1
|
Shi Y, Liao G, Li A, Li X, Xiao D, Wang A, He L, Zhan J. A Novel Ah-miR2916-AhERF13-AhSUC3 Module Regulates Al Tolerance via Ethylene-Mediated Signaling in Peanut (Arachis hypogea L.). PLANT, CELL & ENVIRONMENT 2025; 48:2009-2023. [PMID: 39535456 DOI: 10.1111/pce.15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Aluminum (Al) toxicity in acidic soils leads to a considerable reduction in crop yields. MicroRNAs play essential roles in abiotic stress responses, but little is known of their role in the response of peanut (Arachis hypogea L.) to Al stress. In this study, a novel Ah-miR2916 (miR2916)-AhERF13-AhSUC3 module was found to be involved in the Al-stress response via ethylene-mediated signaling in peanut. Overexpression of miR2916 in Arabidopsis resulted in reduced Al tolerance by downregulating ethylene biosynthesis, while knockdown miR2916 in peanut enhanced Al tolerance. Notably, the APETALA2/ethylene-responsive factor (ERF), AhERF13, was identified as a potential target of miR2916. AhERF13 expression was increased in miR2916 knockdown peanut lines and displayed an opposing pattern to that of miR2916 under Al stress. Consistently, knockdown AhERF13 peanut lines indicated that AhERF13 positively regulates Al tolerance by upregulating ethylene biosynthesis. AhERF13 was shown capable of binding to an ERF motif in the promoter region of sucrose transport protein 3 (AhSUC3) and positively regulate its expression. Consequently, AhSUC3 improved Al tolerance by upregulating ethylene biosynthesis. These results provide further insights into the molecular mechanisms operating during peanut response to Al stress, and suggests targets for manipulation in breeding programs for improved Al tolerance.
Collapse
Affiliation(s)
- Yusun Shi
- College of Agriculture, Guangxi University, Nanning, China
| | - Guoting Liao
- College of Agriculture, Guangxi University, Nanning, China
| | - Ailing Li
- College of Agriculture, Guangxi University, Nanning, China
| | - Xinyue Li
- College of Agriculture, Guangxi University, Nanning, China
| | - Dong Xiao
- College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, China
| | - Aiqin Wang
- College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, China
| | - Longfei He
- College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, China
| | - Jie Zhan
- College of Agriculture, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Agro-Environment and Agro-Products Safety, Guangxi University, Nanning, China
- Key Laboratory of Crop Cultivation and Tillage, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Gao J, Xu Y, Yeh C, Zou Y, Hai Y. Cysteine S-conjugate sulfoxide β-lyase activity for human ACCS. FEBS J 2025. [PMID: 39876065 DOI: 10.1111/febs.17419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/14/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025]
Abstract
1-Aminocyclopropane-1-carboxylate synthase (ACCS) catalyzes the conversion of S-adenosyl-methionine to 1-aminocyclopropane-1-carboxylate (ACC), a rate-limiting step in ethylene biosynthesis. A gene encoding a putative ACCS protein was identified in the human genome two decades ago. It has been shown to not exhibit any canonical ACC synthase activity and its true function remains obscure. In this study, through a biochemical profiling approach, we demonstrate that human ACCS possesses cysteine conjugate sulfoxide β-lyase activity. This function is unexpected but reasonable, as it somewhat parallels the activity of ACCS proteins found in non-seed plants. Structure-function relationship study of human ACCS, guided by an AlphaFold2 model, allowed us to identify key active site residues that are important for its β-lyase activity. Our biochemical study of human ACCS also provided insights into the function of other mammalian ACCS homologs.
Collapse
Affiliation(s)
- Jinmin Gao
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Yueqi Xu
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Christopher Yeh
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Yike Zou
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, China
| | - Yang Hai
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| |
Collapse
|
3
|
Wang X, Wen H, Suprun A, Zhu H. Ethylene Signaling in Regulating Plant Growth, Development, and Stress Responses. PLANTS (BASEL, SWITZERLAND) 2025; 14:309. [PMID: 39942870 PMCID: PMC11820588 DOI: 10.3390/plants14030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/18/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025]
Abstract
Ethylene is a gaseous plant hormone that plays a crucial role in coordinating various physiological processes in plants. It acts as a key mediator, integrating both endogenous developmental cues and external environmental signals to regulate a wide range of functions, including growth, fruit ripening, leaf abscission, and responses to stress. The signaling pathway is initiated when ethylene binds to its receptor. After decades of research, the key components of ethylene signaling have been identified and characterized. Although the molecular mechanisms of the sensing of ethylene signal and its transduction have been studied extensively, a new area of research is how respiration and epigenetic modifications influence ethylene signaling and ethylene response. Here, we summarize the research progress in recent years and review the function and importance of ethylene signaling in plant growth and stress responses. In addition, we also describe the current understanding of how epigenetic modifications regulate ethylene signaling and the ethylene response. Together, our review sheds light on the new signaling mechanisms of ethylene.
