1
|
Lepage ML, Musolino SF, Wulff JE. Design, Exploitation, and Rational Improvements of Diazirine-Based Universal Polymer Crosslinkers. Acc Chem Res 2024; 57:3327-3342. [PMID: 39479894 DOI: 10.1021/acs.accounts.4c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
ConspectusAddition of new covalent bonds between the chains of thermoplastic polymers (i.e., crosslinking) provides improved mechanical strength and enhanced high-temperature performance while also providing an effective strategy for photopatterning. Traditionally, however, crosslinking of each polymer substrate has required the use of a specific crosslinking technology (hydrosilylation for PDMS, vulcanization for rubber, etc.). The lack of a general solution to the challenge of polymer crosslinking means that there are many thermoplastics (e.g., polypropylene or polyhydroxyalkanoates) that have desirable properties, but which cannot be upgraded by traditional crosslinking technologies.Our lab developed the first universal crosslinkers for aliphatic polymers by leveraging trifluoromethyl aryl diazirine motifs, functional groups that have been widely used in chemical biology for >30 years, but which have seldom been exploited in materials science. These novel reagents work (via C-H insertion) on essentially any commodity polymer that contains aliphatic C-H bonds, including industrial plastics like polypropylene (the crosslinking of which has been an outstanding challenge in the field for >50 years), as well as commercially important elastomers (e.g., polydimethylsiloxane), biodegradable polymers (e.g., polycaprolactone), and green polymer materials derived from biomass (e.g., polyhydroxyalkanoates).Subsequent structure-function work from our group led to crosslinkers that were >10-fold more effective in undergoing C-H insertion with aliphatic substrates. We then developed an improved synthesis of our electronically optimized diazirines and incorporated them into a family of cleavable crosslinker reagents, which permit the on-demand generation of reprocessable thermosets. At the same time, other groups replaced the perfluoropropyl linker in our first-generation crosslinker with a series of dynamic linkages; these permit the ready generation of vitrimeric materials and can be used in the reactive compatibilization of immiscible plastic waste.Since the publication of our initial Science paper in 2019, this burgeoning field of diazirine-based polymer crosslinkers has experienced an explosion of interest. Publications from our lab and others have described the use of these reagents in covalent adhesion, photopatterning of low dielectric materials for microelectronics, and direct optical printing of quantum dots. Our crosslinkers have also been shown to heighten the robustness of ice-phobic coatings and improve the performance of woven ballistic fabric, while─perhaps most unexpectedly─substantially improving the stability of high-performance perovskite solar cells. Electronically optimized diazirines can also be used to covalently link proteins to polymer surfaces, suggesting a broad range of applications in the biocompatibilization of medical devices. This Account will summarize the development of trifluoromethyl aryl diazirine reagents for materials science over the past 5 years. A brief comparison will also be made, in the Summary and Outlook section at the end of the Account, to competing (and often complementary) reagents based upon azide and diazoalkyl motifs. Finally, we have compiled a Frequently Asked Questions list that covers many practical aspects of crosslinker design and application; this is appended as Supporting Information.
Collapse
Affiliation(s)
- Mathieu L Lepage
- Fundamental and Applied Heterochemistry Laboratory (UMR CNRS 5069), Paul Sabatier University, 31062 Toulouse Cedex 9 France
| | | | - Jeremy E Wulff
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
2
|
Huang S, Huang X, Liu Z, Yao C, Liu J, He M, Xu X, Zhang T, Wang J, Jiang L, Chen HJ, Xie X. Advances in Multifunctional Electronic Catheters for Precise and Intelligent Diagnosis and Therapy in Minimally Invasive Surgery. ACS NANO 2024; 18:18129-18150. [PMID: 38954632 DOI: 10.1021/acsnano.4c03871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The advent of catheter-based minimally invasive surgical instruments has provided an effective means of diagnosing and treating human disease. However, conventional medical catheter devices are limited in functionalities, hindering their ability to gather tissue information or perform precise treatment during surgery. Recently, electronic catheters have integrated various sensing and therapeutic technologies through micro/nanoelectronics, expanding their capabilities. As micro/nanoelectronic devices become more miniaturized, flexible, and stable, electronic surgical catheters are evolving from simple tools to multiplexed sensing and theranostics for surgical applications. The review on multifunctional electronic surgical catheters is lacking and thus is not conducive to the reader's comprehensive understanding of the development trend in this field. This review covers the advances in multifunctional electronic catheters for precise and intelligent diagnosis and therapy in minimally invasive surgery. It starts with the summary of clinical minimally invasive surgical instruments, followed by the background of current clinical catheter devices for sensing and therapeutic applications. Next, intelligent electronic catheters with integrated electronic components are reviewed in terms of electronic catheters for diagnosis, therapy, and multifunctional applications. It highlights the present status and development potential of catheter-based minimally invasive surgical devices, while also illustrating several significant challenges that remain to be overcome.
