1
|
Zhao S, Wang X, Yang T, Zhu X, Wu X. BmNPV interacts with super-enhancer regions of the host chromatin to hijack cellular transcription machinery. Nucleic Acids Res 2025; 53:gkaf188. [PMID: 40131775 PMCID: PMC11934923 DOI: 10.1093/nar/gkaf188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/20/2025] [Accepted: 03/22/2025] [Indexed: 03/27/2025] Open
Abstract
Effective transcriptional activation relies on the spatial interaction between specific DNA elements. DNA interactions have also been observed between DNA viruses and their hosts, with limited understanding of the involved details. Baculovirus is a representative species of DNA virus and has been reported to interact with the host genome in our previous study. However, the biological significance of the baculovirus-host trans-species DNA interaction and its underlying mechanisms remain elusive. Here, using Bombyx mori nucleopolyhedrovirus (BmNPV) as the model virus, we combine epigenome, transcriptome, and biochemical assays to investigate the baculovirus-host DNA interaction. Our data show that BmNPV hijacks the transcriptional regulatory capacity of host super-enhancers (SEs) by physically interacting with these regions on the host genome. This results in the usurpation of the activating capacity of an SE-binding transcription factor GATA by the virus, thereby impairing the SE-induced specific transcriptional activation of the target antiviral genes. Moreover, the hijacked regulatory capacity is spread on BmNPV genome through cis-interaction of viral DNA, leading to enhanced viral gene expression. Overall, our results provide novel insights into the intricate interplay of viruses with host gene expression regulatory networks and broaden the vision in the mechanisms of viral exploitation on cellular machinery.
Collapse
Affiliation(s)
- Shudi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xingyang Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tian Yang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Zhu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Kakavand-Ghalehnoei R, Patrad E, Ravanshad M. In silico Approach: Design an Optimized shRNA against RUNX1 Gene to Target HIV. Curr Drug Discov Technol 2025; 22:e250424229316. [PMID: 38676495 DOI: 10.2174/0115701638291312240415151051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/29/2024]
Abstract
INTRODUCTION Human Immunodeficiency Virus (HIV) is a retrovirus with single-stranded RNA that leads to the challenging disease of acquired immunodeficiency syndrome (AIDS). Combination antiretroviral therapy (cART) can prevent the progression of the disease, but it is not capable of long-term HIV elimination. One of the significant obstacles to treating HIV-1-infected individuals is the creation of latent cell reservoirs early in the infection. Gene-based therapies that utilize RNA interference (RNAi) to silence host or viral gene expression are considered promising therapeutic approaches. It has been demonstrated that RUNX1, a T-cell-specific transcription factor, may significantly affect HIV replication and infection. According to accumulating evidence on the role of interfering RNA techniques in inhibiting gene expression and considering the role of RUNX1 in the replication of HIV-1. In this study, we aim to design shRNAs against RUNX1 that can target the replication of HIV-1. METHODS Several computational methods, including target alignment, similarity search, and secondary structure prediction, have been employed in the design of shRNA against RUNX1. RESULTS Seven shRNA molecules with the highest efficiency were designed and validated using computational methods to silence the RUNX1 gene. CONCLUSION In the present study, we designed shRNA against RUNX1, which can target latent cells infected with HIV. Suppression of RUNX1 by shRNA reactivates HIV in the latent cells and subsequently potentiates the immune response toward identifying accurate virus-infected cells. This process may lead to an effective and efficient reduction of the volume of cell reservoirs infected with HIV.
