1
|
Gorjão N, Borowski LS, Szczesny RJ, Graczyk D. POLR1D, a shared subunit of RNA polymerase I and III, modulates mTORC1 activity. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119957. [PMID: 40222657 DOI: 10.1016/j.bbamcr.2025.119957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/21/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a crucial nutrient sensor and a major regulator of cell growth and proliferation. While mTORC1 activity is frequently upregulated in cancer, the mechanisms regulating mTORC1 are not fully understood. POLR1D, a shared subunit of RNA polymerases I and III, is often upregulated in colorectal cancer (CRC) and mutated in Treacher-Collins syndrome. POLR1D, together with its binding partner POLR1C, forms a dimer that is believed to initiate the assembly of the multisubunit RNA polymerases I and III. Our data reveal an unexpected link between POLR1D and mTORC1 signalling. We found that the overproduction of POLR1D in human cells stimulates mTORC1 activity. In contrast, the downregulation of POLR1D leads to the repression of the mTORC1 pathway. Additionally, we demonstrate that a pool of POLR1D localises to the cytoplasm and interacts with the mTORC1 regulator RAGA and RAPTOR. Furthermore, POLR1D enhances the interaction between RAPTOR and RAGA and sustains mTORC1 activity under starvation conditions. We have identified a novel role for the RNA polymerase I/III subunit POLR1D in regulating mTORC1 signalling. Our findings suggest the existence of a new node in the already complex mTORC1 signalling network, where POLR1D functions to convey the cell's internal status, namely polymerase assembly, to this kinase.
Collapse
Affiliation(s)
- Neuton Gorjão
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Lukasz S Borowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland; University of Warsaw, Faculty of Biology, Institute of Genetics and Biotechnology, ul. Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Roman J Szczesny
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Damian Graczyk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, ul. Pawińskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
2
|
Tan R, Zhang Y, Huang M, Chen H, Liu Z, Wang Z, Li X, Wang T, Wang Z. EV-D68 cleaves LARP1 and PABPC1 by 3Cpro to redirect host mRNA translation machinery toward its genomic RNA. PLoS Pathog 2025; 21:e1013098. [PMID: 40294010 PMCID: PMC12036898 DOI: 10.1371/journal.ppat.1013098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/03/2025] [Indexed: 04/30/2025] Open
Abstract
Enterovirus D68 (EV-D68) is an emerging pathogen associated with severe respiratory diseases and neurological complications, such as acute flaccid myelitis. EV-D68 has developed sophisticated mechanisms to hijack host translation machinery, facilitating its replication and impairing host mRNA translation. In this study, we demonstrate that EV-D68 cleaves La-related protein 1 (LARP1) and poly(A)-binding protein cytoplasmic 1 (PABPC1) through its proteases 3Cpro and 2Apro. Our results indicate that overexpressing LARP1 and PABPC1 significantly inhibits EV-D68 replication and reduces the virus-mediated suppression of host translation. While both LARP1 and PABPC1 regulate translation, they exert antiviral effects through distinct mechanisms. We found that LARP1 interacts with the 5'UTR of EV-D68 RNA through its LAM domain, and this interaction is crucial for its antiviral function. LARP1 translation modulation is also influenced by the mTOR and CDK1 signaling pathways. Viral infection inhibits mTOR and CDK1 phosphorylation, which enhances LARP1's binding to viral RNA and inhibits viral translation. To counteract this inhibition, EV-D68 cleaves LARP1 through 3Cpro, thereby promoting efficient viral translation. We also investigated other enteroviruses, such as EV-A71 and CV-A16, which similarly target LARP1 and PABPC1, indicating a conserved mechanism across enteroviruses. Our findings offer new insights into how EV-D68 manipulates host translation and highlight the potential of targeting LARP1 and PABPC1 for antiviral interventions.