Collapse
Affiliation(s)
- Shuang Huang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Jing Liu
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Mengyi He
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xingyuan Xu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Tao Zhang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lelun Jiang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Xi Xie
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Qiu Y, Ashok A, Nguyen CC, Yamauchi Y, Do TN, Phan HP. Integrated Sensors for Soft Medical Robotics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308805. [PMID: 38185733 DOI: 10.1002/smll.202308805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/24/2023] [Indexed: 01/09/2024]
Abstract
Minimally invasive procedures assisted by soft robots for surgery, diagnostics, and drug delivery have unprecedented benefits over traditional solutions from both patient and surgeon perspectives. However, the translation of such technology into commercialization remains challenging. The lack of perception abilities is one of the obstructive factors paramount for a safe, accurate and efficient robot-assisted intervention. Integrating different types of miniature sensors onto robotic end-effectors is a promising trend to compensate for the perceptual deficiencies in soft robots. For example, haptic feedback with force sensors helps surgeons to control the interaction force at the tool-tissue interface, impedance sensing of tissue electrical properties can be used for tumor detection. The last decade has witnessed significant progress in the development of multimodal sensors built on the advancement in engineering, material science and scalable micromachining technologies. This review article provides a snapshot on common types of integrated sensors for soft medical robots. It covers various sensing mechanisms, examples for practical and clinical applications, standard manufacturing processes, as well as insights on emerging engineering routes for the fabrication of novel and high-performing sensing devices.
Collapse
Affiliation(s)
- Yulin Qiu
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Aditya Ashok
- Australian Institute of Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, 4067, Australia
| | - Chi Cong Nguyen
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yusuke Yamauchi
- Australian Institute of Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, Queensland, 4067, Australia
- Department of Materials Science and Engineering, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Thanh Nho Do
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Hoang-Phuong Phan
- School of Mechanical and Manufacturing Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
- Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
4
|
Song C, Liu R, Kong B, Gu Z, Chen G. Functional hydrogels for treatment of dental caries. BIOMEDICAL TECHNOLOGY 2024; 5:73-81. [DOI: 10.1016/j.bmt.2023.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Li J, Bi L, Musolino SF, Wulff JE, Sask KN. Functionalization of Polydimethylsiloxane with Diazirine-Based Linkers for Covalent Protein Immobilization. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1-16. [PMID: 38149968 DOI: 10.1021/acsami.3c08013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Biomolecule attachment to solid supports is critical for biomedical devices, such as biosensors and implants. Polydimethylsiloxane (PDMS) is commonly used for these applications due to its advantageous properties. To enhance the biomolecule immobilization on PDMS, a novel technique is demonstrated using newly synthesized diazirine molecules for the surface modification of PDMS. This nondestructive process involves a reaction between diazirine molecules and PDMS through C-H insertion with thermal or ultraviolet activation. The success of the PDMS modification is confirmed by various surface characterization techniques. Bovine serum albumin (BSA) and immunoglobulin G (IgG) are strongly attached to the modified PDMS surfaces, and the amount of protein is quantified using iodine-125 radiolabeling. The results demonstrate that PDMS is rapidly functionalized, and the stability of the immobilized proteins is significantly improved with multiple types of diazirine molecules and activation methods. Confocal microscopy provides three-dimensional images of the distribution of immobilized IgG on the surfaces and the penetration of diazirine-based linkers through the PDMS substrate during the coating process. Overall, this study presents a promising new approach for functionalizing PDMS surfaces to enhance biomolecule immobilization, and its potential applications can extend to multimaterial modifications for various diagnostic and medical applications such as microfluidic devices and immunoassays with relevant bioactive proteins.
