1
|
Panniello M, Gillon CJ, Maffulli R, Celotto M, Richards BA, Panzeri S, Kohl MM. Stimulus information guides the emergence of behavior-related signals in primary somatosensory cortex during learning. Cell Rep 2024; 43:114244. [PMID: 38796851 PMCID: PMC11913744 DOI: 10.1016/j.celrep.2024.114244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 01/16/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
Neurons in the primary cortex carry sensory- and behavior-related information, but it remains an open question how this information emerges and intersects together during learning. Current evidence points to two possible learning-related changes: sensory information increases in the primary cortex or sensory information remains stable, but its readout efficiency in association cortices increases. We investigated this question by imaging neuronal activity in mouse primary somatosensory cortex before, during, and after learning of an object localization task. We quantified sensory- and behavior-related information and estimated how much sensory information was used to instruct perceptual choices as learning progressed. We find that sensory information increases from the start of training, while choice information is mostly present in the later stages of learning. Additionally, the readout of sensory information becomes more efficient with learning as early as in the primary sensory cortex. Together, our results highlight the importance of primary cortical neurons in perceptual learning.
Collapse
Affiliation(s)
- Mariangela Panniello
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QQ, UK; Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Colleen J Gillon
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; Mila, Montréal, QC H2S 3H1, Canada
| | - Roberto Maffulli
- Neural Computation Laboratory, Center for Human Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Marco Celotto
- Neural Computation Laboratory, Center for Human Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany; Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Blake A Richards
- Mila, Montréal, QC H2S 3H1, Canada; School of Computer Science, McGill University, Montréal, QC H3A 2A7, Canada; Department of Neurology & Neurosurgery, McGill University, Montréal, QC H3A 1A1, Canada; Learning in Machines and Brains Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada; Montreal Neurological Institute, Montréal, QC H3A 2B4, Canada
| | - Stefano Panzeri
- Neural Computation Laboratory, Center for Human Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy; Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| | - Michael M Kohl
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; School of Psychology and Neuroscience, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
2
|
Matteucci G, Guyoton M, Mayrhofer JM, Auffret M, Foustoukos G, Petersen CCH, El-Boustani S. Cortical sensory processing across motivational states during goal-directed behavior. Neuron 2022; 110:4176-4193.e10. [PMID: 36240769 DOI: 10.1016/j.neuron.2022.09.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/25/2022] [Accepted: 09/24/2022] [Indexed: 11/06/2022]
Abstract
Behavioral states can influence performance of goal-directed sensorimotor tasks. Yet, it is unclear how altered neuronal sensory representations in these states relate to task performance and learning. We trained water-restricted mice in a two-whisker discrimination task to study cortical circuits underlying perceptual decision-making under different levels of thirst. We identified somatosensory cortices as well as the premotor cortex as part of the circuit necessary for task execution. Two-photon calcium imaging in these areas identified populations selective to sensory or motor events. Analysis of task performance during individual sessions revealed distinct behavioral states induced by decreasing levels of thirst-related motivation. Learning was better explained by improvements in motivational state control rather than sensorimotor association. Whisker sensory representations in the cortex were altered across behavioral states. In particular, whisker stimuli could be better decoded from neuronal activity during high task performance states, suggesting that state-dependent changes of sensory processing influence decision-making.
Collapse
Affiliation(s)
- Giulio Matteucci
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Maëlle Guyoton
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland
| | - Johannes M Mayrhofer
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland
| | - Matthieu Auffret
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland
| | - Georgios Foustoukos
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland
| | - Carl C H Petersen
- Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland.
| | - Sami El-Boustani
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1 Rue Michel-Servet, 1206 Geneva, Switzerland; Laboratory of Sensory Processing, Brain Mind Institute, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), EPFL-SV-BMI-LSENS Station 19, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
3
|
Ceballo S, Deneux T, Siliceo M, Bathellier B. Differential roles of auditory and visual cortex for sensory detection in mice. C R Biol 2022; 345:75-89. [DOI: 10.5802/crbiol.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/17/2022] [Indexed: 11/24/2022]
|