Collapse
Affiliation(s)
- Xiaoyi Wang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.W.); (H.W.)
| | - Hongyi Wen
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.W.); (H.W.)
| | - Andrey Suprun
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.W.); (H.W.)
| |
Collapse
|
4
|
Tang X, Mei Y, He K, Liu R, Lv X, Zhao Y, Li W, Wang Q, Gong Q, Li S, Xu C, Zheng X, Cao Q, Wang D, Wang NN. The RING-type E3 ligase RIE1 sustains leaf longevity by specifically targeting AtACS7 to fine-tune ethylene production in Arabidopsis. Proc Natl Acad Sci U S A 2024; 121:e2411271121. [PMID: 39565318 PMCID: PMC11621758 DOI: 10.1073/pnas.2411271121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/15/2024] [Indexed: 11/21/2024] Open
Abstract
Ethylene is widely recognized as a positive regulator of leaf senescence. However, how plants coordinate the biosynthesis of ethylene to meet the requirements of senescence progression has not been determined. The rate-limiting enzyme in the ethylene biosynthesis pathway is ACC synthase. AtACS7 was previously considered one of the major contributors to the synthesis of "senescence ethylene" in Arabidopsis. However, the "brake signal" that fine-tunes the expression of AtACS7 to ensure optimal ethylene production during leaf development has yet to be identified. In the present study, the RING-H2 zinc-finger protein RIE1 was found to specifically interact with and ubiquitinate AtACS7, among all functional ACSs in Arabidopsis, to promote its degradation. Overexpression of RIE1 markedly decreased ethylene biosynthesis and delayed leaf senescence, whereas loss of function of RIE1 significantly increased ethylene emission and accelerated leaf senescence. The ethylene-related phenotypes of RIE1 overexpressing or knockout mutants were effectively rescued by the ethylene precursor ACC or the competitive inhibitor of ACS, respectively. In particular, AtACS7-induced precocious leaf senescence was strongly enhanced by the loss of RIE1 but was significantly attenuated by the overexpression of RIE1. The specific regions of interaction between AtACS7 and RIE1, as well as the major ubiquitination sites of AtACS7, were further investigated. All results demonstrated that RIE1 functions as an important modulator of ethylene biosynthesis during leaf development by specifically targeting AtACS7 for degradation, thereby enabling plants to produce the optimal levels of ethylene needed.
Collapse
Affiliation(s)
- Xianglin Tang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Yuanyuan Mei
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Kaixuan He
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Ran Liu
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Xiaoyan Lv
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Yujia Zhao
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Wenjing Li
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Qian Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Qinshan Gong
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Shengnan Li
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Chang Xu
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Xu Zheng
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Qingyu Cao
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Dan Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin300071, China
| | - Ning Ning Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin300071, China
| |
Collapse
|
5
|
Yin GM, Dun SS, Li E, Ge FR, Fang YR, Wang DD, Lu D, Wang NN, Zhang Y, Li S. Arabidopsis COP1 suppresses root hair development by targeting type I ACS proteins for ubiquitination and degradation. Dev Cell 2024; 59:2962-2973.e7. [PMID: 39053470 DOI: 10.1016/j.devcel.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/18/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Root hairs (RHs) are an innovation of vascular plants whose development is coordinated by endogenous and environmental cues, such as ethylene and light conditions. However, the potential crosstalk between ethylene and light conditions in RH development is unclear. We report that Arabidopsis constitutive photomorphogenic 1 (COP1) integrates ethylene and light signaling to mediate RH development. Darkness suppresses RH development largely through COP1. COP1 inhibits both cell fate determination of trichoblast and tip growth of RHs based on pharmacological, genetic, and physiological analyses. Indeed, COP1 interacts with and catalyzes the ubiquitination of ACS2 and ACS6. COP1- or darkness-promoted proteasome-dependent degradation of ACS2/6 leads to a low ethylene level in underground tissues. The negative role of COP1 in RH development by downregulating ethylene signaling may be coordinated with the positive role of COP1 in hypocotyl elongation by upregulating ethylene signaling, providing an evolutionary advantage for seedling fitness.
