1
|
Scherf M, Lammer H, Spross L. Eta-Earth Revisited II: Deriving a Maximum Number of Earth-Like Habitats in the Galactic Disk. ASTROBIOLOGY 2024; 24:e916-e1061. [PMID: 39481023 DOI: 10.1089/ast.2023.0076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
In Lammer et al. (2024), we defined Earth-like habitats (EHs) as rocky exoplanets within the habitable zone of complex life (HZCL) on which Earth-like N2-O2-dominated atmospheres with minor amounts of CO2 can exist, and derived a formulation for estimating the maximum number of EHs in the galaxy given realistic probabilistic requirements that have to be met for an EH to evolve. In this study, we apply this formulation to the galactic disk by considering only requirements that are already scientifically quantifiable. By implementing literature models for star formation rate, initial mass function, and the mass distribution of the Milky Way, we calculate the spatial distribution of disk stars as functions of stellar mass and birth age. For the stellar part of our formulation, we apply existing models for the galactic habitable zone and evaluate the thermal stability of nitrogen-dominated atmospheres with different CO2 mixing ratios inside the HZCL by implementing the newest stellar evolution and upper atmosphere models. For the planetary part, we include the frequency of rocky exoplanets, the availability of surface water and subaerial land, and the potential requirement of hosting a large moon by evaluating their importance and implementing these criteria from minima to maxima values as found in the scientific literature. We also discuss further factors that are not yet scientifically quantifiable but may be requirements for EHs to evolve. Based on such an approach, we find that EHs are relatively rare by obtaining plausible maximum numbers of 2.5 - 2.4 + 71.6 × 10 5 and 0.6 - 0.59 + 27.1 × 10 5 planets that can potentially host N2-O2-dominated atmospheres with maximum CO2 mixing ratios of 10% and 1%, respectively, implying that, on average, a minimum of ∼ 10 3 - 10 6 rocky exoplanets in the HZCL are needed for 1 EH to evolve. The actual number of EHs, however, may be substantially lower than our maximum ranges since several requirements with unknown occurrence rates are not included in our model (e.g., the origin of life, working carbon-silicate and nitrogen cycles); this also implies extraterrestrial intelligence (ETI) to be significantly rarer still. Our results illustrate that not every star can host EHs nor can each rocky exoplanet within the HZCL evolve such that it might be able to host complex animal-like life or even ETIs. The Copernican Principle of Mediocrity therefore cannot be applied to infer that such life will be common in the galaxy.
Collapse
Affiliation(s)
- Manuel Scherf
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| | - Helmut Lammer
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
| | - Laurenz Spross
- Space Research Institute, Austrian Academy of Sciences, Graz Austria
- IGAM/Institute of Physics, University of Graz, Graz, Austria
| |
Collapse
|
2
|
Tocci D, Ducai T, Stoute CAB, Hopkins G, Sabbir MG, Beheshti A, Albensi BC. "Monitoring inflammatory, immune system mediators, and mitochondrial changes related to brain metabolism during space flight". Front Immunol 2024; 15:1422864. [PMID: 39411717 PMCID: PMC11473291 DOI: 10.3389/fimmu.2024.1422864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/06/2024] [Indexed: 10/19/2024] Open
Abstract
The possibility of impaired cognitive function during deep space flight missions or while living on a Martian colony is a critical point of concern and pleads for further research. In addition, a fundamental gap exists both in our understanding and application of countermeasures for the consequences of long duration space travel and/or living in an extreme environment such as on the Moon or Mars. Previous studies, while heavily analyzing pre- and post-flight conditions, mostly fail to appreciate the cognitive stressors associated with space radiation, microgravity, confinement, hostile or closed environments, and the long distances from earth. A specific understanding of factors that affect cognition as well as structural and/or physiological changes in the brains of those on a space mission in addition to new countermeasures should result in improved health of our astronauts and reduce risks. At the core of cognitive changes are mechanisms we typically associate with aging, such as inflammatory responses, changes in brain metabolism, depression, and memory impairments. In fact, space flight appears to accelerate aging. In this review, we will discuss the importance of monitoring inflammatory and immune system mediators such as nuclear factor kappa B (NF-κB), and mitochondrial changes related to brain metabolism. We conclude with our recommended countermeasures that include pharmacological, metabolic, and nutritional considerations for the risks on cognition during space missions.
