1
|
Das S, Uddin MG, Li D, Wang Y, Dai Y, Toivonen J, Hong H, Liu K, Sun Z. Nanoscale thickness Octave-spanning coherent supercontinuum light generation. LIGHT, SCIENCE & APPLICATIONS 2025; 14:41. [PMID: 39779663 PMCID: PMC11711750 DOI: 10.1038/s41377-024-01660-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/01/2024] [Accepted: 10/13/2024] [Indexed: 01/11/2025]
Abstract
Coherent broadband light generation has attracted massive attention due to its numerous applications ranging from metrology, sensing, and imaging to communication. In general, spectral broadening is realized via third-order and higher-order nonlinear optical processes (e.g., self-phase modulation, Raman transition, four-wave mixing, multiwave mixing), which are typically weak and thus require a long interaction length and the phase matching condition to enhance the efficient nonlinear light-matter interaction for broad-spectrum generation. Here, for the first time, we report octave-spanning coherent light generation at the nanometer scale enabled by a phase-matching-free frequency down-conversion process. Up to octave-spanning coherent light generation with a -40dB spectral width covering from ~565 to 1906 nm is demonstrated in discreate manner via difference-frequency generation, a second-order nonlinear process in gallium selenide and niobium oxide diiodide crystals at the 100-nanometer scale. Compared with conventional coherent broadband light sources based on bulk materials, our demonstration is ~5 orders of magnitude thinner and requires ~3 orders of magnitude lower excitation power. Our results open a new way to possibly create compact, versatile and integrated ultra-broadband light sources.
Collapse
Affiliation(s)
- Susobhan Das
- Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland.
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Aalto, Finland.
| | - Md Gius Uddin
- Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Aalto, Finland
| | - Diao Li
- Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland
| | - Yadong Wang
- Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland
| | - Yunyun Dai
- Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland
| | - Juha Toivonen
- Department of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Hao Hong
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Zhipei Sun
- Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland.
- QTF Centre of Excellence, Department of Applied Physics, Aalto University, Aalto, Finland.
| |
Collapse
|
2
|
Xie J, Cheng X, Xue G, Li X, Zhong D, Yu W, Zuo Y, Liu C, Lin K, Liu C, Pang M, Jiang X, Sun Z, Kang Z, Hong H, Liu K, Liu Z. Critical-Layered MoS 2 for the Enhancement of Supercontinuum Generation in Photonic Crystal Fibre. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403696. [PMID: 39183501 DOI: 10.1002/adma.202403696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/15/2024] [Indexed: 08/27/2024]
Abstract
Supercontinuum generation (SCG) from silica-based photonic crystal fibers (PCFs) is of highly technological significance from microscopy to metrology, but has been hindered by silica's relatively low intrinsic optical nonlinearity. The prevailing approaches of filling PCF with nonlinear gases or liquids can endow fibre with enhanced optical nonlinearity and boosted SCG efficiency, yet these hybrids are easily plagued by fusion complexity, environmental incompatibility or transmission mode instability. Here this work presents a strategy of embedding solid-state 2D MoS2 atomic layers into the air-holes of PCF to efficiently enhance SCG. This work demonstrates a 4.8 times enhancement of the nonlinear coefficient and a 70% reduction of the threshold power for SCG with one octave spanning in the MoS2-PCF hybrid. Furthermore, this work finds that the SCG enhancement is highly layer-dependent, which only manifests for a real 2D regime within the thickness of five atomic layers. Theoretical calculations reveal that the critical thickness arises from the trade-off among the layer-dependent enhancement of the nonlinear coefficient, leakage of fundamental mode and redshift of zero-dispersion wavelength. This work provides significant advances toward efficient SCG, and highlights the importance of matching an appropriate atomic layer number in the design of functional 2D material optical fibers.