Collapse
Affiliation(s)
- Gui-Min Yin
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shan-Shan Dun
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - En Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Fu-Rong Ge
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yi-Ru Fang
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dan-Dan Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Dongping Lu
- Center for Agricultural Resources Research Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Ning Ning Wang
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan Zhang
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Sha Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
6
|
Zhao C, Cheng L, Guo Y, Hui W, Niu J, Song S. An integrated quality, physiological and transcriptomic analysis reveals mechanisms of kiwifruit response to postharvest transport vibrational stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109285. [PMID: 39550990 DOI: 10.1016/j.plaphy.2024.109285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/18/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
The 'Xuxiang' kiwifruit, a leading cultivar in China known for its high quality and yield, experiences quality degradation due to vibration stress during postharvest transportation. This study simulated the postharvest transportation vibrations of 'Xuxiang' kiwifruits to investigate the effects on the fruit quality and physiology. Different vibration intensities (0.26, 0.79, and 1.5 m s-2) and durations (0, 24, 48, 72, and 96 h) were applied to analyze the quality, physiological and transcriptomic changes of fruits after vibration stress, as well as the association between quality deterioration, gene networks, and key genes. Results indicated that vibration stress significantly accelerated the deterioration of fruit quality and induced physiological changes. As vibration intensity and duration increased, there was a rapid decrease in fruit firmness and an increase in weight loss, soluble solid content, relative conductivity, ethylene production, respiratory rate, and malondialdehyde levels. The most severe deterioration in fruit quality occurred at a vibration intensity of 1.5 m s-2. Transcriptome sequencing analysis was conducted on samples from different durations of exposure to the 1.5 m s-2 vibration intensity. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses identified key genes associated with ethylene metabolism and softening. Weighted Gene Co-Expression Network Analysis (WGCNA) and correlation analysis further determined that 24 of these genes were regulated by vibrational stress, impacting ethylene metabolism and cell wall degradation. Vibration stress induced changes in genes related to ethylene metabolism and cell wall degradation, promoting lipid peroxidation and respiratory changes, which compromise cell membrane integrity and lead to quality deterioration. Compared with untreated fruits, vibration stress caused the quality deterioration, physiological changes and transcriptional regulation of kiwifruits, indicating that kiwifruits respond to vibration stress through multiple aspects. It proposes a fresh outlook on the understanding of the mechanism of transport vibration stress and further illustrates the importance of monitoring vibration intensity and duration as well as reducing vibration.
Collapse
Affiliation(s)
- Chenxu Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China; Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an, 710119, China
| | - Linlin Cheng
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China; Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an, 710119, China
| | - Yurong Guo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China; Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an, 710119, China
| | - Wei Hui
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Junpeng Niu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Shujie Song
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China; Engineering Research Center of High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, Xi'an, 710119, China.
| |
Collapse
|
7
|
Song C, Li Y, Yang M, Li T, Hou Y, Liu Y, Xu C, Liu J, Millar AH, Wang N, Li L. Protein aggregation in plant mitochondria lacking Lon1 inhibits translation and induces unfolded protein responses. PLANT, CELL & ENVIRONMENT 2024; 47:4383-4397. [PMID: 38988259 DOI: 10.1111/pce.15035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
Loss of Lon1 led to stunted plant growth and accumulation of nuclear-encoded mitochondrial proteins including Lon1 substrates. However, an in-depth label-free proteomics quantification of mitochondrial proteins in lon1 revealed that the majority of mitochondrial-encoded proteins decreased in abundance. Additionally, we found that lon1 mutants contained protein aggregates in the mitochondrial that were enriched in metabolic enzymes, ribosomal subunits and PPR-containing proteins of the translation apparatus. These mutants exhibited reduced general mitochondrial translation as well as deficiencies in RNA splicing and editing. These findings support the role of Lon1 in maintaining a functional translational apparatus for mitochondrial-encoded gene translation. Transcriptome analysis of lon1 revealed a mitochondrial unfolded protein response reminiscent of the mitochondrial retrograde signalling dependent on the transcription factor ANAC017. Notably, lon1 mutants exhibited transiently elevated ethylene production, and the shortened hypocotyl observed in lon1 mutants during skotomorphogenesis was partially alleviated by ethylene inhibitors. Furthermore, the short root phenotype was partially ameliorated by introducing a mutation in the ethylene receptor ETR1. Interestingly, the upregulation of only a select few target genes was linked to ETR1-mediated ethylene signalling. Together this provides multiple steps in the link between loss of Lon1 and signalling responses to restore mitochondrial protein homoeostasis in plants.
Collapse
Affiliation(s)
- Ce Song
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuanyuan Li
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Mengmeng Yang
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Tiantian Li
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yuqi Hou
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yinyin Liu
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chang Xu
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ningning Wang
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Lei Li
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
8
|
Genot B, Grogan M, Yost M, Iacono G, Archer SD, Burns JA. Functional stress responses in Glaucophyta: Evidence of ethylene and abscisic acid functions in Cyanophora paradoxa. J Eukaryot Microbiol 2024; 71:e13041. [PMID: 38952030 PMCID: PMC11603287 DOI: 10.1111/jeu.13041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/31/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024]
Abstract
Glaucophytes, an enigmatic group of freshwater algae, occupy a pivotal position within the Archaeplastida, providing insights into the early evolutionary history of plastids and their host cells. These algae possess unique plastids, known as cyanelles that retain certain ancestral features, enabling a better understanding of the plastid transition from cyanobacteria. In this study, we investigated the role of ethylene, a potent hormone used by land plants to coordinate stress responses, in the glaucophyte alga Cyanophora paradoxa. We demonstrate that C. paradoxa produces gaseous ethylene when supplied with exogenous 1-aminocyclopropane-1-carboxylic acid (ACC), the ethylene precursor in land plants. In addition, we show that cells produce ethylene natively in response to abiotic stress, and that another plant hormone, abscisic acid (ABA), interferes with ethylene synthesis from exogenously supplied ACC, while positively regulating reactive oxygen species (ROS) accumulation. ROS synthesis also occurred following abiotic stress and ACC treatment, possibly acting as a second messenger in stress responses. A physiological response of C. paradoxa to ACC treatment is growth inhibition. Using transcriptomics, we reveal that ACC treatment induces the upregulation of senescence-associated proteases, consistent with the observation of growth inhibition. This is the first report of hormone usage in a glaucophyte alga, extending our understanding of hormone-mediated stress response coordination into the Glaucophyta, with implications for the evolution of signaling modalities across Archaeplastida.