Collapse
Affiliation(s)
| | - Elham Patrad
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Ravanshad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Jing H, Song Y, Duan E, Liu J, Ke W, Tao R, Lv Y, Zhao P, Dong W, Li X, Guo Y, Li H. NLRP12 inhibits PRRSV-2 replication by promoting GP2a degradation via MARCH8. Vet Microbiol 2024; 298:110271. [PMID: 39362085 DOI: 10.1016/j.vetmic.2024.110271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
NLRP12, a member of the NLR family, has been shown to exert a vital function in orchestrating immune responses. Here, using the immunosuppressive porcine reproductive and respiratory syndrome virus (PRRSV) as a model, the role of NLRP12 in virus infection was deciphered. We demonstrated that overexpression of NLRP12 significantly restrained PRRSV replication, while NLRP12 silencing resulted in increased viral titer. Mechanistically, NLRP12 interacts with glycoprotein 2a (GP2a) through its LRR domain and recruits the membrane-associated RING-CH E3 ubiquitin ligase 8 (MARCH8) via the PYD domain. NLRP12 facilitates the lysine-48 (K48)-linked polyubiquitination of GP2a at K128 and induces its lysosome degradation via the MARCH8-NDP52 (nuclear dot protein 52 kDa) pathway. To counteract this, PRRSV Nsp2 effectively prevented the polyubiquitination of GP2a induced by NLRP12 by its deubiquitinating activity. Meanwhile, the overexpression of Nsp4 decreased the mRNA of endogenous NLRP12 and cleaved NLRP12 in a 3C-like protease activity-dependent manner, which collaboratively counteracts the antiviral function of NLRP12. Collectively, this study revealed the mechanisms of the NLRP12-MARCH8-NDP52 axis in the host defense against PRRSV, which might be harnessed for the development of anti-PRRSV therapies.
Collapse
Affiliation(s)
- Huiyuan Jing
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China.
| | - Yuzhen Song
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Erzhen Duan
- College of Biological Engineering, Henan university of technology, Zhengzhou, China
| | - Jie Liu
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu, China
| | - Wenting Ke
- College of Animal Science and Technology, Yangtze University, Jingzhou, China
| | - Ran Tao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yujin Lv
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Pandeng Zhao
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Wang Dong
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xianghui Li
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Yongbin Guo
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Huawei Li
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, China.
| |
Collapse
|
4
|
Wu Y, Sun A, Yang Q, Wang M, Tian B, Yang Q, Jia R, Chen S, Ou X, Huang J, Sun D, Zhu D, Liu M, Zhang S, Zhao XX, He Y, Wu Z, Cheng A. An alpha-herpesvirus employs host HEXIM1 to promote viral transcription. J Virol 2024; 98:e0139223. [PMID: 38363111 PMCID: PMC10949456 DOI: 10.1128/jvi.01392-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
Although it is widely accepted that herpesviruses utilize host RNA polymerase II (RNAPII) to transcribe viral genes, the mechanism of utilization varies significantly among herpesviruses. With the exception of herpes simplex virus 1 (HSV-1) in alpha-herpesviruses, the mechanism by which RNAPII transcribes viral genes in the remaining alpha-herpesviruses has not been reported. In this study, we investigated the transcriptional mechanism of an avian alpha-herpesvirus, Anatid herpesvirus 1 (AnHV-1). We discovered for the first time that hexamethylene-bis-acetamide-inducing protein 1 (HEXIM1), a major inhibitor of positive elongation factor B (P-TEFb), was significantly upregulated during AnHV-1 infection, and its expression was dynamically regulated throughout the progression of the disease. However, the expression level of HEXIM1 remained stable before and after HSV-1 infection. Excessive HEXIM1 assists AnHV-1 in progeny virus production, gene expression, and RNA polymerase II recruitment by promoting the formation of more inactive P-TEFb and the loss of RNAPII S2 phosphorylation. Conversely, the expression of some host survival-related genes, such as SOX8, CDK1, MYC, and ID2, was suppressed by HEXIM1 overexpression. Further investigation revealed that the C-terminus of the AnHV-1 US1 gene is responsible for the upregulation of HEXIM1 by activating its promoter but not by interacting with P-TEFb, which is the mechanism adopted by its homologs, HSV-1 ICP22. Additionally, the virus proliferation deficiency caused by US1 deletion during the early infection stage could be partially rescued by HEXIM1 overexpression, suggesting that HEXIM1 is responsible for AnHV-1 gaining transcription advantages when competing with cells. Taken together, this study revealed a novel HEXIM1-dependent AnHV-1 transcription mechanism, which has not been previously reported in herpesvirus or even DNA virus studies.IMPORTANCEHexamethylene-bis-acetamide-inducing protein 1 (HEXIM1) has been identified as an inhibitor of positive transcriptional elongation factor b associated with cancer, AIDS, myocardial hypertrophy, and inflammation. Surprisingly, no previous reports have explored the role of HEXIM1 in herpesvirus transcription. This study reveals a mechanism distinct from the currently known herpesvirus utilization of RNA polymerase II, highlighting the dependence on high HEXIM1 expression, which may be a previously unrecognized facet of the host shutoff manifested by many DNA viruses. Moreover, this discovery expands the significance of HEXIM1 in pathogen infection. It raises intriguing questions about whether other herpesviruses employ similar mechanisms to manipulate HEXIM1 and if this molecular target can be exploited to limit productive replication. Thus, this discovery not only contributes to our understanding of herpesvirus infection regulation but also holds implications for broader research on other herpesviruses, even DNA viruses.
