography. Together, the results showcase how small structural alterations of the analogs can have notable effects on their properties in a biochemical setting and will guide in the choice of the most suitable analog(s) for future investigations.
Collapse
Affiliation(s)
- Sarah Hostachy
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Straße 1013125BerlinGermany
| | - Huanchen Wang
- Inositol Signaling GroupNational Institutes of HealthResearch Triangle ParkNorth Carolina27709USA
| | - Guangning Zong
- Inositol Signaling GroupNational Institutes of HealthResearch Triangle ParkNorth Carolina27709USA
| | - Katy Franke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Straße 1013125BerlinGermany
| | - Andrew M. Riley
- Medicinal Chemistry & Drug Discovery Department of PharmacologyUniversity of OxfordOxfordOX1 3QTUK
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Straße 1013125BerlinGermany
| | - Barry V. L. Potter
- Medicinal Chemistry & Drug Discovery Department of PharmacologyUniversity of OxfordOxfordOX1 3QTUK
| | - Stephen B. Shears
- Inositol Signaling GroupNational Institutes of HealthResearch Triangle ParkNorth Carolina27709USA
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Straße 1013125BerlinGermany
- Institut für ChemieHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| |
Collapse
|
11
|
Sanchez AM, Schwer B, Jork N, Jessen HJ, Shuman S. Activities, substrate specificity, and genetic interactions of fission yeast Siw14, a cysteinyl-phosphatase-type inositol pyrophosphatase. mBio 2023; 14:e0205623. [PMID: 37772819 PMCID: PMC10653929 DOI: 10.1128/mbio.02056-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/09/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE The inositol pyrophosphate signaling molecule 1,5-IP8 modulates fission yeast phosphate homeostasis via its action as an agonist of RNA 3'-processing and transcription termination. Cellular 1,5-IP8 levels are determined by a balance between the activities of the inositol polyphosphate kinase Asp1 and several inositol pyrophosphatase enzymes. Here, we characterize Schizosaccharomyces pombe Siw14 (SpSiw14) as a cysteinyl-phosphatase-family pyrophosphatase enzyme capable of hydrolyzing the phosphoanhydride substrates inorganic pyrophosphate, inorganic polyphosphate, and inositol pyrophosphates 5-IP7, 1-IP7, and 1,5-IP8. Genetic analyses implicate SpSiw14 in 1,5-IP8 catabolism in vivo, insofar as: loss of SpSiw14 activity is lethal in the absence of the Nudix-type inositol pyrophosphatase enzyme Aps1; and siw14∆ aps1∆ lethality depends on synthesis of 1,5-IP8 by the Asp1 kinase. Suppression of siw14∆ aps1∆ lethality by loss-of-function mutations of 3'-processing/termination factors points to precocious transcription termination as the cause of 1,5-IP8 toxicosis.
Collapse
Affiliation(s)
- Ana M. Sanchez
- Molecular Biology Program, Sloan Kettering Institute, New York, New York, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York, USA
| | - Nikolaus Jork
- Institute of Organic Chemistry and Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry and Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Stewart Shuman
- Molecular Biology Program, Sloan Kettering Institute, New York, New York, USA
| |
Collapse
|
12
|
Sanchez AM, Garg A, Schwer B, Shuman S. Duf89 abets lncRNA control of fission yeast phosphate homeostasis via its antagonism of precocious lncRNA transcription termination. RNA (NEW YORK, N.Y.) 2023; 29:808-825. [PMID: 36882296 PMCID: PMC10187668 DOI: 10.1261/rna.079595.123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/13/2023] [Indexed: 05/18/2023]
Abstract
Fission yeast phosphate homeostasis gene pho1 is actively repressed during growth in phosphate-rich medium by transcription in cis of a long noncoding (lnc) RNA from the 5' flanking prt(nc-pho1) gene. Pho1 expression is: (i) derepressed by genetic maneuvers that favor precocious lncRNA 3'-processing and termination, in response to DSR and PAS signals in prt; and (ii) hyperrepressed in genetic backgrounds that dampen 3'-processing/termination efficiency. Governors of 3'-processing/termination include the RNA polymerase CTD code, the CPF (cleavage and polyadenylation factor) complex, termination factors Seb1 and Rhn1, and the inositol pyrophosphate signaling molecule 1,5-IP8 Here, we present genetic and biochemical evidence that fission yeast Duf89, a metal-dependent phosphatase/pyrophosphatase, is an antagonist of precocious 3'-processing/termination. We show that derepression of pho1 in duf89Δ cells correlates with squelching the production of full-length prt lncRNA and is erased or attenuated by: (i) DSR/PAS mutations in prt; (ii) loss-of-function mutations in components of the 3'-processing and termination machinery; (iii) elimination of the CTD Thr4-PO4 mark; (iv) interdicting CTD prolyl isomerization by Pin1; (v) inactivating the Asp1 kinase that synthesizes IP8; and (vi) loss of the putative IP8 sensor Spx1. The findings that duf89Δ is synthetically lethal with pho1-derepressive mutations CTD-S7A and aps1Δ-and that this lethality is rescued by CTD-T4A, CPF/Rhn1/Pin1 mutations, and spx1Δ-implicate Duf89 more broadly as a collaborator in cotranscriptional regulation of essential fission yeast genes. The duf89-D252A mutation, which abolishes Duf89 phosphohydrolase activity, phenocopied duf89 +, signifying that duf89Δ phenotypes are a consequence of Duf89 protein absence, not absence of Duf89 catalysis.