Collapse
Affiliation(s)
- Baptiste Genot
- Bigelow Laboratory for Ocean SciencesEast BoothbayMaineUSA
| | | | | | | | | | - John A. Burns
- Bigelow Laboratory for Ocean SciencesEast BoothbayMaineUSA
| |
Collapse
|
9
|
Mei Y, Wang NN. New insights into the regulation of ethylene biosynthesis during leaf senescence in Arabidopsis. THE NEW PHYTOLOGIST 2024; 244:5-6. [PMID: 38840567 DOI: 10.1111/nph.19890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
This article is a Commentary on Zhu et al. (2024), 244: 116–130.
Collapse
Affiliation(s)
- Yuanyuan Mei
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ning Ning Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
10
|
Zheng L, Gao S, Bai Y, Zeng H, Shi H. NF-YC15 transcription factor activates ethylene biosynthesis and improves cassava disease resistance. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2424-2434. [PMID: 38600705 PMCID: PMC11331790 DOI: 10.1111/pbi.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 04/12/2024]
Abstract
The nuclear factor Y (NF-Y) transcription factors play important roles in plant development and physiological responses. However, the relationship between NF-Y, plant hormone and plant stress resistance in tropical crops remains unclear. In this study, we identified MeNF-YC15 gene in the NF-Y family that significantly responded to Xanthomonas axonopodis pv. manihotis (Xam) treatment. Using MeNF-YC15-silenced and -overexpressed cassava plants, we elucidated that MeNF-YC15 positively regulated disease resistance to cassava bacterial blight (CBB). Notably, we illustrated MeNF-YC15 downstream genes and revealed the direct genetic relationship between MeNF-YC15 and 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (MeACO1)-ethylene module in disease resistance, as evidenced by the rescued disease susceptibility of MeNF-YC15 silenced cassava plants with ethylene treatment or overexpressing MeACO1. In addition, the physical interaction between 2C-type protein phosphatase 1 (MePP2C1) and MeNF-YC15 inhibited the transcriptional activation of MeACO1 by MeNF-YC15. In summary, MePP2C1-MeNF-YC15 interaction modulates ethylene biosynthesis and cassava disease resistance, providing gene network for cassava genetic improvement.
Collapse
Affiliation(s)
- Liyan Zheng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversitySanya and HaikouHainan provinceChina
| | - Shuai Gao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversitySanya and HaikouHainan provinceChina
| | - Yujing Bai
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversitySanya and HaikouHainan provinceChina
| | - Hongqiu Zeng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversitySanya and HaikouHainan provinceChina
| | - Haitao Shi
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Key Laboratory of Biotechnology of Salt Tolerant Crops of Hainan Province, School of Tropical Agriculture and ForestryHainan UniversitySanya and HaikouHainan provinceChina
| |
Collapse
|
11
|
Cui Y, Ji X, Yu W, Liu Y, Bai Q, Su S. Genome-Wide Characterization and Functional Validation of the ACS Gene Family in the Chestnut Reveals Its Regulatory Role in Ovule Development. Int J Mol Sci 2024; 25:4454. [PMID: 38674037 PMCID: PMC11049808 DOI: 10.3390/ijms25084454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/15/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Ovule abortion significantly contributes to a reduction in chestnut yield. Therefore, an examination of the mechanisms underlying ovule abortion is crucial for increasing chestnut yield. In our previous study, we conducted a comprehensive multiomic analysis of fertile and abortive ovules and found that ACS genes in chestnuts (CmACS) play a crucial role in ovule development. Therefore, to further study the function of ACS genes, a total of seven CmACS members were identified, their gene structures, conserved structural domains, evolutionary trees, chromosomal localization, and promoter cis-acting elements were analyzed, and their subcellular localization was predicted and verified. The spatiotemporal specificity of the expression of the seven CmACS genes was confirmed via qRT-PCR analysis. Notably, CmACS7 was exclusively expressed in the floral organs, and its expression peaked during fertilization and decreased after fertilization. The ACC levels remained consistently greater in fertile ovules than in abortive ovules. The ACSase activity of CmACS7 was identified using the genetic transformation of chestnut healing tissue. Micro Solanum lycopersicum plants overexpressing CmACS7 had a significantly greater rate of seed failure than did wild-type plants. Our results suggest that ovule fertilization activates CmACS7 and increases ACC levels, whereas an overexpression of CmACS7 leads to an increase in ACC content in the ovule prior to fertilization, which can lead to abortion. In conclusion, the present study demonstrated that chestnut ovule abortion is caused by poor fertilization and not by nutritional competition. Optimization of the pollination and fertilization of female flowers is essential for increasing chestnut yield and reducing ovule abortion.