Collapse
Affiliation(s)
- Jin Xie
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Xu Cheng
- Group for Fibre Optics, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
- Haute Ecole ARC Ingénierie, University of Applied Sciences of Western Switzerland, Saint-Imier, 2610, Switzerland
| | - Guodong Xue
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xiao Li
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Ding Zhong
- Department of Physics, Renmin University of China, Beijing, 100872, China
| | - Wentao Yu
- Institute of Interdisciplinary Physical Sciences, School of Physics, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yonggang Zuo
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, 650093, China
| | - Chang Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Kaifeng Lin
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Can Liu
- Department of Physics, Renmin University of China, Beijing, 100872, China
| | - Meng Pang
- Innovation and Integration Center of New Laser Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- Russell Centre for Advanced Lightwave Science, Shanghai Institute of Optics and Fine Mechanics and Hangzhou Institute of Optics and Fine Mechanics, Hangzhou, 311421, China
| | - Xin Jiang
- Innovation and Integration Center of New Laser Technology, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- Russell Centre for Advanced Lightwave Science, Shanghai Institute of Optics and Fine Mechanics and Hangzhou Institute of Optics and Fine Mechanics, Hangzhou, 311421, China
| | - Zhipei Sun
- QTF Center of Excellence, Department of Electronics and Nanoengineering, Aalto University, Espoo, 02150, Finland
| | - Zhe Kang
- Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, National Engineering Research Center for Optical Instruments, Ningbo Innovation Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Hong
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Centre for Light-Element Advanced Materials, Peking University, Beijing, 100871, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Songshan Lake Materials Lab, Institute of Physics, Chinese Academy of Sciences, Dongguan, 523808, China
| | - Zhongfan Liu
- Beijing Graphene Institute (BGI), Beijing, 100095, China
- Center for Nanochemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
3
|
Geng W, Fang Y, Wang Y, Bao C, Liu W, Pan Z, Yue Y. Nonlinear photonics on integrated platforms. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:3253-3278. [PMID: 39634844 PMCID: PMC11614347 DOI: 10.1515/nanoph-2024-0149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/04/2024] [Indexed: 12/07/2024]
Abstract
Nonlinear photonics has unveiled new avenues for applications in metrology, spectroscopy, and optical communications. Recently, there has been a surge of interest in integrated platforms, attributed to their fundamental benefits, including compatibility with complementary metal-oxide semiconductor (CMOS) processes, reduced power consumption, compactness, and cost-effectiveness. This paper provides a comprehensive review of the key nonlinear effects and material properties utilized in integrated platforms. It discusses the applications and significant achievements in supercontinuum generation, a key nonlinear phenomenon. Additionally, the evolution of chip-based optical frequency combs is reviewed, highlighting recent pivotal works across four main categories. The paper also examines the recent advances in on-chip switching, computing, signal processing, microwave generation, and quantum applications. Finally, it provides perspectives on the development and challenges of nonlinear photonics in integrated platforms, offering insights into future directions for this rapidly evolving field.
Collapse
Affiliation(s)
- Wenpu Geng
- Institute of Modern Optics, Nankai University, Tianjin300350, China
| | - Yuxi Fang
- Institute of Modern Optics, Nankai University, Tianjin300350, China
| | - Yingning Wang
- Institute of Modern Optics, Nankai University, Tianjin300350, China
| | - Changjing Bao
- Department of Electrical Engineering, University of Southern California, Los Angeles, CA90089, USA
| | - Weiwei Liu
- Institute of Modern Optics, Nankai University, Tianjin300350, China
| | - Zhongqi Pan
- Department of Electrical & Computer Engineering, University of Louisiana at Lafayette, Lafayette, LA70504, USA
| | - Yang Yue
- School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an710049, China
| |
Collapse
|
4
|
Bhatt GR, Dave UD, Rocha-Rodrigues J, Zadka M, Datta I, Asenjo-Garcia A, Lipson M. Influence of discontinuities on photonic waveguides. OPTICS LETTERS 2024; 49:3918-3921. [PMID: 39008743 DOI: 10.1364/ol.522808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024]
Abstract
Fabrication-induced imperfections in photonic wire waveguides, such as roughness, stitching errors, and discontinuities, degrade their performance and thereby lower the yield of large-scale systems. This degradation is primarily due to the high insertion losses induced by imperfections, which scale nonlinearly with the index contrast in wire waveguides. Here we investigate the influence of discontinuities in photonic waveguides and later show a platform that is robust to fabrication imperfections. Our platform is based on an array of silicon nano-pillars, arranged to form a sub-wavelength (SW) grating waveguide. We focus on investigating the robustness by considering an abrupt break in the waveguide, as an extreme case of discontinuity. We show that sub-wavelength silicon waveguides are robust against unwanted large discontinuities relative to the operating wavelength. We measure a transmission loss of <2.2 dB at 1550 n m, for a discontinuity of length 2.1 μ m, when compared to more than 7 d B of loss in conventional silicon wire waveguides for the same discontinuity. Our results show that this mode of protection is broadband, covering the entire telecommunication band (λ =1500-1600 nm). We believe that this investigation of the influence of discontinuities in photonic waveguides could be a step toward the realization of low-loss optical waveguides.