Collapse
Affiliation(s)
- Jie Li
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L2, Canada
| | - Liting Bi
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Stefania F Musolino
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Jeremy E Wulff
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Kyla N Sask
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario L8S 4L2, Canada
- Department of Materials Science & Engineering, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
6
|
Rogatinsky J, Recco D, Feichtmeier J, Kang Y, Kneier N, Hammer P, O’Leary E, Mah D, Hoganson D, Vasilyev NV, Ranzani T. A multifunctional soft robot for cardiac interventions. SCIENCE ADVANCES 2023; 9:eadi5559. [PMID: 37878705 PMCID: PMC10599628 DOI: 10.1126/sciadv.adi5559] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/26/2023] [Indexed: 10/27/2023]
Abstract
In minimally invasive endovascular procedures, surgeons rely on catheters with low dexterity and high aspect ratios to reach an anatomical target. However, the environment inside the beating heart presents a combination of challenges unique to few anatomic locations, making it difficult for interventional tools to maneuver dexterously and apply substantial forces on an intracardiac target. We demonstrate a millimeter-scale soft robotic platform that can deploy and self-stabilize at the entrance to the heart, and guide existing interventional tools toward a target site. In two exemplar intracardiac procedures within the right atrium, the robotic platform provides enough dexterity to reach multiple anatomical targets, enough stability to maintain constant contact on motile targets, and enough mechanical leverage to generate newton-level forces. Because the device addresses ongoing challenges in minimally invasive intracardiac intervention, it may enable the further development of catheter-based interventions.
Collapse
Affiliation(s)
- Jacob Rogatinsky
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Dominic Recco
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | | | - Yuchen Kang
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Nicholas Kneier
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Peter Hammer
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Edward O’Leary
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Douglas Mah
- Department of Cardiology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - David Hoganson
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Nikolay V. Vasilyev
- Department of Cardiac Surgery, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Tommaso Ranzani
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
7
|
Han JH, Kim CR, Min CH, Kim MJ, Kim SN, Ji HB, Yoon SB, Lee C, Choy YB. Microneedles coated with composites of phenylboronic acid-containing polymer and carbon nanotubes for glucose measurements in interstitial fluids. Biosens Bioelectron 2023; 238:115571. [PMID: 37562343 DOI: 10.1016/j.bios.2023.115571] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
A microneedle (MN) sensor coated with a sensing composite material was proposed for measuring glucose concentrations in interstitial fluid (ISF). The sensing composite material was prepared by blending a polymer containing glucose-responsive phenylboronic acid (PBA) moieties (i.e., polystyrene-block-poly(acrylic acid-co-acrylamidophenylboronic acid)) with conductive carbon nanotubes (CNTs). The polymer exhibited reversible swelling behavior in response to glucose concentrations, which influenced the distribution of the embedded CNTs, resulting in sensitive variations in electrical percolation, even when coated onto a confined surface of the MN in the sensor. We varied the ratio of PBA moieties and the loading amount of CNTs in the sensing composite material of the MN sensor and tested them in vitro using an ISF-mimicking gel with physiological glucose concentrations to determine the optimal sensitivity conditions. When tested in animal models with varying blood glucose concentrations, the MN sensor coated with the selected sensing material exhibited a strong correlation between the measured electrical currents and blood glucose concentrations, showing accuracy comparable to that of a glucometer in clinical use.