Collapse
Affiliation(s)
- Yanhong Cui
- College of Forestry, Beijing Forestry University, Beijing 100083, China; (Y.C.); (X.J.); (W.Y.); (Y.L.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
| | - Xingzhou Ji
- College of Forestry, Beijing Forestry University, Beijing 100083, China; (Y.C.); (X.J.); (W.Y.); (Y.L.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
| | - Wenjie Yu
- College of Forestry, Beijing Forestry University, Beijing 100083, China; (Y.C.); (X.J.); (W.Y.); (Y.L.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yang Liu
- College of Forestry, Beijing Forestry University, Beijing 100083, China; (Y.C.); (X.J.); (W.Y.); (Y.L.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Qian Bai
- College of Forestry, Beijing Forestry University, Beijing 100083, China; (Y.C.); (X.J.); (W.Y.); (Y.L.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
| | - Shuchai Su
- College of Forestry, Beijing Forestry University, Beijing 100083, China; (Y.C.); (X.J.); (W.Y.); (Y.L.)
- State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China
| |
Collapse
|
12
|
Tripathi A, Chauhan N, Mukhopadhyay P. Recent advances in understanding the regulation of plant secondary metabolite biosynthesis by ethylene-mediated pathways. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:543-557. [PMID: 38737326 PMCID: PMC11087406 DOI: 10.1007/s12298-024-01441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 05/14/2024]
Abstract
Plants produce a large repertoire of secondary metabolites. The pathways that lead to the biosynthesis of these metabolites are majorly conserved in the plant kingdom. However, a significant portion of these metabolites are specific to certain groups or species due to variations in the downstream pathways and evolution of the enzymes. These metabolites show spatiotemporal variation in their accumulation and are of great importance to plants due to their role in development, stress response and survival. A large number of these metabolites are in huge industrial demand due to their potential use as therapeutics, aromatics and more. Ethylene, as a plant hormone is long known, and its biosynthetic process, signaling mechanism and effects on development and response pathways have been characterized in many plants. Through exogenous treatments, ethylene and its inhibitors have been used to manipulate the production of various secondary metabolites. However, the research done on a limited number of plants in the last few years has only started to uncover the mechanisms through which ethylene regulates the accumulation of these metabolites. Often in association with other hormones, ethylene participates in fine-tuning the biosynthesis of the secondary metabolites, and brings specificity in the regulation depending on the plant, organ, tissue type and the prevailing conditions. This review summarizes the related studies, interprets the outcomes, and identifies the gaps that will help to breed better varieties of the related crops and produce high-value secondary metabolites for human benefits.
Collapse
Affiliation(s)
- Alka Tripathi
- Plant Biotechnology division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015 India
| | - Nisha Chauhan
- Plant Biotechnology division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002 India
| | - Pradipto Mukhopadhyay
- Plant Biotechnology division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015 India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
13
|
Tang X, Liu R, Mei Y, Wang D, He K, Wang NN. Identification of Key Ubiquitination Sites Involved in the Proteasomal Degradation of AtACS7 in Arabidopsis. Int J Mol Sci 2024; 25:2931. [PMID: 38474174 PMCID: PMC10931761 DOI: 10.3390/ijms25052931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
The gaseous hormone ethylene plays pivotal roles in plant growth and development. The rate-limiting enzyme of ethylene biosynthesis in seed plants is 1-aminocyclopropane-1-carboxylic acid (ACC) synthase (ACS). ACS proteins are encoded by a multigene family and the expression of ACS genes is highly regulated, especially at a post-translational level. AtACS7, the only type III ACS in Arabidopsis, is degraded in a 26S proteasome-dependent pathway. Here, by using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analysis, two lysine residues of AtACS7, lys285 (K285) and lys366 (K366), were revealed to be ubiquitin-modified in young, light-grown Arabidopsis seedlings but not in etiolated seedlings. Deubiquitylation-mimicking mutations of these residues significantly increased the stability of the AtACS7K285RK366R mutant protein in cell-free degradation assays. All results suggest that K285 and K366 are the major ubiquitination sites on AtACS7, providing deeper insights into the post-translational regulation of AtACS7 in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | - Kaixuan He
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ning Ning Wang
- Tianjin Key Laboratory of Protein Sciences, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
14
|
Khan S, Alvi AF, Saify S, Iqbal N, Khan NA. The Ethylene Biosynthetic Enzymes, 1-Aminocyclopropane-1-Carboxylate (ACC) Synthase (ACS) and ACC Oxidase (ACO): The Less Explored Players in Abiotic Stress Tolerance. Biomolecules 2024; 14:90. [PMID: 38254690 PMCID: PMC10813531 DOI: 10.3390/biom14010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Ethylene is an essential plant hormone, critical in various physiological processes. These processes include seed germination, leaf senescence, fruit ripening, and the plant's response to environmental stressors. Ethylene biosynthesis is tightly regulated by two key enzymes, namely 1-aminocyclopropane-1-carboxylate synthase (ACS) and 1-aminocyclopropane-1-carboxylate oxidase (ACO). Initially, the prevailing hypothesis suggested that ACS is the limiting factor in the ethylene biosynthesis pathway. Nevertheless, accumulating evidence from various studies has demonstrated that ACO, under specific circumstances, acts as the rate-limiting enzyme in ethylene production. Under normal developmental processes, ACS and ACO collaborate to maintain balanced ethylene production, ensuring proper plant growth and physiology. However, under abiotic stress conditions, such as drought, salinity, extreme temperatures, or pathogen attack, the regulation of ethylene biosynthesis becomes critical for plants' survival. This review highlights the structural characteristics and examines the transcriptional, post-transcriptional, and post-translational regulation of ACS and ACO and their role under abiotic stress conditions. Reviews on the role of ethylene signaling in abiotic stress adaptation are available. However, a review delineating the role of ACS and ACO in abiotic stress acclimation is unavailable. Exploring how particular ACS and ACO isoforms contribute to a specific plant's response to various abiotic stresses and understanding how they are regulated can guide the development of focused strategies. These strategies aim to enhance a plant's ability to cope with environmental challenges more effectively.