Collapse
|
5
|
Taha BA, Addie AJ, Kadhim AC, Azzahran AS, Haider AJ, Chaudhary V, Arsad N. Photonics-powered augmented reality skin electronics for proactive healthcare: multifaceted opportunities. Mikrochim Acta 2024; 191:250. [PMID: 38587660 DOI: 10.1007/s00604-024-06314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
Rapid technological advancements have created opportunities for new solutions in various industries, including healthcare. One exciting new direction in this field of innovation is the combination of skin-based technologies and augmented reality (AR). These dermatological devices allow for the continuous and non-invasive measurement of vital signs and biomarkers, enabling the real-time diagnosis of anomalies, which have applications in telemedicine, oncology, dermatology, and early diagnostics. Despite its many potential benefits, there is a substantial information vacuum regarding using flexible photonics in conjunction with augmented reality for medical purposes. This review explores the current state of dermal augmented reality and flexible optics in skin-conforming sensing platforms by examining the obstacles faced thus far, including technical hurdles, demanding clinical validation standards, and problems with user acceptance. Our main areas of interest are skills, chiroptical properties, and health platform applications, such as optogenetic pixels, spectroscopic imagers, and optical biosensors. My skin-enhanced spherical dichroism and powerful spherically polarized light enable thorough physical inspection with these augmented reality devices: diabetic tracking, skin cancer diagnosis, and cardiovascular illness: preventative medicine, namely blood pressure screening. We demonstrate how to accomplish early prevention using case studies and emergency detection. Finally, it addresses real-world obstacles that hinder fully realizing these materials' extraordinary potential in advancing proactive and preventative personalized medicine, including technical constraints, clinical validation gaps, and barriers to widespread adoption.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- Photonics Technology Lab, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Malaysia.
| | - Ali J Addie
- Center of Advanced Materials/Directorate of Materials Research/Ministry of Science and Technology, Baghdad, Iraq
| | - Ahmed C Kadhim
- Communication Engineering Department, University of Technology, Baghdad, Iraq
| | - Ahmad S Azzahran
- Electrical Engineering Department, Northern Border University, Arar, Kingdom of Saudi Arabia.
| | - Adawiya J Haider
- Applied Sciences Department/Laser Science and Technology Branch, University of Technology, Baghdad, Iraq
| | - Vishal Chaudhary
- Research Cell &, Department of Physics, Bhagini Nivedita College, University of Delhi, New Delhi, 110045, India
| | - Norhana Arsad
- Photonics Technology Lab, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Malaysia.