Collapse
Affiliation(s)
- Jae Hoon Han
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Cho Rim Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang Hee Min
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Ji Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Se-Na Kim
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Han Bi Ji
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo Bin Yoon
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Young Bin Choy
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea; Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul 03080, Republic of Korea; Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul 03122, Republic of Korea; ToBIOs Inc, 214 Yulgok-ro, Jongno-gu, Seoul 03122, Republic of Korea.
| |
Collapse
|
8
|
Ghosh A, Kozlowski K, Steele TWJ. Synthesis and Evaluation of Metal Lipoate Adhesives. Polymers (Basel) 2023; 15:2921. [PMID: 37447566 DOI: 10.3390/polym15132921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The development of new bioadhesives with integrated properties remains an unmet clinical need to replace staples or sutures. Current bioadhesives do not allow electronic activation, which would allow expansion into laparoscopic and robotic surgeries. To address this deficiency, voltage-activated adhesives have been developed on both carbene- and catechol-based chemical precursors. Herein, a third platform of voltage-activated adhesive is evaluated based on lipoic acid, a non-toxic dithiolane found in aerobic metabolism and capable of ring-opening polymerization. The electro-rheological and adhesive properties of lithium, sodium, and potassium salts of lipoic acid are applied for wet tissue adhesion. At ambient conditions, potassium lipoate displays higher storage modulus than lithium or sodium salt under similar conditions. Voltage stimulation significantly improves gelation kinetics to Na- and K-lipoates, while Li-lipoate is found to not require voltage stimulation for gelation. Lap shear adhesion strength on wetted collagen substrates reveals that the synthetic metal lipoates have comparable adhesion strength to fibrin sealants without viral or ethical risks.
Collapse
Affiliation(s)
- Animesh Ghosh
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), Singapore 639798, Singapore
| | - Konrad Kozlowski
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), Singapore 639798, Singapore
| | - Terry W J Steele
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), Singapore 639798, Singapore
| |
Collapse
|
9
|
Gu H, Möckli M, Ehmke C, Kim M, Wieland M, Moser S, Bechinger C, Boehler Q, Nelson BJ. Self-folding soft-robotic chains with reconfigurable shapes and functionalities. Nat Commun 2023; 14:1263. [PMID: 36882398 PMCID: PMC9992713 DOI: 10.1038/s41467-023-36819-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
Magnetic continuum soft robots can actively steer their tip under an external magnetic field, enabling them to effectively navigate in complex in vivo environments and perform minimally invasive interventions. However, the geometries and functionalities of these robotic tools are limited by the inner diameter of the supporting catheter as well as the natural orifices and access ports of the human body. Here, we present a class of magnetic soft-robotic chains (MaSoChains) that can self-fold into large assemblies with stable configurations using a combination of elastic and magnetic energies. By pushing and pulling the MaSoChain relative to its catheter sheath, repeated assembly and disassembly with programmable shapes and functions are achieved. MaSoChains are compatible with state-of-the-art magnetic navigation technologies and provide many desirable features and functions that are difficult to realize through existing surgical tools. This strategy can be further customized and implemented for a wide spectrum of tools for minimally invasive interventions.
Collapse
Affiliation(s)
- Hongri Gu
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland. .,Department of Physics, University of Konstanz, Konstanz, Germany.
| | - Marino Möckli
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Claas Ehmke
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Minsoo Kim
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland.
| | - Matthias Wieland
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Simon Moser
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | | | - Quentin Boehler
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland.