Collapse
Affiliation(s)
- Ruyang Tan
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Yuling Zhang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Mengqian Huang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Honghua Chen
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zixiang Liu
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Zining Wang
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Xiaoyan Li
- Tianjin Centers for Disease Control and Prevention, Tianjin, China
| | - Tao Wang
- School of Life Sciences, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Pathogenic Microbiology of Infectious Disease, Tianjin, China
| | - Zhiyun Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Razumova E, Makariuk A, Dontsova O, Shepelev N, Rubtsova M. Structural Features of 5' Untranslated Region in Translational Control of Eukaryotes. Int J Mol Sci 2025; 26:1979. [PMID: 40076602 PMCID: PMC11900008 DOI: 10.3390/ijms26051979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Gene expression is a complex process regulated at multiple levels in eukaryotic cells. Translation frequently represents a pivotal step in the control of gene expression. Among the stages of translation, initiation is particularly important, as it governs ribosome recruitment and the efficiency of protein synthesis. The 5' untranslated region (5' UTR) of mRNA plays a key role in this process, often exhibiting a complicated and structured landscape. Numerous eukaryotic mRNAs possess long 5' UTRs that contain diverse regulatory elements, including RNA secondary structures, specific nucleotide motifs, and chemical modifications. These structural features can independently modulate translation through their intrinsic properties or by serving as platforms for trans-acting factors such as RNA-binding proteins. The dynamic nature of 5' UTR elements allows cells to fine-tune translation in response to environmental and cellular signals. Understanding these mechanisms is not only fundamental to molecular biology but also holds significant biomedical potential. Insights into 5' UTR-mediated regulation could drive advancements in synthetic biology and mRNA-based targeted therapies. This review outlines the current knowledge of the structural elements of the 5' UTR, the interplay between them, and their combined functional impact on translation.
Collapse
Affiliation(s)
- Elizaveta Razumova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (E.R.); (O.D.); (N.S.)
| | - Aleksandr Makariuk
- Department of Biology, Lomonosov Moscow State University, Moscow 119234, Russia;
| | - Olga Dontsova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (E.R.); (O.D.); (N.S.)
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia
| | - Nikita Shepelev
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (E.R.); (O.D.); (N.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
| | - Maria Rubtsova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (E.R.); (O.D.); (N.S.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
| |
Collapse
|
4
|
Saba JA, Huang Z, Schole KL, Ye X, Bhatt SD, Li Y, Timp W, Cheng J, Green R. LARP1 binds ribosomes and TOP mRNAs in repressed complexes. EMBO J 2024; 43:6555-6572. [PMID: 39533057 PMCID: PMC11649897 DOI: 10.1038/s44318-024-00294-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Terminal oligopyrimidine motif-containing mRNAs (TOPs) encode all ribosomal proteins in mammals and are regulated to tune ribosome synthesis to cell state. Previous studies have implicated LARP1 in 40S- or 80S-ribosome complexes that are thought to repress and stabilize TOPs. However, a molecular understanding of how LARP1 and TOPs interact with these ribosome complexes is lacking. Here, we show that LARP1 directly binds non-translating ribosomal subunits. Cryo-EM structures reveal a previously uncharacterized domain of LARP1 bound to and occluding the mRNA channel of the 40S subunit. Increased availability of free ribosomal subunits downstream of various stresses promote 60S joining at the same interface to form LARP1-80S complexes. Simultaneously, LARP1 engages the TOP via its previously characterized La/PAM2 and DM15 domains. Contrary to expectations, ribosome binding within these complexes is not required for LARP1-mediated TOP repression or stabilization, two canonical LARP1 functions. Together, this work provides molecular insight into how LARP1 directly binds ribosomal subunits and challenges existing models describing the function of repressed LARP1-40S/80S-TOP complexes.
Collapse
Affiliation(s)
- James A Saba
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Zixuan Huang
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Dong'an Road 131, 200032, Shanghai, China
| | - Kate L Schole
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xianwen Ye
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Dong'an Road 131, 200032, Shanghai, China
| | - Shrey D Bhatt
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yi Li
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Dong'an Road 131, 200032, Shanghai, China
| | - Winston Timp
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jingdong Cheng
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Dong'an Road 131, 200032, Shanghai, China.