| |
Collapse
|
6
|
Phillips CR, Jankowski M, Flemens N, Fejer MM. General framework for ultrafast nonlinear photonics: unifying single and multi-envelope treatments [Invited]. OPTICS EXPRESS 2024; 32:8284-8307. [PMID: 38439488 DOI: 10.1364/oe.513856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/20/2024] [Indexed: 03/06/2024]
Abstract
Numerical modeling of ultrashort pulse propagation is important for designing and understanding the underlying dynamical processes in devices that take advantage of highly nonlinear interactions in dispersion-engineered optical waveguides. Once the spectral bandwidth reaches an octave or more, multiple types of nonlinear polarization terms can drive individual optical frequencies. This issue is particularly prominent in χ(2) devices where all harmonics of the input pulse are generated and there can be extensive spectral overlap between them. Single-envelope approaches to pulse propagation have been developed to address these complexities; this has led to a significant mismatch between the strategies used to analyze moderate-bandwidth devices (usually involving multi-envelope models) and those used to analyze octave-spanning devices (usually involving models with one envelope per waveguide mode). Here we unify the different strategies by developing a common framework, applicable to any optical bandwidth, that allows for a side-by-side comparison between single- and multi-envelope models. We include both χ(2) and χ(3) interactions in these models, with emphasis on χ(2) interactions. We show a detailed example based on recent supercontinuum generation experiments in a thin-film LiNbO3 on sapphire quasi-phase-matching waveguide. Our simulations of this device show good agreement between single- and multi-envelope models in terms of the frequency comb properties of the electric field, even for multi-octave-spanning spectra. Building on this finding, we explore how the multi-envelope approach can be used to develop reduced models that help build physical insights about new ultrafast photonics devices enabled by modern dispersion-engineered waveguides, and discuss practical considerations for the choice of such models. More broadly, we give guidelines on the pros and cons of the different modeling strategies in the context of device design, numerical efficiency, and accuracy of the simulations.
Collapse
|
7
|
Brès CS, Della Torre A, Grassani D, Brasch V, Grillet C, Monat C. Supercontinuum in integrated photonics: generation, applications, challenges, and perspectives. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:1199-1244. [PMID: 36969949 PMCID: PMC10031268 DOI: 10.1515/nanoph-2022-0749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Frequency conversion in nonlinear materials is an extremely useful solution to the generation of new optical frequencies. Often, it is the only viable solution to realize light sources highly relevant for applications in science and industry. In particular, supercontinuum generation in waveguides, defined as the extreme spectral broadening of an input pulsed laser light, is a powerful technique to bridge distant spectral regions based on single-pass geometry, without requiring additional seed lasers or temporal synchronization. Owing to the influence of dispersion on the nonlinear broadening physics, supercontinuum generation had its breakthrough with the advent of photonic crystal fibers, which permitted an advanced control of light confinement, thereby greatly improving our understanding of the underlying phenomena responsible for supercontinuum generation. More recently, maturing in fabrication of photonic integrated waveguides has resulted in access to supercontinuum generation platforms benefiting from precise lithographic control of dispersion, high yield, compact footprint, and improved power consumption. This Review aims to present a comprehensive overview of supercontinuum generation in chip-based platforms, from underlying physics mechanisms up to the most recent and significant demonstrations. The diversity of integrated material platforms, as well as specific features of waveguides, is opening new opportunities, as will be discussed here.
