1
|
Chen Q, Liu H, Giuliani A, Doucet LS, Johnson TE, Zhang L, Sun W. Global mantle perturbations following the onset of modern plate tectonics. SCIENCE ADVANCES 2024; 10:eadq7476. [PMID: 39413194 PMCID: PMC11482301 DOI: 10.1126/sciadv.adq7476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
Plate tectonics drives the compositional diversity of Earth's convecting mantle through subduction of lithosphere. In this context, the role of evolving global geodynamics and plate (re)organization on the spatial and temporal distribution of compositional heterogeneities in the convecting mantle is poorly understood. Here, using the geochemical compositions of intracontinental basalts formed over the past billion years, we show that intracontinental basalts with subchondritic initial neodymium-144/neodymium-143 values become common only after 300 million years, broadly coeval with the global appearance of kimberlites with geochemically enriched isotopic signatures. These step changes in the sources of intraplate magmatism stem from a rapid increase in the supply of deeply subducted lithosphere during the protracted formation of Pangea following the widespread onset of "modern" (cold and deep) subduction in the late Neoproterozoic. We argue that the delay (~300 million years) in the appearance of enriched intraplate magmas reflects the time required for the sinking and (re)incorporation of slabs into the sources of mantle-derived magmas.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory of Ocean Observation and Forecasting, Centre of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Curtin Frontier Institute for Geoscience Solutions, School of Earth and Planetary Sciences, Curtin University, Perth, WA 6845, Australia
| | - He Liu
- Key Laboratory of Ocean Observation and Forecasting, Centre of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Andrea Giuliani
- Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH-Zürich, Zürich 8092, Switzerland
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| | - Luc S. Doucet
- Curtin Frontier Institute for Geoscience Solutions, School of Earth and Planetary Sciences, Curtin University, Perth, WA 6845, Australia
| | - Tim E. Johnson
- Curtin Frontier Institute for Geoscience Solutions, School of Earth and Planetary Sciences, Curtin University, Perth, WA 6845, Australia
| | - Lipeng Zhang
- Key Laboratory of Ocean Observation and Forecasting, Centre of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Ocean Sciences and Interdisciplinary Frontiers, Laoshan Laboratory, Qingdao 266237, China
| | - Weidong Sun
- Key Laboratory of Ocean Observation and Forecasting, Centre of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Ocean Sciences and Interdisciplinary Frontiers, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
2
|
Yuan G, Jin Z, Cao Y, Schulz HM, Gluyas J, Liu K, He X, Wang Y. Microdroplets initiate organic-inorganic interactions and mass transfer in thermal hydrous geosystems. Nat Commun 2024; 15:4960. [PMID: 38862499 PMCID: PMC11167059 DOI: 10.1038/s41467-024-49293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Organic-inorganic interactions regulate the dynamics of hydrocarbons, water, minerals, CO2, and H2 in thermal rocks, yet their initiation remains debated. To address this, we conducted isotope-tagged and in-situ visual thermal experiments. Isotope-tagged studies revealed extensive H/O transfers in hydrous n-C20H42-H2O-feldspar systems. Visual experiments observed water microdroplets forming at 150-165 °C in oil phases near the water-oil interface without surfactants, persisting until complete miscibility above 350 °C. Electron paramagnetic resonance (EPR) detected hydroxyl free radicals concurrent with microdroplet formation. Here we propose a two-fold mechanism: water-derived and n-C20H42-derived free radicals drive interactions with organic species, while water-derived and mineral-derived ions trigger mineral interactions. These processes, facilitated by microdroplets and bulk water, blur boundaries between organic and inorganic species, enabling extensive interactions and mass transfer. Our findings redefine microscopic interplays between organic and inorganic components, offering insights into diagenetic and hydrous-metamorphic processes, and mass transfer cycles in deep basins and subduction zones.
Collapse
Affiliation(s)
- Guanghui Yuan
- State Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao, P.R. China.
- Institute of Energy, School of Earth and Space Sciences, Peking University, Beijing, P.R. China.
| | - Zihao Jin
- State Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao, P.R. China
| | - Yingchang Cao
- State Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao, P.R. China.
| | - Hans-Martin Schulz
- GFZ German Research Centre for Geosciences, Telegrafenberg, Potsdam, Germany
| | - Jon Gluyas
- Department of Earth Sciences, Durham University, Durham, UK
| | - Keyu Liu
- State Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao, P.R. China
| | - Xingliang He
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao, China
| | - Yanzhong Wang
- State Key Laboratory of Deep Oil and Gas, China University of Petroleum (East China), Qingdao, P.R. China
| |
Collapse
|
3
|
Eguchi J, Diamond CW, Lyons TW. Proterozoic supercontinent break-up as a driver for oxygenation events and subsequent carbon isotope excursions. PNAS NEXUS 2022; 1:pgac036. [PMID: 36713325 PMCID: PMC9802223 DOI: 10.1093/pnasnexus/pgac036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023]
Abstract
Oxygen and carbon are 2 elements critical for life on Earth. Earth's most dramatic oxygenation events and carbon isotope excursions (CIE) occurred during the Proterozoic, including the Paleoproterozoic Great Oxidation Event and the associated Lomagundi CIE, the Neoproterozoic Oxygenation event, and the Shuram negative CIE during the late Neoproterozoic. A specific pattern of a long-lived positive CIE followed by a negative CIE is observed in association with oxygenation events during the Paleo- and Neo-proterozoic. We present results from a carbon cycle model designed to couple the surface and interior cycling of carbon that reproduce this pattern. The model assumes organic carbon resides in the mantle longer than carbonate, leading to systematic temporal variations in the δ13C of volcanic CO2 emissions. When the model is perturbed by periods of enhanced continental weathering, increased amounts of carbonate and organic carbon are buried. Increased deposition of organic carbon allows O2 accumulation, while positive CIEs are driven by rapid release of subducted carbonate-derived CO2 at arcs. The subsequent negative CIEs are driven by the delayed release of organic C-derived CO2 at ocean islands. Our model reproduces the sequences observed in the Paleo- and Neo-proterozoic, that is oxygenation accompanied by a positive CIE followed by a negative CIE. Periods of enhanced weathering correspond temporally to supercontinent break-up, suggesting an important connection between global tectonics and the evolution of oxygen and carbon on Earth.
Collapse
Affiliation(s)
| | - Charles W Diamond
- Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA
| | - Timothy W Lyons
- Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|