Collapse
Affiliation(s)
- Sheen Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| | - Ameena Fatima Alvi
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| | - Sadaf Saify
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| | - Noushina Iqbal
- Department of Botany, Jamia Hamdard, New Delhi 110062, India;
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (S.K.); (S.S.)
| |
Collapse
|
15
|
Sosa MB, Leeman JT, Washington LJ, Scheller HV, Chang MCY. Biosynthesis of Strained Amino Acids Through a PLP-Dependent Enzyme via Cryptic Halogenation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571568. [PMID: 38168212 PMCID: PMC10760155 DOI: 10.1101/2023.12.13.571568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Amino acids (AAs) are modular and modifiable building blocks which nature uses to synthesize both macromolecules, such as proteins, and small molecule natural products, such as alkaloids and non-ribosomal peptides (NRPs). While the 20 main proteinogenic AAs display relatively limited side-chain diversity, a wide range of non-canonical amino acids (ncAAs) exist that are not used by the ribosome for protein synthesis but contain a broad array of structural features and functional groups not found in proteinogenic AAs. In this communication, we report the discovery of the biosynthetic pathway for a new ncAA, pazamine, which contains a cyclopropane ring formed in two steps. In the first step, a chlorine is added onto the C4 position of lysine by a radical halogenase PazA. The cyclopropane ring is then formed in the next step by a pyridoxal-5'-phosphate-dependent enzyme, PazB, via an SN2-like attack onto C4 to eliminate chloride. Genetic studies of this pathway in the native host, Pseudomonas azotoformans, show that pazamine and its succinylated derivative, pazamide, potentially inhibit ethylene biosynthesis in growing plants based on alterations in the root phenotype of Arabidopsis thaliana seedlings. We further show that PazB can be utilized to make an alternative cyclobutane-containing AA. These discoveries may lead to advances in biocatalytic production of specialty chemicals and agricultural biotechnology.
Collapse
Affiliation(s)
- Max B Sosa
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Jacob T Leeman
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Lorenzo J Washington
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720 and Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Henrik V Scheller
- Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA 94720 and Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michelle C Y Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA and Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720 USA and Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
16
|
Ma L, Ma S, Chen G, Lu X, Wei R, Xu L, Feng X, Yang X, Chai Q, Zhang X, Li S. New insights into the occurrence of continuous cropping obstacles in pea (Pisum sativum L.) from soil bacterial communities, root metabolism and gene transcription. BMC PLANT BIOLOGY 2023; 23:226. [PMID: 37106450 PMCID: PMC10141910 DOI: 10.1186/s12870-023-04225-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Continuous cropping is a significant obstacle to sustainable development in the pea (Pisum sativum L.) industry, but the underlying mechanisms of this remain unclear. In this study, we used 16 S rDNA sequencing, transcriptomics, and metabolomics to analyze the response mechanism of roots and soil bacteria to continuous cropping and the relationship between soil bacteria and root phenotypes of different pea genotypes (Ding wan 10 and Yun wan 8). RESULTS Continuous cropping inhibited pea growth, with a greater effect on Ding wan 10 than Yun wan 8. Metabolomics showed that the number of differentially accumulated metabolites (DAMs) in pea roots increased with the number of continuous cropping, and more metabolic pathways were involved. Transcriptomics revealed that the number of differentially expressed genes (DEGs) increased with the number of continuous cropping. Continuous cropping altered the expression of genes involved in plant-pathogen interaction, MAPK signal transduction, and lignin synthesis pathways in pea roots, with more DEGs in Ding wan 10 than in Yun wan 8. The up-regulated expression of genes in the ethylene signal transduction pathway was evident in Ding wan 10. Soil bacterial diversity did not change, but the relative abundance of bacteria significantly responded to continuous cropping. Integrative analysis showed that the bacteria with significant relative abundance in the soil were strongly associated with the antioxidant synthesis and linoleic acid metabolism pathway of pea roots under continuous cropping once. Under continuous cropping twice, the bacteria with significant relative abundance changes were strongly associated with cysteine and methionine metabolism, fatty acid metabolism, phenylpropanoid biosynthesis, terpenoid backbone biosynthesis, linoleic acid, and amino sugar and nucleotide sugar metabolism. CONCLUSION Ding wan 10 was more sensitive to continuous cropping than Yun wan 8. Continuous cropping times and pea genotypes determined the differences in root metabolic pathways. There were common metabolic pathways in the two pea genotypes in response to continuous cropping, and the DEGs and DAMs in these metabolic pathways were strongly associated with the bacteria with significant changes in relative abundance in the soil. This study provides new insights into obstacles to continuous cropping in peas.