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
Shokrani H, Shokrani A, Seidi F, Munir MT, Rabiee N, Fatahi Y, Kucinska-Lipka J, Saeb MR. Biomedical engineering of polysaccharide-based tissue adhesives: Recent advances and future direction. Carbohydr Polym 2022; 295:119787. [DOI: 10.1016/j.carbpol.2022.119787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/23/2022] [Indexed: 12/28/2022]
|
11
|
Zhang H, Zhang J, Peng X, Li Z, Bai W, Wang T, Gu Z, Li Y. Smart Internal Bio-Glues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203587. [PMID: 35901498 PMCID: PMC9507370 DOI: 10.1002/advs.202203587] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Indexed: 05/25/2023]
Abstract
Although smart bio-glues have been well documented, the development of internal bio-glues for non-invasive or minimally invasive surgery is still met with profound challenges such as safety risk and the lack of deep tissue penetration stimuli for internal usage. Herein, a series of smart internal bio-glues are developed via the integration of o-nitrobenzene modified biopolymers with up-conversion nanoparticles (UCNPs). Upon irradiation by near-infrared (NIR) light, the prepared smart bio-glues can undergo a gelation process, which may further induce strong adhesion between tissues under both dry and wet conditions based on multi-interactions. Moreover, those NIR light-responsive bio-glues with deeper tissue penetration ability demonstrate good biocompatibility, excellent hemostatic performance, and the potent ability to accelerate wound healing for both external and internal wounds. This work provides new opportunities for minimally invasive surgery, especially in internal wound healing using smart and robust bio-glues.
Collapse
Affiliation(s)
- Hengjie Zhang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Jianhua Zhang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Xu Peng
- Experimental and Research Animal InstituteSichuan UniversityChengdu610041China
| | - Zhan Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Wanjie Bai
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Tianyou Wang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zhipeng Gu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Yiwen Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| |
Collapse
|
12
|
Singh M, Park C, Roche ET. Decellularization Following Fixation of Explanted Aortic Valves as a Strategy for Preserving Native Mechanical Properties and Function. Front Bioeng Biotechnol 2022; 9:803183. [PMID: 35071211 PMCID: PMC8770733 DOI: 10.3389/fbioe.2021.803183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Mechanical or biological aortic valves are incorporated in physical cardiac simulators for surgical training, educational purposes, and device testing. They suffer from limitations including either a lack of anatomical and biomechanical accuracy or a short lifespan, hence limiting the authentic hands-on learning experience. Medical schools utilize hearts from human cadavers for teaching and research, but these formaldehyde-fixed aortic valves contort and stiffen relative to native valves. Here, we compare a panel of different chemical treatment methods on explanted porcine aortic valves and evaluate the microscopic and macroscopic features of each treatment with a primary focus on mechanical function. A surfactant-based decellularization method after formaldehyde fixation is shown to have mechanical properties close to those of the native aortic valve. Valves treated in this method were integrated into a custom-built left heart cardiac simulator to test their hemodynamic performance. This decellularization, post-fixation technique produced aortic valves which have ultimate stress and elastic modulus in the range of the native leaflets. Decellularization of fixed valves reduced the valvular regurgitation by 60% compared to formaldehyde-fixed valves. This fixation method has implications for scenarios where the dynamic function of preserved valves is required, such as in surgical trainers or device test rigs.
Collapse
Affiliation(s)
- Manisha Singh
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Clara Park
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Ellen T. Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
13
|
Musolino SF, Mahbod M, Nazir R, Bi L, Graham HA, Milani AS, Wulff JE. Electronically optimized diazirine-based polymer crosslinkers. Polym Chem 2022. [DOI: 10.1039/d2py00687a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electronically optimized bis-diazirine crosslinkers allow aliphatic polymers to be crosslinked with up to 10-fold improved efficacy, relative to earlier designs. Activation is achieved using modest temperatures or through UV or visible light.
Collapse
Affiliation(s)
- Stefania F. Musolino
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Mahshid Mahbod
- Materials and Manufacturing Research Institute (MMRI), University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Rashid Nazir
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Liting Bi
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Hamish A. Graham
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
| | - Abbas S. Milani
- Materials and Manufacturing Research Institute (MMRI), University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Jeremy E. Wulff
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3V6, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| |
Collapse
|
14
|
Hong W, Jiang C, Qin M, Song Z, Ji P, Wang L, Tu K, Lu L, Guo Z, Yang B, Wang X, Liu J. Self-adaptive cardiac optogenetics device based on negative stretching-resistive strain sensor. SCIENCE ADVANCES 2021; 7:eabj4273. [PMID: 34818034 PMCID: PMC8612680 DOI: 10.1126/sciadv.abj4273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Precision medicine calls for high demand of continuous, closed-loop physiological monitoring and accurate control, especially for cardiovascular diseases. Cardiac optogenetics is promising for its superiority of cell selectivity and high time-space accuracy, but the efficacy of optogenetics relative to the input of light stimulus is detected and controlled separately by discrete instruments in vitro, which suffers from time retardation, energy consumption, and poor portability. Thus, a highly integrated system based on implantable sensors combining closed-loop self-monitoring with simultaneous treatment is highly desired. Here, we report a self-adaptive cardiac optogenetics system based on an original negative stretching-resistive strain sensor array for closed-loop heart rate recording and self-adaptive light intensity control. The strain sensor exhibits a dual and synchronous capability of precise monitor and physiological-electrical-optical regulation. In an in vivo ventricular tachycardia model, our system demonstrates the potential of a negative stretching-resistive device in controlling-in-sensor electronics for wearable/implantable autodiagnosis and telehealth applications.