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Erath J, Kemper D, Mugo E, Jacoby A, Valenzuela E, Jungers CF, Beatty WL, Hashem Y, Jovanovic M, Djuranovic S, Djuranovic SP. A rapid, facile, and economical method for the isolation of ribosomes and translational machinery for structural and functional studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619433. [PMID: 39484553 PMCID: PMC11526893 DOI: 10.1101/2024.10.21.619433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Ribosomes are macromolecular RNA-protein complexes that constitute the central machinery responsible for protein synthesis and quality control in the cell. Ribosomes also serve as a hub for multiple non-ribosomal proteins and RNAs that control protein synthesis. However, the purification of ribosomes and associated factors for functional and structural studies requires a large amount of starting biological material and a tedious workflow. Current methods are challenging as they combine ultracentrifugation, the use of sucrose cushions or gradients, expensive equipment, and multiple hours to days of work. Here, we present a rapid, facile, and cost-effective method to isolate ribosomes from in vivo or in vitro samples for functional and structural studies using single-step enrichment on magnetic beads - RAPPL (RNA Affinity Purification using Poly-Lysine). Using mass spectrometry and western blot analyses, we show that poly-lysine coated beads incubated with E. coli and HEK-293 cell lysates enrich specifically for ribosomes and ribosome-associated factors. We demonstrate the ability of RAPPL to isolate ribosomes and translation-associated factors from limited material quantities, as well as a wide variety of biological samples: cell lysates, cells, organs, and whole organisms. Using RAPPL, we characterized and visualized the different effects of various drugs and translation inhibitors on protein synthesis. Our method is compatible with traditional ribosome isolation. It can be used to purify specific complexes from fractions of sucrose gradients or in tandem affinity purifications for ribosome-associated factors. Ribosomes isolated using RAPPL are functionally active and can be used for rapid screening and in vitro characterization of ribosome antibiotic resistance. Lastly, we demonstrate the structural applications of RAPPL by purifying and solving the 2.7Å cryo-EM structure of ribosomes from the Cryptococcus neoformans, an encapsulated yeast causing cryptococcosis. Ribosomes and translational machinery purified with this method are suitable for subsequent functional or structural analyses and provide a solid foundation for researchers to carry out further applications - academic, clinical, or industrial - on ribosomes.
Collapse
Affiliation(s)
- Jessey Erath
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Danielle Kemper
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Elisha Mugo
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Alex Jacoby
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
| | | | - Courtney F. Jungers
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Wandy L. Beatty
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Yaser Hashem
- INSERM U1212 Acides nucléiques: Régulations Naturelle et Artificielle (ARNA), Institut Européen de Chimie et Biologie, Université de Bordeaux, Pessac 33607, France
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, USA
| | | |
Collapse
|
6
|
Paris JR, Nitta Fernandes FA, Pirri F, Greco S, Gerdol M, Pallavicini A, Benoiste M, Cornec C, Zane L, Haas B, Le Bohec C, Trucchi E. Gene Expression Shifts in Emperor Penguin Adaptation to the Extreme Antarctic Environment. Mol Ecol 2024:e17552. [PMID: 39415606 DOI: 10.1111/mec.17552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Gene expression can accelerate ecological divergence by rapidly tweaking the response of an organism to novel environments, with more divergent environments exerting stronger selection and supposedly, requiring faster adaptive responses. Organisms adapted to extreme environments provide ideal systems to test this hypothesis, particularly when compared to related species with milder ecological niches. The Emperor penguin (Aptenodytes forsteri) is the only endothermic vertebrate breeding in the harsh Antarctic winter, in stark contrast with the less cold-adapted sister species, the King penguin (A. patagonicus). Assembling the first de novo transcriptomes and analysing multi-tissue (brain, kidney, liver, muscle, skin) RNA-Seq data from natural populations of both species, we quantified the shifts in tissue-enhanced genes, co-expression gene networks, and differentially expressed genes characterising Emperor penguin adaptation to the extreme Antarctic. Our analyses revealed the crucial role played by muscle and liver in temperature homeostasis, fasting, and whole-body energy metabolism (glucose/insulin regulation, lipid metabolism, fatty acid beta-oxidation, and blood coagulation). Repatterning at the regulatory level appears as more important in the brain of the Emperor penguin, showing the lowest signature of differential gene expression, but the largest co-expression gene network shift. Nevertheless, over-expressed genes related to mTOR signalling in the brain and the liver support their central role in cold and fasting responses. Besides contributing to understanding the genetics underlying complex traits, like body energy reservoir management, our results provide a first insight into the role of gene expression in adaptation to one of the most extreme environmental conditions endured by an endotherm.