Collapse
Affiliation(s)
- Camille-Sophie Brès
- Photonic Systems Laboratory (PHOSL), Ecole Polytechnique Fédérale de Lausanne, 1015Lausanne, Switzerland
| | - Alberto Della Torre
- Université de Lyon, Institut des Nanotechnologies de Lyon (INL) UMR CNRS 5270, Ecole Centrale de Lyon, 69131Ecully, France
| | - Davide Grassani
- Centre Suisse d’Electronique et de Microtechnique (CSEM), 2000Neuchâtel, Switzerland
| | | | - Christian Grillet
- Université de Lyon, Institut des Nanotechnologies de Lyon (INL) UMR CNRS 5270, Ecole Centrale de Lyon, 69131Ecully, France
| | - Christelle Monat
- Université de Lyon, Institut des Nanotechnologies de Lyon (INL) UMR CNRS 5270, Ecole Centrale de Lyon, 69131Ecully, France
| |
Collapse
|
8
|
Guo X, Ji X, Yao B, Tan T, Chu A, Westreich O, Dutt A, Wong C, Su Y. Ultra-wideband integrated photonic devices on silicon platform: from visible to mid-IR. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:167-196. [PMID: 39634860 PMCID: PMC11501867 DOI: 10.1515/nanoph-2022-0575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/02/2023] [Indexed: 12/07/2024]
Abstract
Silicon photonics has gained great success mainly due to the promise of realizing compact devices in high volume through the low-cost foundry model. It is burgeoning from laboratory research into commercial production endeavors such as datacom and telecom. However, it is unsuitable for some emerging applications which require coverage across the visible or mid infrared (mid-IR) wavelength bands. It is desirable to introduce other wideband materials through heterogeneous integration, while keeping the integration compatible with wafer-scale fabrication processes on silicon substrates. We discuss the properties of silicon-family materials including silicon, silicon nitride, and silica, and other non-group IV materials such as metal oxide, tantalum pentoxide, lithium niobate, aluminum nitride, gallium nitride, barium titanate, piezoelectric lead zirconate titanate, and 2D materials. Typical examples of devices using these materials on silicon platform are provided. We then introduce a general fabrication method and low-loss process treatment for photonic devices on the silicon platform. From an applications viewpoint, we focus on three new areas requiring integration: sensing, optical comb generation, and quantum information processing. Finally, we conclude with perspectives on how new materials and integration methods can address previously unattainable wavelength bands while maintaining the advantages of silicon, thus showing great potential for future widespread applications.
Collapse
Affiliation(s)
- Xuhan Guo
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, China
| | - Xingchen Ji
- John Hopcroft Center for Computer Science, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Baicheng Yao
- Key Laboratory of Optical Fibre Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu, China
| | - Teng Tan
- Key Laboratory of Optical Fibre Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu, China
| | - Allen Chu
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA, USA
| | - Ohad Westreich
- Applied Physics Division, Soreq NRC, Yavne 81800, Israel
| | - Avik Dutt
- Mechanical Engineering, and Institute for Physical Science and Technology, University of Maryland, College Park, USA
| | - Cheewei Wong
- Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA, USA
| | - Yikai Su
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Twayana K, Rebolledo-Salgado I, Deriushkina E, Schröder J, Karlsson M, Torres-Company V. Spectral Interferometry with Frequency Combs. MICROMACHINES 2022; 13:614. [PMID: 35457918 PMCID: PMC9026469 DOI: 10.3390/mi13040614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 02/01/2023]
Abstract
In this review paper, we provide an overview of the state of the art in linear interferometric techniques using laser frequency comb sources. Diverse techniques including Fourier transform spectroscopy, linear spectral interferometry and swept-wavelength interferometry are covered in detail. The unique features brought by laser frequency comb sources are shown, and specific applications highlighted in molecular spectroscopy, optical coherence tomography and the characterization of photonic integrated devices and components. Finally, the possibilities enabled by advances in chip scale swept sources and frequency combs are discussed.
Collapse
Affiliation(s)
- Krishna Twayana
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; (K.T.); (I.R.-S.); (E.D.); (J.S.); (M.K.)
| | - Israel Rebolledo-Salgado
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; (K.T.); (I.R.-S.); (E.D.); (J.S.); (M.K.)
- Measurement Science and Technology, RISE Research Institutes of Sweden, SE-50115 Borås, Sweden
| | - Ekaterina Deriushkina
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; (K.T.); (I.R.-S.); (E.D.); (J.S.); (M.K.)
| | - Jochen Schröder
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; (K.T.); (I.R.-S.); (E.D.); (J.S.); (M.K.)
| | - Magnus Karlsson
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; (K.T.); (I.R.-S.); (E.D.); (J.S.); (M.K.)
| | - Victor Torres-Company
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; (K.T.); (I.R.-S.); (E.D.); (J.S.); (M.K.)