Collapse
Affiliation(s)
- Wen Hong
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunpeng Jiang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ziliang Song
- Department of Cardiology, Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200030, China
| | - Pengfei Ji
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Longchun Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kejun Tu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lijun Lu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhejun Guo
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Yang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolin Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
- Corresponding author.
| |
Collapse
|
15
|
Singh M, Solic I, Steele TWJ. Hydrophobic Bioadhesive Composites for Human Motion Detection. ACS Macro Lett 2021; 10:1353-1358. [PMID: 35549014 DOI: 10.1021/acsmacrolett.1c00559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Conductive hydrogels are rapidly rising as sensing materials for bioelectronics applications, but lack mechanical and adhesion strength due to their excess water content. We propose a diazirine-grafted polycaprolactone adhesive (CaproGlu)/carbon nanotubes (CNTs) composite that can provide wet adhesion and strong mechanical properties at the tissue-machine interface. The introduced CNTs not only reinforced the CaproGlu, but also formed electrically conducting pathways. The CaproGlu composites exhibited conductivity of 0.1 S m-1 and a charge storage capacity of 5 μC cm-2. The resulting composites are biocompatible and can be used as strain sensors to detect mechanical deformations.
Collapse
Affiliation(s)
- Manisha Singh
- NTU-Northwestern Institute for Nanomedicine (NNIN), Interdisciplinary Graduate School (IGS), Nanyang Technological University (NTU), Singapore 637553, Singapore.,School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), Singapore 639798, Singapore
| | - Ivan Solic
- School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), Singapore 639798, Singapore
| | - Terry W J Steele
- NTU-Northwestern Institute for Nanomedicine (NNIN), Interdisciplinary Graduate School (IGS), Nanyang Technological University (NTU), Singapore 637553, Singapore.,School of Materials Science and Engineering (MSE), Nanyang Technological University (NTU), Singapore 639798, Singapore
| |
Collapse
|
16
|
Preclinical assessment on neuronal regeneration in the injury-related microenvironment of graphene-based scaffolds. NPJ Regen Med 2021; 6:31. [PMID: 34078912 PMCID: PMC8172906 DOI: 10.1038/s41536-021-00142-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/14/2021] [Indexed: 11/23/2022] Open
Abstract
As the application of graphene nanomaterials gets increasingly attractive in the field of tissue engineering and regenerative medicine, the long-term evaluation is necessary and urgent as to their biocompatibility and regenerative capacity in different tissue injuries, such as nerve, bone, and heart. However, it still remains controversial about the potential biological effects of graphene on neuronal activity, especially after severe nerve injuries. In this study, we establish a lengthy peripheral nerve defect rat model and investigate the potential toxicity of layered graphene-loaded polycaprolactone scaffold after implantation during 18 months in vivo. In addition, we further identify possible biologically regenerative effects of this scaffold on myelination, axonal outgrowth, and locomotor function recovery. It is confirmed that graphene-based nanomaterials exert negligible toxicity and repair large nerve defects by dual regulation of Schwann cells and astroglia in the central and peripheral nervous systems. The findings enlighten the future of graphene nanomaterial as a key type of biomaterials for clinical translation in neuronal regeneration.
Collapse
|