Collapse
Affiliation(s)
- Ana M Sanchez
- Molecular Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, New York 10065, USA
| | - Angad Garg
- Molecular Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Beate Schwer
- Department of Microbiology and Immunology, Weill Cornell Medical College, New York, New York 10065, USA
| | - Stewart Shuman
- Molecular Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| |
Collapse
|
13
|
Qi J, Cheng W, Gao Z, Chen Y, Shipton ML, Furkert D, Chin AC, Riley AM, Fiedler D, Potter BVL, Fu C. Itraconazole inhibits endothelial cell migration by disrupting inositol pyrophosphate-dependent focal adhesion dynamics and cytoskeletal remodeling. Biomed Pharmacother 2023; 161:114449. [PMID: 36857911 PMCID: PMC7614367 DOI: 10.1016/j.biopha.2023.114449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
The antifungal drug itraconazole has been repurposed to anti-angiogenic agent, but the mechanisms of action have been elusive. Here we report that itraconazole disrupts focal adhesion dynamics and cytoskeletal remodeling, which requires 5-diphosphoinositol 1,2,3,4,6-pentakisphosphate (5-InsP7). We find that inositol hexakisphosphate kinase 1 (IP6K1) binds Arp2 and generates 5-InsP7 to recruit coronin, a negative regulator of the Arp2/3 complex. IP6K1 also produces focal adhesion-enriched 5-InsP7, which binds focal adhesion kinase (FAK) at the FERM domain to promote its dimerization and phosphorylation. Itraconazole treatment elicits displacement of IP6K1/5-InsP7, thus augments 5-InsP7-mediated inhibition of Arp2/3 complex and reduces 5-InsP7-mediated FAK dimerization. Itraconazole-treated cells display reduced focal adhesion dynamics and actin cytoskeleton remodeling. Accordingly, itraconazole severely disrupts cell motility, an essential component of angiogenesis. These results demonstrate critical roles of IP6K1-generated 5-InsP7 in regulating focal adhesion dynamics and actin cytoskeleton remodeling and reveal functional mechanisms by which itraconazole inhibits cell motility.
Collapse
Affiliation(s)
- Ji Qi
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Weiwei Cheng
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhe Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuanyuan Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Megan L Shipton
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Alfred C Chin
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - Andrew M Riley
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Barry V L Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Chenglai Fu
- The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Key Laboratory of Metabolic Diseases, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China; Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
14
|
Kuenzel NA, Alcázar-Román AR, Saiardi A, Bartsch SM, Daunaraviciute S, Fiedler D, Fleig U. Inositol Pyrophosphate-Controlled Kinetochore Architecture and Mitotic Entry in S. pombe. J Fungi (Basel) 2022; 8:933. [PMID: 36135658 PMCID: PMC9506091 DOI: 10.3390/jof8090933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Inositol pyrophosphates (IPPs) comprise a specific class of signaling molecules that regulate central biological processes in eukaryotes. The conserved Vip1/PPIP5K family controls intracellular IP8 levels, the highest phosphorylated form of IPPs present in yeasts, as it has both inositol kinase and pyrophosphatase activities. Previous studies have shown that the fission yeast S. pombe Vip1/PPIP5K family member Asp1 impacts chromosome transmission fidelity via the modulation of spindle function. We now demonstrate that an IP8 analogue is targeted by endogenous Asp1 and that cellular IP8 is subject to cell cycle control. Mitotic entry requires Asp1 kinase function and IP8 levels are increased at the G2/M transition. In addition, the kinetochore, the conductor of chromosome segregation that is assembled on chromosomes is modulated by IP8. Members of the yeast CCAN kinetochore-subcomplex such as Mal2/CENP-O localize to the kinetochore depending on the intracellular IP8-level: higher than wild-type IP8 levels reduce Mal2 kinetochore targeting, while a reduction in IP8 has the opposite effect. As our perturbations of the inositol polyphosphate and IPP pathways demonstrate that kinetochore architecture depends solely on IP8 and not on other IPPs, we conclude that chromosome transmission fidelity is controlled by IP8 via an interplay between entry into mitosis, kinetochore architecture, and spindle dynamics.