Collapse
Affiliation(s)
- Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Anyang Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Qiqi Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Xin-Xin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Science & Technology Department of Sichuan Province, International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
- Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
5
|
Xiang J, Fan C, Dong H, Ma Y, Xu P. A CRISPR-based rapid DNA repositioning strategy and the early intranuclear life of HSV-1. eLife 2023; 12:e85412. [PMID: 37702383 PMCID: PMC10522339 DOI: 10.7554/elife.85412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 09/12/2023] [Indexed: 09/14/2023] Open
Abstract
The relative positions of viral DNA genomes to the host intranuclear environment play critical roles in determining virus fate. Recent advances in the application of chromosome conformation capture-based sequencing analysis (3 C technologies) have revealed valuable aspects of the spatiotemporal interplay of viral genomes with host chromosomes. However, to elucidate the causal relationship between the subnuclear localization of viral genomes and the pathogenic outcome of an infection, manipulative tools are needed. Rapid repositioning of viral DNAs to specific subnuclear compartments amid infection is a powerful approach to synchronize and interrogate this dynamically changing process in space and time. Herein, we report an inducible CRISPR-based two-component platform that relocates extrachromosomal DNA pieces (5 kb to 170 kb) to the nuclear periphery in minutes (CRISPR-nuPin). Based on this strategy, investigations of herpes simplex virus 1 (HSV-1), a prototypical member of the human herpesvirus family, revealed unprecedently reported insights into the early intranuclear life of the pathogen: (I) Viral genomes tethered to the nuclear periphery upon entry, compared with those freely infecting the nucleus, were wrapped around histones with increased suppressive modifications and subjected to stronger transcriptional silencing and prominent growth inhibition. (II) Relocating HSV-1 genomes at 1 hr post infection significantly promoted the transcription of viral genes, termed an 'Escaping' effect. (III) Early accumulation of ICP0 was a sufficient but not necessary condition for 'Escaping'. (IV) Subnuclear localization was only critical during early infection. Importantly, the CRISPR-nuPin tactic, in principle, is applicable to many other DNA viruses.