Collapse
Affiliation(s)
- Lei Ma
- State Key Laboratory of Arid land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Shaoying Ma
- Basic Experimental Teaching Center, Gansu Agricultural University, Lanzhou, 730070 China
| | - Guiping Chen
- State Key Laboratory of Arid land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xu Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Ruonan Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Ling Xu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Xiaojie Feng
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - Xiaoming Yang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070 China
| | - Qiang Chai
- State Key Laboratory of Arid land Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Xucheng Zhang
- Dryland Agricultural Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070 China
| | - Sheng Li
- State Key Laboratory of Arid land Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
17
|
Xu C, Sun L, Mei Y, Sun G, Li W, Wang D, Li X, Wang NN. Domain Swapping between AtACS7 and PpACL1 Results in Chimeric ACS-like Proteins with ACS or C β-S Lyase Single Enzymatic Activity. Int J Mol Sci 2023; 24:ijms24032956. [PMID: 36769285 PMCID: PMC9917878 DOI: 10.3390/ijms24032956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
The gaseous hormone ethylene plays a pivotal role in plant growth and development. In seed plants, the key rate-limiting enzyme that controls ethylene biosynthesis is ACC synthase (ACS). ACS has, for a long time, been believed to be a single-activity enzyme until we recently discovered that it also possesses Cβ-S lyase (CSL) activity. This discovery raises fundamental questions regarding the biological significance of the dual enzymatic activities of ACS. To address these issues, it is highly necessary to obtain ACS mutants with either ACS or CSL single activity. Here, domain swapping between Arabidopsis AtACS7 and moss CSL PpACL1 were performed. Enzymatic activity assays of the constructed chimeras revealed that, R10, which was produced by replacing AtACS7 box 6 with that of PpACL1, lost ACS but retained CSL activity, whereas R12 generated by box 4 substitution lost CSL and only had ACS activity. The activities of both chimeric proteins were compared with previously obtained single-activity mutants including R6, AtACS7Q98A, and AtACS7D245N. All the results provided new insights into the key residues required for ACS and CSL activities of AtACS7 and laid an important foundation for further in-depth study of the biological functions of its dual enzymatic activities.
Collapse
Affiliation(s)
- Chang Xu
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Lifang Sun
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Yuanyuan Mei
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Gongling Sun
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Wenjing Li
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Dan Wang
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
| | - Xin Li
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ning Ning Wang
- College of Life Sciences, College of Agricultural Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin 300071, China
- Correspondence:
| |
Collapse
|
18
|
Li D, Dierschke T, Roden S, Chen K, Bowman JL, Chang C, Van de Poel B. A transporter of 1-aminocyclopropane-1-carboxylic acid affects thallus growth and fertility in Marchantia polymorpha. THE NEW PHYTOLOGIST 2022; 236:2103-2114. [PMID: 36151927 DOI: 10.1111/nph.18510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
In seed plants, 1-aminocyclopropane-1-carboxylic acid (ACC) is the precursor of the plant hormone ethylene but also has ethylene-independent signaling roles. Nonseed plants produce ACC but do not efficiently convert it to ethylene. In Arabidopsis thaliana, ACC is transported by amino acid transporters, LYSINE HISTIDINE TRANSPORTER 1 (LHT1) and LHT2. In nonseed plants, LHT homologs have been uncharacterized. Here, we isolated an ACC-insensitive mutant (Mpain) that is defective in ACC uptake in the liverwort Marchantia polymorpha. Mpain contained a frameshift mutation (1 bp deletion) in the MpLHT1 coding sequence, and was complemented by expression of a wild-type MpLHT1 transgene. Additionally, ACC insensitivity was re-created in CRISPR/Cas9-Mplht1 knockout mutants. We found that MpLHT1 can also transport l-hydroxyproline and l-histidine. We examined the physiological functions of MpLHT1 in vegetative growth and reproduction based on mutant phenotypes. Mpain and Mplht1 plants were smaller and developed fewer gemmae cups compared to wild-type plants. Mplht1 mutants also had reduced fertility, and archegoniophores displayed early senescence. These findings reveal that MpLHT1 serves as an ACC and amino acid transporter in M. polymorpha and has diverse physiological functions. We propose that MpLHT1 contributes to homeostasis of ACC and other amino acids in M. polymorpha growth and reproduction.