Collapse
Affiliation(s)
- Josephine R Paris
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Flávia A Nitta Fernandes
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Federica Pirri
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
- Department of Biology, University of Padova, Padova, Italy
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Marine Benoiste
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
| | - Clément Cornec
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- ENES Bioacoustics Research Laboratory, CRNL, CNRS, Inserm, University of Lyon, Saint-Etienne, France
| | - Lorenzo Zane
- Department of Biology, University of Padova, Padova, Italy
| | - Brian Haas
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Céline Le Bohec
- Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
- Département de Biologie Polaire, Centre Scientifique de Monaco, Monaco, Monaco
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
7
|
Fuentes P, Pelletier J, Gentilella A. Decoding ribosome complexity: role of ribosomal proteins in cancer and disease. NAR Cancer 2024; 6:zcae032. [PMID: 39045153 PMCID: PMC11263879 DOI: 10.1093/narcan/zcae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024] Open
Abstract
The ribosome is a remarkably complex machinery, at the interface with diverse cellular functions and processes. Evolutionarily conserved, yet intricately regulated, ribosomes play pivotal roles in decoding genetic information into the synthesis of proteins and in the generation of biomass critical for cellular physiological functions. Recent insights have revealed the existence of ribosome heterogeneity at multiple levels. Such heterogeneity extends to cancer, where aberrant ribosome biogenesis and function contribute to oncogenesis. This led to the emergence of the concept of 'onco-ribosomes', specific ribosomal variants with altered structural dynamics, contributing to cancer initiation and progression. Ribosomal proteins (RPs) are involved in many of these alterations, acting as critical factors for the translational reprogramming of cancer cells. In this review article, we highlight the roles of RPs in ribosome biogenesis, how mutations in RPs and their paralogues reshape the translational landscape, driving clonal evolution and therapeutic resistance. Furthermore, we present recent evidence providing new insights into post-translational modifications of RPs, such as ubiquitylation, UFMylation and phosphorylation, and how they regulate ribosome recycling, translational fidelity and cellular stress responses. Understanding the intricate interplay between ribosome complexity, heterogeneity and RP-mediated regulatory mechanisms in pathology offers profound insights into cancer biology and unveils novel therapeutic avenues targeting the translational machinery in cancer.
Collapse
Affiliation(s)
- Pedro Fuentes
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
| | - Joffrey Pelletier
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08908, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Antonio Gentilella
- Laboratory of Cancer Metabolism, ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), 08908, L'Hospitalet de Llpbregat, Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
8
|
Hochstoeger T, Papasaikas P, Piskadlo E, Chao JA. Distinct roles of LARP1 and 4EBP1/2 in regulating translation and stability of 5'TOP mRNAs. SCIENCE ADVANCES 2024; 10:eadi7830. [PMID: 38363833 PMCID: PMC10871529 DOI: 10.1126/sciadv.adi7830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
A central mechanism of mTOR complex 1 (mTORC1) signaling is the coordinated translation of ribosomal protein and translation factor mRNAs mediated by the 5'-terminal oligopyrimidine motif (5'TOP). Recently, La-related protein 1 (LARP1) was proposed to be the specific regulator of 5'TOP mRNA translation downstream of mTORC1, while eIF4E-binding proteins (4EBP1/2) were suggested to have a general role in translational repression of all transcripts. Here, we use single-molecule translation site imaging of 5'TOP and canonical mRNAs to study the translation of single mRNAs in living cells. Our data reveal that 4EBP1/2 has a dominant role in repression of translation of both 5'TOP and canonical mRNAs during pharmacological inhibition of mTOR. In contrast, we find that LARP1 selectively protects 5'TOP mRNAs from degradation in a transcriptome-wide analysis of mRNA half-lives. Our results clarify the roles of 4EBP1/2 and LARP1 in regulating 5'TOP mRNAs and provide a framework to further study how these factors control cell growth during development and disease.