Collapse
Affiliation(s)
- Juan Xiang
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen Univeristy, Sun Yat-sen UniversityShenzhenChina
| | - Chaoyang Fan
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen Univeristy, Sun Yat-sen UniversityShenzhenChina
| | - Hongchang Dong
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen Univeristy, Sun Yat-sen UniversityShenzhenChina
| | - Yilei Ma
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen Univeristy, Sun Yat-sen UniversityShenzhenChina
| | - Pei Xu
- The Centre for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen Univeristy, Sun Yat-sen UniversityShenzhenChina
| |
Collapse
|
6
|
Guo M, Yao Z, Jiang C, Songyang Z, Gan L, Xiong Y. Three-dimensional and single-cell sequencing of liver cancer reveals comprehensive host-virus interactions in HBV infection. Front Immunol 2023; 14:1161522. [PMID: 37063858 PMCID: PMC10102373 DOI: 10.3389/fimmu.2023.1161522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
BackgroundsHepatitis B virus (HBV) infection is a major risk factor for chronic liver diseases and liver cancer (mainly hepatocellular carcinoma, HCC), while the underlying mechanisms and host-virus interactions are still largely elusive.MethodsWe applied HiC sequencing to HepG2 (HBV-) and HepG2-2.2.15 (HBV+) cell lines and combined them with public HCC single-cell RNA-seq data, HCC bulk RNA-seq data, and both genomic and epigenomic ChIP-seq data to reveal potential disease mechanisms of HBV infection and host-virus interactions reflected by 3D genome organization.ResultsWe found that HBV enhanced overall proximal chromatin interactions (CIs) of liver cells and primarily affected regional CIs on chromosomes 13, 14, 17, and 22. Interestingly, HBV altered the boundaries of many topologically associating domains (TADs), and genes nearby these boundaries showed functional enrichment in cell adhesion which may promote cancer metastasis. Moreover, A/B compartment analysis revealed dramatic changes on chromosomes 9, 13 and 21, with more B compartments (inactive or closed) shifting to A compartments (active or open). The A-to-B regions (closing) harbored enhancers enriched in the regulation of inflammatory responses, whereas B-to-A regions (opening) were enriched for transposable elements (TE). Furthermore, we identified large HBV-induced structural variations (SVs) that disrupted tumor suppressors, NLGN4Y and PROS1. Finally, we examined differentially expressed genes and TEs in single hepatocytes with or without HBV infection, by using single-cell RNA-seq data. Consistent with our HiC sequencing findings, two upregulated genes that promote HBV replication, HNF4A and NR5A2, were located in regions with HBV-enhanced CIs, and five TEs were located in HBV-activated regions. Therefore, HBV may promote liver diseases by affecting the human 3D genome structure.ConclusionOur work promotes mechanistic understanding of HBV infection and host-virus interactions related to liver diseases that affect billions of people worldwide. Our findings may also have implications for novel immunotherapeutic strategies targeting HBV infection.
Collapse
Affiliation(s)
- Mengbiao Guo
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhicheng Yao
- Department of General Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chen Jiang
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhou Songyang
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lian Gan
- Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, China
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
- *Correspondence: Lian Gan, ; Yuanyan Xiong,
| | - Yuanyan Xiong
- Key Laboratory of Gene Engineering of the Ministry of Education, Institute of Healthy Aging Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Lian Gan, ; Yuanyan Xiong,
| |
Collapse
|
7
|
Pan L, Li M, Zhang X, Xia Y, Mian AM, Wu H, Sun Y, Qiu HJ. Establishment of an In Vitro Model of Pseudorabies Virus Latency and Reactivation and Identification of Key Viral Latency-Associated Genes. Viruses 2023; 15:v15030808. [PMID: 36992518 PMCID: PMC10056777 DOI: 10.3390/v15030808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Alphaherpesviruses infect humans and most animals. They can cause severe morbidity and mortality. The pseudorabies virus (PRV) is a neurotropic alphaherpesvirus that can infect most mammals. The PRV persists in the host by establishing a latent infection, and stressful stimuli can induce the latent viruses to reactivate and cause recurrent diseases. The current strategies of antiviral drug therapy and vaccine immunization are ineffective in eliminating these viruses from the infected host. Moreover, overspecialized and complex models are also a major obstacle to the elucidation of the mechanisms involved in the latency and reactivation of the PRV. Here, we present a streamlined model of the latent infection and reactivation of the PRV. A latent infection established in N2a cells infected with the PRV at a low multiplicity of infection (MOI) and maintained at 42 °C. The latent PRV was reactivated when the infected cells were transferred to 37 °C for 12 to 72 h. When the above process was repeated with a UL54-deleted PRV mutant, it was observed that the UL54 deletion did not affect viral latency. However, viral reactivation was limited and delayed. This study establishes a powerful and streamlined model to simulate PRV latency and reveals the potential role of temperature in PRV reactivation and disease. Meanwhile, the key role of the early gene UL54 in the latency and reactivation of PRV was initially elucidated.