Collapse
Affiliation(s)
- Dongdong Li
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, 3001, Leuven, Belgium
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, MD, 20742, USA
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, 310058, Hangzhou, China
| | - Tom Dierschke
- School of Biological Sciences, Monash University, 3800, Melbourne, Vic., Australia
| | - Stijn Roden
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, 3001, Leuven, Belgium
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijingang Campus, 310058, Hangzhou, China
| | - John L Bowman
- School of Biological Sciences, Monash University, 3800, Melbourne, Vic., Australia
| | - Caren Chang
- Department of Cell Biology and Molecular Genetics, University of Maryland, Bioscience Research Building, College Park, MD, 20742, USA
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, 3001, Leuven, Belgium
- KU Leuven Plant Institute (LPI), University of Leuven, 3001, Leuven, Belgium
| |
Collapse
|
19
|
Effects of Trichoderma atroviride SG3403 and Bacillus subtilis 22 on the Biocontrol of Wheat Head Blight. J Fungi (Basel) 2022; 8:jof8121250. [PMID: 36547583 PMCID: PMC9780869 DOI: 10.3390/jof8121250] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Wheat head blight caused by Fusarium graminearum is one of the major wheat diseases in the world; therefore, it is very significant to develop an effective and environmentally friendly microbial fungicide against it. Trichoderma atroviride and Bacillus subtilis are widely applied biocontrol microorganisms with separate advantages; however, little work has been conducted for synergistically elevating the effects of biocontrol and plant promotion through the co-cultivation of the two microorganisms. Our study demonstrated that T. atroviride SG3403 is compatible with B. subtilis 22. The co-culture metabolites contained a group of antagonistic compounds which were able to inhibit F. graminearum growth and increase the activities of pathogen G protein and mitogen-activated protein kinase (MAPK) as compared with axenic culture metabolites. Additionally, the co-culture metabolites enabled us to more significantly decrease the production of gibberellin (GA), deoxynivalenol (DON), and zearalenone (ZEN) from F. graminearum, which disorganized the subcellular structure, particularly the cytoplasm of F. graminearum hyphae, relative to the axenically cultured metabolites. Furthermore, the seed-coating agent made by the co-culture had significant effects against F. graminearum infection by triggering the expression of host plant defensive genes, including PR1, PR3, PR4, PR5, ACS, and SOD. It is suggested that jasmonic acid and ethylene (JA/ET) signaling might dominate wheat's induced systemic resistance (ISR) against wheat head blight. A dry, powdered bio-seed coating agent containing the co-culture mixtures was confirmed to be a bioavailable formulation that can be applied to control wheat head blight. Taken together, the co-culture's metabolites or the metabolites and living cells might provide a basis for the further development of a new kind of microbial bio-fungicide in the future.
Collapse
|
20
|
Tong M, Wen CK. Rise of the ethylene biosynthesis machinery from the C β-S lyase. MOLECULAR PLANT 2022; 15:784-787. [PMID: 35405325 DOI: 10.1016/j.molp.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Mengchen Tong
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
21
|
Mu XR, Tong C, Fang XT, Bao QX, Xue LN, Meng WY, Liu CY, Loake GJ, Cao XY, Jiang JH, Meng LS. Feedback loop promotes sucrose accumulation in cotyledons to facilitate sugar-ethylene signaling-mediated, etiolated-seedling greening. Cell Rep 2022; 38:110529. [PMID: 35294871 DOI: 10.1016/j.celrep.2022.110529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 08/01/2021] [Accepted: 02/24/2022] [Indexed: 11/19/2022] Open
Abstract
De-etiolation is indispensable for seedling survival and development. However, how sugars regulate de-etiolation and how sugars induce ethylene (ET) for seedlings to grow out of soil remain elusive. Here, we reveal how a sucrose (Suc) feedback loop promotes de-etiolation by inducing ET biosynthesis. Under darkness, Suc in germinating seeds preferentially induces 1-amino-cyclopropane-1-carboxylate synthase (ACS7; encoding a key ET biosynthesis enzyme) and associated ET biosynthesis, thereby activating ET core component ETHYLENE-INSENSITIVE3 (EIN3). Activated EIN3 directly inhibits the function of Suc transporter 2 (SUC2; a major Suc transporter) to block Suc export from cotyledons and thereby elevate Suc accumulation of cotyledons to induce ET. Under light, ET-activated EIN3 directly inhibits the function of phytochrome A (phyA; a de-etiolation inhibitor) to promote de-etiolation. We therefore propose that under darkness, the Suc feedback loop (Suc-ACS7-EIN3-|SUC2-Suc) promotes Suc accumulation in cotyledons to guarantee ET biosynthesis, facilitate de-etiolation, and enable seedlings to grow out of soil.
Collapse
Affiliation(s)
- Xin-Rong Mu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Chen Tong
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Xing-Tang Fang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Qin-Xin Bao
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Li-Na Xue
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Wei-Ying Meng
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Chang-Yue Liu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Gary J Loake
- Jiangsu Normal University, Edinburgh University, Centre for Transformative Biotechnology of Medicinal and Food Plants, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, Jiangsu 221116, People's Republic of China; Institute of Molecular Plant Sciences, School of Biological Sciences, Edinburgh University, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Xiao-Ying Cao
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China.
| | - Ji-Hong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China.
| | - Lai-Sheng Meng
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, Xuzhou, Jiangsu 221116, People's Republic of China.
| |
Collapse
|