Collapse
Affiliation(s)
- Natascha Andrea Kuenzel
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Abel R. Alcázar-Román
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Adolfo Saiardi
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower St., London WC1E 6BT, UK
| | - Simon M. Bartsch
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Sarune Daunaraviciute
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Dorothea Fiedler
- Leibniz Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Ursula Fleig
- Eukaryotic Microbiology, Institute of Functional Microbial Genomics, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Cleavage-Polyadenylation Factor Cft1 and SPX Domain Proteins Are Agents of Inositol Pyrophosphate Toxicosis in Fission Yeast. mBio 2022; 13:e0347621. [PMID: 35012333 PMCID: PMC8749416 DOI: 10.1128/mbio.03476-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inositol pyrophosphate (IPP) dynamics govern expression of the fission yeast phosphate homeostasis regulon via their effects on lncRNA-mediated transcription interference. The growth defects (ranging from sickness to lethality) elicited by fission yeast mutations that inactivate IPP pyrophosphatase enzymes are exerted via the agonistic effects of too much 1,5-IP8 on RNA 3'-processing and transcription termination. To illuminate determinants of IPP toxicosis, we conducted a genetic screen for spontaneous mutations that suppressed the sickness of Asp1 pyrophosphatase mutants. We identified a missense mutation, C823R, in the essential Cft1 subunit of the cleavage and polyadenylation factor complex that suppresses even lethal Asp1 IPP pyrophosphatase mutations, thereby fortifying the case for 3'-processing/termination as the target of IPP toxicity. The suppressor screen also identified Gde1 and Spx1 (SPAC6B12.07c), both of which have an IPP-binding SPX domain and both of which are required for lethality elicited by Asp1 mutations. A survey of other SPX proteins in the proteome identified the Vtc4 and Vtc2 subunits of the vacuolar polyphosphate polymerase as additional agents of IPP toxicosis. Gde1, Spx1, and Vtc4 contain enzymatic modules (glycerophosphodiesterase, RING finger ubiquitin ligase, and polyphosphate polymerase, respectively) fused to their IPP-sensing SPX domains. Structure-guided mutagenesis of the IPP-binding sites and the catalytic domains of Gde1 and Spx1 indicated that both modules are necessary to elicit IPP toxicity. Whereas Vtc4 polymerase catalytic activity is required for IPP toxicity, its IPP-binding site is not. Epistasis analysis, transcriptome profiling, and assays of Pho1 expression implicate Spx1 as a transducer of IP8 signaling to the 3'-processing/transcription termination machinery. IMPORTANCE Impeding the catabolism of the inositol pyrophosphate (IPP) signaling molecule IP8 is cytotoxic to fission yeast. Here, by performing a genetic suppressor screen, we identified several cellular proteins required for IPP toxicosis. Alleviation of IPP lethality by a missense mutation in the essential Cft1 subunit of the cleavage and polyadenylation factor consolidates previous evidence that toxicity results from IP8 action as an agonist of RNA 3'-processing and transcription termination. Novel findings are that IP8 toxicity depends on IPP-sensing SPX domain proteins with associated enzymatic functions: Gde1 (glycerophosphodiesterase), Spx1 (ubiquitin ligase), and Vtc2/4 (polyphosphate polymerase). The effects of Spx1 deletion on phosphate homeostasis imply a role for Spx1 in communicating an IP8-driven signal to the transcription and RNA processing apparatus.
Collapse
|
16
|
Quiñone D, Veiga N, Savastano M, Torres J, Bianchi A, Kremer C, Bazzicalupi C. Supramolecular interaction of inositol phosphates with Cu(II): comparative study InsP6-InsP3. CrystEngComm 2022. [DOI: 10.1039/d1ce01733k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
myo-inositol phosphates are an important group of biomolecules that are present in all eukaryotic cells. The most abundant member of this family in nature is InsP6 (H12L1), which interacts strongly...
Collapse
|