Collapse
Affiliation(s)
- Li Pan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
| | - Mingzhi Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
- School of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xinyu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yu Xia
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
- School of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Assad Moon Mian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
| | - Hongxia Wu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
- School of Animal Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Road, Harbin 150069, China
- School of Life Science and Engineering, Foshan University, Foshan 528225, China
| |
Collapse
|
8
|
Liang W, Wang S, Wang H, Li X, Meng Q, Zhao Y, Zheng C. When 3D genome technology meets viral infection, including SARS-CoV-2. J Med Virol 2022; 94:5627-5639. [PMID: 35916043 PMCID: PMC9538846 DOI: 10.1002/jmv.28040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/09/2022] [Accepted: 07/30/2022] [Indexed: 01/06/2023]
Abstract
Mammalian chromosomes undergo varying degrees of compression to form three-dimensional genome structures. These three-dimensional structures undergo dynamic and precise chromatin interactions to achieve precise spatial and temporal regulation of gene expression. Most eukaryotic DNA viruses can invade their genomes into the nucleus. However, it is still poorly understood how the viral genome is precisely positioned after entering the host cell nucleus to find the most suitable location and whether it can specifically interact with the host genome to hijack the host transcriptional factories or even integrate into the host genome to complete its transcription and replication rapidly. Chromosome conformation capture technology can reveal long-range chromatin interactions between different chromosomal sites in the nucleus, potentially providing a reference for viral DNA-host chromatin interactions. This review summarized the research progress on the three-dimensional interaction between virus and host genome and the impact of virus integration into the host genome on gene transcription regulation, aiming to provide new insights into chromatin interaction and viral gene transcription regulation, laying the foundation for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Weizheng Liang
- Central LaboratoryThe First Affiliated Hospital of Hebei North UniversityZhangjiakouChina
- Department of Immunology, School of Basic Medical SciencesFujian Medical UniversityFuzhouChina
| | - Shuangqing Wang
- Department of NeurologyShenzhen University General Hospital, Shenzhen UniversityShenzhen, Guangdong ProvinceChina
| | - Hao Wang
- Department of Obstetrics and GynecologyShenzhen University General HospitalShenzhen, GuangdongChina
| | - Xiushen Li
- Department of Obstetrics and GynecologyShenzhen University General HospitalShenzhen, GuangdongChina
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen, GuangdongChina
- Shenzhen Key LaboratoryShenzhen University General HospitalShenzhen, GuangdongChina
| | - Qingxue Meng
- Central LaboratoryThe First Affiliated Hospital of Hebei North UniversityZhangjiakouChina
| | - Yan Zhao
- Department of Mathematics and Computer ScienceFree University BerlinBerlinGermany
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical SciencesFujian Medical UniversityFuzhouChina
- Department of Microbiology, Immunology and Infectious DiseasesUniversity of CalgaryCalgaryAlbertaCanada
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life SciencesInner Mongolia UniversityHohhotChina
| |
Collapse
|
9
|
Hummel G, Liu C. Organization and epigenomic control of RNA polymerase III-transcribed genes in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102199. [PMID: 35364484 DOI: 10.1016/j.pbi.2022.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The genetic information linearly scripted in chromosomes is wrapped in a ribonucleoprotein complex called chromatin. The adaptation of its compaction level and spatiotemporal organization refines gene expression in response to developmental and environmental cues. RNA polymerase III (RNAPIII) is responsible for the biogenesis of elementary non-coding RNAs. Their genes are subjected to high duplication and mutational rates, and invade nuclear genomes. Their insertion into different epigenomic environments raises the question of how chromatin packing affects their individual transcription. In this review, we provide a unique perspective to this issue in plants. In addition, we discuss how the genomic organization of RNAPIII-transcribed loci, combined with epigenetic differences, might participate to plant trait variations.