| |
Collapse
|
10
|
Bernstein L, Ramier A, Wu J, Aiello VD, Béland MJ, Lin CP, Yun SH. Ultrahigh resolution spectral-domain optical coherence tomography using the 1000-1600 nm spectral band. BIOMEDICAL OPTICS EXPRESS 2022; 13:1939-1947. [PMID: 35519264 PMCID: PMC9045918 DOI: 10.1364/boe.443654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 01/10/2023]
Abstract
Ultrahigh resolution optical coherence tomography (UHR-OCT) can image microscopic features that are not visible with the standard OCT resolution of 5-15 µm. In previous studies, high-speed UHR-OCT has been accomplished within the visible (VIS) and near-infrared (NIR-I) spectral ranges, specifically within 550-950 nm. Here, we present a spectral domain UHR-OCT system operating in a short-wavelength infrared (SWIR) range from 1000 to 1600 nm using a supercontinuum light source and an InGaAs-based spectrometer. We obtained an axial resolution of 2.6 µm in air, the highest ever recorded in the SWIR window to our knowledge, with deeper penetration into tissues than VIS or NIR-I light. We demonstrate imaging of conduction fibers of the left bundle branch in freshly excised porcine hearts. These results suggest a potential for deep-penetration, ultrahigh resolution OCT in intraoperative applications.
Collapse
Affiliation(s)
- Liane Bernstein
- Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, MA 02140, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Antoine Ramier
- Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, MA 02140, USA
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jiamin Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, MA 02140, USA
- Department of Automation, Tsinghua University, Beijing 100084, China
- Institute for Brain and Cognitive Science, Tsinghua University, Beijing 100084, China
| | - Vera D. Aiello
- Laboratory of Pathology, Heart Institute, University of São Paulo Medical School, São Paulo, Brazil
| | - Marie J. Béland
- Division of Pediatric Cardiology, The Montreal Children’s Hospital of the McGill University Health Centre, Montréal, Quebec, Canada
| | - Charles P. Lin
- Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, MA 02140, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Seok-Hyun Yun
- Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, MA 02140, USA
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Fan Y, Ma Q, Li M, Luan D, Kang H. Quantitative investigation of laser ablation based on real-time temperature variations and OCT images for laser treatment applications. Lasers Surg Med 2021; 54:459-473. [PMID: 34779006 DOI: 10.1002/lsm.23491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/03/2021] [Accepted: 11/01/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Lasers are widely employed in clinical applications. In vivo monitoring of real-time information about different-wavelength laser surgeries would provide important surgical feedback for surgeons or clinical therapy instruments. However, the quantitative effect of laser ablation or vaporization still needs to be further explored and investigated. Here, we investigate and quantitatively evaluate the ablation variations and morphological changes of two laser ablation models: point- and sweeping-based models. METHODS An infrared thermal imager was used to monitor the temperature variations, and curve fitting was used to build the relationship between the laser radiation duration/sweeping speed and quantitative parameters of the ablated areas. Optical coherence tomography (OCT) images were used to visualize the inner structure and evaluate the depth of the ablated craters. Optical attenuation coefficients (OACs) were computed to characterize the normal and ablated tissues. RESULTS The results demonstrated that there was a good linear relationship between radiation duration and temperature variation. Similarly, a linear relationship was observed between the sweeping speed and quantitative parameters of craters or scratches (width and depth). The mean OAC of normal tissues was significantly distinguished from the mean OACs of the ablated craters or scratches. CONCLUSION Laser ablation was investigated based on a quantitative parameter analysis, thermal detection, and OCT imaging, and the results successfully demonstrated that there is a linear relationship between the laser parameters and quantitative parameters of the ablated tissues under the current settings. Such technology could be used to provide quantitative solutions for exploring the laser-tissue biological effect and improve the performance of medical image-guided laser ablation in the future.
Collapse
Affiliation(s)
- Yingwei Fan
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Qiong Ma
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Mengsha Li
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Dian Luan
- Beijing Institute of Radiation Medicine, Beijing, China
| | | |
Collapse
|