Collapse
Affiliation(s)
- Tobias Hochstoeger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- University of Basel, 4003 Basel, Switzerland
| | | | - Ewa Piskadlo
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Jeffrey A. Chao
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| |
Collapse
|
9
|
Hochstoeger T, Chao JA. Towards a molecular understanding of the 5'TOP motif in regulating translation of ribosomal mRNAs. Semin Cell Dev Biol 2024; 154:99-104. [PMID: 37316417 DOI: 10.1016/j.semcdb.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 04/14/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Vertebrate cells have evolved a simple, yet elegant, mechanism for coordinated regulation of ribosome biogenesis mediated by the 5' terminal oligopyrimidine motif (5'TOP). This motif allows cells to rapidly adapt to changes in the environment by specifically modulating translation rate of mRNAs encoding the translation machinery. Here, we provide an overview of the origin of this motif, its characterization, and progress in identifying the key regulatory factors involved. We highlight challenges in the field of 5'TOP research, and discuss future approaches that we think will be able to resolve outstanding questions.
Collapse
Affiliation(s)
- Tobias Hochstoeger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
10
|
Kozlov G, Jiang J, Rutherford T, Noronha AM, Wilds CJ, Gehring K. Enhanced binding of guanylated poly(A) RNA by the LaM domain of LARP1. RNA Biol 2024; 21:7-16. [PMID: 39016322 PMCID: PMC11259064 DOI: 10.1080/15476286.2024.2379121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
La-related proteins (LARPs) are a family of RNA-binding proteins that share a conserved La motif (LaM) domain. LARP1 plays a role in regulating ribosomal protein synthesis and stabilizing mRNAs and has a unique structure without an RNA binding RRM domain adjoining the LaM domain. In this study, we investigated the physical basis for LARP1 specificity for poly(A) sequences and observed an unexpected bias for sequences with single guanines. Multiple guanine substitutions did not increase the affinity, demonstrating preferential recognition of singly guanylated sequences. We also observed that the cyclic di-nucleotides in the cCAS/STING pathway, cyclic-di-GMP and 3',3'-cGAMP, bound with sub-micromolar affinity. Isothermal titration measurements were complemented by high-resolution crystal structures of the LARP1 LaM with six different RNA ligands, including two stereoisomers of a phosphorothioate linkage. The selectivity for singly substituted poly(A) sequences suggests LARP1 may play a role in the stabilizing effect of poly(A) tail guanylation. [Figure: see text].
Collapse
Affiliation(s)
- Guennadi Kozlov
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| | - Jianning Jiang
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| | - Tyler Rutherford
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Quebec, Canada
| | - Anne M. Noronha
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Quebec, Canada
| | - Christopher J. Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Quebec, Canada
| | - Kalle Gehring
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
- Centre de recherche en biologie structurale, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
11
|
Saba JA, Huang Z, Schole KL, Ye X, Bhatt SD, Li Y, Timp W, Cheng J, Green R. LARP1 senses free ribosomes to coordinate supply and demand of ribosomal proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565189. [PMID: 37961604 PMCID: PMC10635049 DOI: 10.1101/2023.11.01.565189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Terminal oligopyrimidine motif-containing mRNAs (TOPs) encode all ribosomal proteins in mammals and are regulated to tune ribosome synthesis to cell state. Previous studies implicate LARP1 in 40S- or 80S-ribosome complexes that repress and stabilize TOPs. However, a mechanistic understanding of how LARP1 and TOPs interact with these complexes to coordinate TOP outcomes is lacking. Here, we show that LARP1 senses the cellular supply of ribosomes by directly binding non-translating ribosomal subunits. Cryo-EM structures reveal a previously uncharacterized domain of LARP1 bound to and occluding the 40S mRNA channel. Free cytosolic ribosomes induce sequestration of TOPs in repressed 80S-LARP1-TOP complexes independent of alterations in mTOR signaling. Together, this work demonstrates a general ribosome-sensing function of LARP1 that allows it to tune ribosome protein synthesis to cellular demand.