Collapse
Affiliation(s)
- Guillaume Hummel
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany.
| |
Collapse
|
10
|
The Activity of Plant-Derived Ren’s Oligopeptides-1 against the Pseudorabies Virus. Animals (Basel) 2022; 12:ani12111341. [PMID: 35681806 PMCID: PMC9179334 DOI: 10.3390/ani12111341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 11/17/2022] Open
Abstract
Newly synthesized Ren’s oligopeptides-1 was found to have an antiviral effect in clinical trials, and the purpose of this study was to further demonstrate the antiviral activity of Ren’s oligopeptides-1 against the PRV 152-GFP strain. We used the real-time cell analysis system (RTCA) to detect the cytotoxicity of different concentrations of Ren’s oligopeptides-1. We then applied high content screening (HCS) to detect the antiviral activity of Ren’s oligopeptides-1 against PRV. Meanwhile, the fluorescence signal of the virus was collected in real time and the expression levels of the related genes in the PK15 cells infected with PRV were detected using real-time PCR. At the mRNA level, we discovered that, at a concentration of 6 mg/mL, Ren’s oligopeptides-1 reduced the expression of pseudorabies virus (PRV) genes such as IE180, UL18, UL54, and UL21 at a concentration of 6 mg/mL. We then determined that Ren’s oligopeptides-1 has an EC50 value of 6 mg/mL, and at this level, no cytotoxicity was observed.
Collapse
|
11
|
Hu Y, Pan Q, Zhou K, Ling Y, Wang H, Li Y. RUNX1 inhibits the antiviral immune response against influenza A virus through attenuating type I interferon signaling. Virol J 2022; 19:39. [PMID: 35248104 PMCID: PMC8897766 DOI: 10.1186/s12985-022-01764-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Influenza A viruses (IAVs) are zoonotic, segmented negative-stranded RNA viruses. The rapid mutation of IAVs results in host immune response escape and antiviral drug and vaccine resistance. RUNX1 is a transcription factor that not only plays essential roles in hematopoiesis, but also functions as a regulator in inflammation. However, its role in the innate immunity to IAV infection has not been well studied. Methods To investigate the effects of RUNX1 on IAV infection and explore the mechanisms that RUNX1 uses during IAV infection. We infected the human alveolar epithelial cell line (A549) with influenza virus A/Puerto Rico/8/34 (H1N1) (PR8) and examined RUNX1 expression by Western blot and qRT-PCR. We also knocked down or overexpressed RUNX1 in A549 cells, then evaluated viral replication by Western blot, qRT-PCR, and viral titration. Results We found RUNX1 expression is induced by IAV H1N1 PR8 infection, but not by poly(I:C) treatment, in the human alveolar epithelial cell line A549. Knockdown of RUNX1 significantly inhibited IAV infection. Conversely, overexpression of RUNX1 efficiently promoted production of progeny viruses. Additionally, RUNX1 knockdown increased IFN-β and ISGs production while RUNX1 overexpression compromised IFN-β and ISGs production upon PR8 infection in A549 cells. We further showed that RUNX1 may attenuate the interferon signaling transduction by hampering the expression of IRF3 and STAT1 during IAV infection. Conclusions Taken together, we found RUNX1 attenuates type I interferon signaling to facilitate IAV infection in A549 cells.
Collapse
|
12
|
Acetylcholine deficiency disrupts extratelencephalic projection neurons in the prefrontal cortex in a mouse model of Alzheimer's disease. Nat Commun 2022; 13:998. [PMID: 35194025 PMCID: PMC8863829 DOI: 10.1038/s41467-022-28493-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 01/25/2022] [Indexed: 11/21/2022] Open
Abstract
Short-term memory deficits have been associated with prefrontal cortex (PFC) dysfunction in Alzheimer’s disease (AD) and AD mouse models. Extratelencephalic projection (ET) neurons in the PFC play a key role in short-term working memory, but the mechanism between ET neuronal dysfunction in the PFC and short-term memory impairment in AD is not well understood. Here, using fiber photometry and optogenetics, we found reduced neural activity in the ET neurons in the medial prefrontal cortex (mPFC) of the 5×FAD mouse model led to object recognition memory (ORM) deficits. Activation of ET neurons in the mPFC of 5×FAD mice rescued ORM impairment, and inhibition of ET neurons in the mPFC of wild type mice impaired ORM expression. ET neurons in the mPFC that project to supramammillary nucleus were necessary for ORM expression. Viral tracing and in vivo recording revealed that mPFC ET neurons received fewer cholinergic inputs from the basal forebrain in 5×FAD mice. Furthermore, activation of cholinergic fibers in the mPFC rescued ORM deficits in 5×FAD mice, while acetylcholine deficiency reduced the response of ET neurons in the mPFC to familiar objects. Taken together, our results revealed a neural mechanism behind ORM impairment in 5×FAD mice. Short-term memory deficits are associated with prefrontal cortex dysfunction in Alzheimer’s disease. Here, the authors assessed extratelencephalic projection (ET) neurons and found reduced ET neural activity in the medial prefrontal cortex (mPFC) and showed ET neurons received fewer cholinergic inputs from the basal forebrain in 5×FAD mice which led to object recognition memory deficits.