Collapse
Affiliation(s)
- Darcy Tocci
- Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Tomas Ducai
- Center for Molecular Biology, University of Vienna, Vienna, Austria
| | | | - Gabrielle Hopkins
- Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Mohammad G. Sabbir
- College of Psychology, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Afshin Beheshti
- McGowan Institute for Regenerative Medicine - Center for Space Biomedicine, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
- Broad Institute, Cambridge, MA, United States
| | - Benedict C. Albensi
- Barry & Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, United States
- Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
- Division of Neurodegenerative Disorders, St. Boniface Hospital Research, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Kobayashi K, Ise JI, Aoki R, Kinoshita M, Naito K, Udo T, Kunwar B, Takahashi JI, Shibata H, Mita H, Fukuda H, Oguri Y, Kawamura K, Kebukawa Y, Airapetian VS. Formation of Amino Acids and Carboxylic Acids in Weakly Reducing Planetary Atmospheres by Solar Energetic Particles from the Young Sun. Life (Basel) 2023; 13:1103. [PMID: 37240748 PMCID: PMC10221653 DOI: 10.3390/life13051103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
Life most likely started during the Hadean Eon; however, the environmental conditions which contributed to the complexity of its chemistry are poorly known. A better understanding of various environmental conditions, including global (heliospheric) and local (atmospheric, surface, and oceanic), along with the internal dynamic conditions of the early Earth, are required to understand the onset of abiogenesis. Herein, we examine the contributions of galactic cosmic rays (GCRs) and solar energetic particles (SEPs) associated with superflares from the young Sun to the formation of amino acids and carboxylic acids in weakly reduced gas mixtures representing the early Earth's atmosphere. We also compare the products with those introduced by lightning events and solar ultraviolet light (UV). In a series of laboratory experiments, we detected and characterized the formation of amino acids and carboxylic acids via proton irradiation of a mixture of carbon dioxide, methane, nitrogen, and water in various mixing ratios. These experiments show the detection of amino acids after acid hydrolysis when 0.5% (v/v) of initial methane was introduced to the gas mixture. In the set of experiments with spark discharges (simulation of lightning flashes) performed for the same gas mixture, we found that at least 15% methane was required to detect the formation of amino acids, and no amino acids were detected in experiments via UV irradiation, even when 50% methane was used. Carboxylic acids were formed in non-reducing gas mixtures (0% methane) by proton irradiation and spark discharges. Hence, we suggest that GCRs and SEP events from the young Sun represent the most effective energy sources for the prebiotic formation of biologically important organic compounds from weakly reducing atmospheres. Since the energy flux of space weather, which generated frequent SEPs from the young Sun in the first 600 million years after the birth of the solar system, was expected to be much greater than that of GCRs, we conclude that SEP-driven energetic protons are the most promising energy sources for the prebiotic production of bioorganic compounds in the atmosphere of the Hadean Earth.
Collapse
Affiliation(s)
- Kensei Kobayashi
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Jun-ichi Ise
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Ryohei Aoki
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Miei Kinoshita
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Koki Naito
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Takumi Udo
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Bhagawati Kunwar
- Chubu Institute of Advanced Studies, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501, Japan
| | - Jun-ichi Takahashi
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Hiromi Shibata
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Ibaraki 567-0047, Japan
| | - Hajime Mita
- Department of Life, Environment and Applied Chemistry, Faculty of Engineering, Fukuoka Institute of Technology, Fukuoka 811-0295, Japan
| | - Hitoshi Fukuda
- Open Facility Center, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Yoshiyuki Oguri
- Institute of Innovative Research, Tokyo Institute of Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Kimitaka Kawamura
- Chubu Institute of Advanced Studies, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501, Japan
| | - Yoko Kebukawa
- Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Vladimir S. Airapetian
- NASA Goddard Space Flight Center/Sellers Exoplanetary Environments Collaboration, Greenbelt, MD 20771, USA
- Department of Physics, American University, Washington, DC 20016, USA
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|