Collapse
Affiliation(s)
- James A. Saba
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- These authors contributed equally
| | - Zixuan Huang
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Dong’an Road 131, 200032, Shanghai, China
- These authors contributed equally
| | - Kate L. Schole
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xianwen Ye
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Dong’an Road 131, 200032, Shanghai, China
| | - Shrey D. Bhatt
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yi Li
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Dong’an Road 131, 200032, Shanghai, China
| | - Winston Timp
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jingdong Cheng
- Minhang Hospital & Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Fudan University, Dong’an Road 131, 200032, Shanghai, China
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Ma J, Sun L, Gao W, Li Y, Dong D. RNA binding protein: coordinated expression between the nuclear and mitochondrial genomes in tumors. J Transl Med 2023; 21:512. [PMID: 37507746 PMCID: PMC10386658 DOI: 10.1186/s12967-023-04373-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Mitochondria are the only organelles regulated by two genomes. The coordinated translation of nuclear DNA (nDNA) and mitochondrial DNA (mtDNA), which together co-encode the subunits of the oxidative phosphorylation (OXPHOS) complex, is critical for determining the metabolic plasticity of tumor cells. RNA-binding protein (RBP) is a post-transcriptional regulatory factor that plays a pivotal role in determining the fate of mRNA. RBP rapidly and effectively reshapes the mitochondrial proteome in response to intracellular and extracellular stressors, mediating the cytoplasmic and mitochondrial translation balance to adjust mitochondrial respiratory capacity and provide energy for tumor cells to adapt to different environmental pressures and growth needs. This review highlights the ability of RBPs to use liquid-liquid phase separation (LLPS) as a platform for translation regulation, integrating nuclear-mitochondrial positive and retrograde signals to coordinate cross-department translation, reshape mitochondrial energy metabolism, and promote the development and survival of tumor cells.
Collapse
Affiliation(s)
- Jiaoyan Ma
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Weinan Gao
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Yang Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Delu Dong
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
13
|
Wolin E, Guo JK, Blanco MR, Perez AA, Goronzy IN, Abdou AA, Gorhe D, Guttman M, Jovanovic M. SPIDR: a highly multiplexed method for mapping RNA-protein interactions uncovers a potential mechanism for selective translational suppression upon cellular stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543769. [PMID: 37333139 PMCID: PMC10274648 DOI: 10.1101/2023.06.05.543769] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
RNA binding proteins (RBPs) play crucial roles in regulating every stage of the mRNA life cycle and mediating non-coding RNA functions. Despite their importance, the specific roles of most RBPs remain unexplored because we do not know what specific RNAs most RBPs bind. Current methods, such as crosslinking and immunoprecipitation followed by sequencing (CLIP-seq), have expanded our knowledge of RBP-RNA interactions but are generally limited by their ability to map only one RBP at a time. To address this limitation, we developed SPIDR (Split and Pool Identification of RBP targets), a massively multiplexed method to simultaneously profile global RNA binding sites of dozens to hundreds of RBPs in a single experiment. SPIDR employs split-pool barcoding coupled with antibody-bead barcoding to increase the throughput of current CLIP methods by two orders of magnitude. SPIDR reliably identifies precise, single-nucleotide RNA binding sites for diverse classes of RBPs simultaneously. Using SPIDR, we explored changes in RBP binding upon mTOR inhibition and identified that 4EBP1 acts as a dynamic RBP that selectively binds to 5'-untranslated regions of specific translationally repressed mRNAs only upon mTOR inhibition. This observation provides a potential mechanism to explain the specificity of translational regulation controlled by mTOR signaling. SPIDR has the potential to revolutionize our understanding of RNA biology and both transcriptional and post-transcriptional gene regulation by enabling rapid, de novo discovery of RNA-protein interactions at an unprecedented scale.