Collapse
|
13
|
Boftsi M, Whittle FB, Wang J, Shepherd P, Burger LR, Kaifer KA, Lorson CL, Joshi T, Pintel DJ, Majumder K. The adeno-associated virus 2 (AAV2) genome and rep 68/78 proteins interact with cellular sites of DNA damage. Hum Mol Genet 2021; 31:985-998. [PMID: 34652429 DOI: 10.1093/hmg/ddab300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/20/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear DNA viruses simultaneously access cellular factors that aid their life cycle while evading inhibitory factors by localizing to distinct nuclear sites. Adeno-Associated Viruses (AAVs), which are Dependoviruses in the family Parvovirinae, are non-enveloped icosahedral viruses, that have been developed as recombinant AAV vectors (rAAV) to express transgenes. AAV2 expression and replication occur in nuclear viral replication centers (VRCs), which relies on cellular replication machinery as well as coinfection by helper viruses such as adenoviruses or herpesviruses, or exogenous DNA damage to host cells. AAV2 infection induces a complex cellular DNA damage response (DDR), either in response to viral DNA or viral proteins expressed in the host nucleus during infection, where VRCs colocalize with DDR proteins. We have previously developed a modified iteration of a viral chromosome conformation capture (V3C-seq) assay to show that the autonomous parvovirus Minute Virus of Mice (MVM) localizes to cellular sites of DNA damage to establish and amplify its replication. Similar V3C-seq assays to map AAV2 show that the AAV2 genome colocalized with cellular sites of DNA damage under both non-replicating and replicating conditions. The AAV2 non-structural protein Rep 68/78, also localized to cellular DDR sites during both non-replicating and replicating infections, and also when ectopically expressed. Ectopically expressed Rep could be efficiently re-localized to DDR sites induced by micro-irradiation. Recombinant AAV2 gene therapy vector genomes derived from AAV2 localized to sites of cellular DNA damage to a lesser degree, suggesting that the Inverted Terminal Repeat (ITR) origins of replication were insufficient for targeting.
Collapse
Affiliation(s)
- Maria Boftsi
- Pathobiology Area Graduate Program.,Christopher S. Bond Life Sciences Center
| | | | - Juexin Wang
- Christopher S. Bond Life Sciences Center.,Department of Electrical Engineering and Computer Science
| | | | | | - Kevin A Kaifer
- Christopher S. Bond Life Sciences Center.,Department of Veterinary Pathobiology, College of Veterinary Medicine
| | - Christian L Lorson
- Christopher S. Bond Life Sciences Center.,Department of Veterinary Pathobiology, College of Veterinary Medicine
| | - Trupti Joshi
- Christopher S. Bond Life Sciences Center.,Department of Electrical Engineering and Computer Science.,MU Informatics Institute.,Department of Health Management and Informatics
| | - David J Pintel
- Christopher S. Bond Life Sciences Center.,Molecular Microbiology and Immunology, University of Missouri-Columbia, School of Medicine, Columbia, MO USA 65211
| | - Kinjal Majumder
- Institute for Molecular Virology.,McArdle Laboratory for Cancer Research.,University of Wisconsin-Carbone Cancer Center
| |
Collapse
|