Collapse
Affiliation(s)
- Erica Wolin
- Department of Biological Sciences, Columbia University, New York City, New York 10027, USA
| | - Jimmy K. Guo
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Mario R. Blanco
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Andrew A. Perez
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Isabel N. Goronzy
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Ahmed A. Abdou
- Department of Biological Sciences, Columbia University, New York City, New York 10027, USA
| | - Darvesh Gorhe
- Department of Biological Sciences, Columbia University, New York City, New York 10027, USA
| | - Mitchell Guttman
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena CA 91125, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York City, New York 10027, USA
| |
Collapse
|
14
|
Turner M. Regulation and function of poised mRNAs in lymphocytes. Bioessays 2023; 45:e2200236. [PMID: 37009769 DOI: 10.1002/bies.202200236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 04/04/2023]
Abstract
Pre-existing but untranslated or 'poised' mRNA exists as a means to rapidly induce the production of specific proteins in response to stimuli and as a safeguard to limit the actions of these proteins. The translation of poised mRNA enables immune cells to express quickly genes that enhance immune responses. The molecular mechanisms that repress the translation of poised mRNA and, upon stimulation, enable translation have yet to be elucidated. They likely reflect intrinsic properties of the mRNAs and their interactions with trans-acting factors that direct poised mRNAs away from or into the ribosome. Here, I discuss mechanisms by which this might be regulated.
Collapse
Affiliation(s)
- Martin Turner
- Immunology Programme, The Babraham Institute, Cambridge, UK
| |
Collapse
|
15
|
van den Elzen AMG, Watson MJ, Thoreen CC. mRNA 5' terminal sequences drive 200-fold differences in expression through effects on synthesis, translation and decay. PLoS Genet 2022; 18:e1010532. [PMID: 36441824 PMCID: PMC9731452 DOI: 10.1371/journal.pgen.1010532] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/08/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
mRNA regulatory sequences control gene expression at multiple levels including translation initiation and mRNA decay. The 5' terminal sequences of mRNAs have unique regulatory potential because of their proximity to key post-transcriptional regulators. Here we have systematically probed the function of 5' terminal sequences in gene expression in human cells. Using a library of reporter mRNAs initiating with all possible 7-mer sequences at their 5' ends, we find an unexpected impact on transcription that underlies 200-fold differences in mRNA expression. Library sequences that promote high levels of transcription mirrored those found in native mRNAs and define two basic classes with similarities to classic Initiator (Inr) and TCT core promoter motifs. By comparing transcription, translation and decay rates, we identify sequences that are optimized for both efficient transcription and growth-regulated translation and stability, including variants of terminal oligopyrimidine (TOP) motifs. We further show that 5' sequences of endogenous mRNAs are enriched for multi-functional TCT/TOP hybrid sequences. Together, our results reveal how 5' sequences define two general classes of mRNAs with distinct growth-responsive profiles of expression across synthesis, translation and decay.
Collapse
Affiliation(s)
- Antonia M. G. van den Elzen
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Maegan J. Watson
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Carson C. Thoreen
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
16
|
mTOR- and LARP1-dependent regulation of TOP mRNA poly(A) tail and ribosome loading. Cell Rep 2022; 41:111548. [DOI: 10.1016/j.celrep.2022.111548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 11/20/2022] Open
|
17
|
Schneider C, Erhard F, Binotti B, Buchberger A, Vogel J, Fischer U. An unusual mode of baseline translation adjusts cellular protein synthesis capacity to metabolic needs. Cell Rep 2022; 41:111467. [DOI: 10.1016/j.celrep.2022.111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/14/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
|