1
|
Ban Z, Hou YJ, Ku E, Zhu Y, Hu Y, Karadanaian N, Zhao Y, Estelle M. BTB/POZ-MATH proteins regulate Arabidopsis seedling development by promoting auxin-independent degradation of the Aux/IAA protein IAA10. PLANT PHYSIOLOGY 2025; 198:kiaf155. [PMID: 40257842 PMCID: PMC12043071 DOI: 10.1093/plphys/kiaf155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 04/23/2025]
Abstract
After germination, seedlings undergo etiolated development (skotomorphogenesis), enabling them to grow toward the soil surface. In Arabidopsis (Arabidopsis thaliana), etiolated seedlings exhibit rapid hypocotyl elongation, apical hook formation, and closed cotyledons to protect the meristem. In this study, we found that high-order mutants in the BPM (BTB/POZ-MATH) gene family displayed defects in seedling development, characterized by a shorter hypocotyl, early apical hook opening, and opened cotyledons in the dark. BPM1, BPM2, BPM4, and BPM5 exhibited distinct expression patterns and subcellular localization in etiolated seedlings. In a hypocotyl segment assay, the bpm mutants showed defects in auxin response, indicating impaired auxin signaling in the hypocotyl. Expression of the auxin reporter DR5:GFP was also altered in the bpm1,4,5 mutant in various tissues compared with the wild type. Furthermore, yeast 2-hybrid, bimolecular fluorescence complementation, and co-immunoprecipitation assay analyses showed that BPM1 interacts with IAA10. Experiments in protoplasts indicated that BPM1 promotes IAA10 ubiquitylation and degradation, which was supported by greater IAA10 protein accumulation in the bpm1,4,5 mutant background. In addition, IAA10 overexpression resulted in phenotypes similar to those of the bpm mutants, indicating that the BPMs may target the Aux/IAA proteins for ubiquitylation and degradation. Overall, our findings shed light on the key roles of the BPMs in auxin signaling during seedling development.
Collapse
Affiliation(s)
- Zhaonan Ban
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yueh-Ju Hou
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ellyse Ku
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - YingLin Zhu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yun Hu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Natalie Karadanaian
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yunde Zhao
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Mark Estelle
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Jonsson K, Routier‐Kierzkowska A, Bhalerao RP. The asymmetry engine: how plants harness asymmetries to shape their bodies. THE NEW PHYTOLOGIST 2025; 245:2422-2427. [PMID: 39871733 PMCID: PMC11840410 DOI: 10.1111/nph.20413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/09/2025] [Indexed: 01/29/2025]
Abstract
Plant development depends on growth asymmetry to establish body plans and adapt to environmental stimuli. We explore how plants initiate, propagate, and regulate organ-wide growth asymmetries. External cues, such as light and gravity, and internal signals, including stochastic cellular growth variability, drive these asymmetries. The plant hormone auxin orchestrates growth asymmetry through its distribution and transport. Mechanochemical feedback loops, exemplified by apical hook formation, further amplify growth asymmetries, illustrating the dynamic interplay between biochemical signals and physical forces. Growth asymmetry itself can serve as a continuous cue, influencing subsequent growth decisions. By examining specific cellular programs and their responses to asymmetric cues, we propose that the decision to either amplify or dampen these asymmetries is key to shaping plant organs.
Collapse
Affiliation(s)
- Kristoffer Jonsson
- Department of Biological Sciences, IRBVUniversity of Montreal4101 Sherbrooke EstMontrealQCH1X 2B2Canada
| | | | - Rishikesh P. Bhalerao
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC)Swedish University of Agricultural Sciences901 83UmeåSweden
| |
Collapse
|
3
|
Krupař P, Fendrych M. When more becomes too much in acid growth. NATURE PLANTS 2025; 11:155-156. [PMID: 39953356 DOI: 10.1038/s41477-025-01919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Affiliation(s)
- Pavel Krupař
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Matyáš Fendrych
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
Wang J, Jin D, Deng Z, Zheng L, Guo P, Ji Y, Song Z, Zeng HY, Kinoshita T, Liao Z, Chen H, Deng XW, Wei N. The apoplastic pH is a key determinant in the hypocotyl growth response to auxin dosage and light. NATURE PLANTS 2025; 11:279-294. [PMID: 39953357 PMCID: PMC11842274 DOI: 10.1038/s41477-025-01910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 12/20/2024] [Indexed: 02/17/2025]
Abstract
Auxin is a core phytohormone regulating plant elongation growth. While auxin typically promotes hypocotyl elongation, excessive amounts of auxin inhibit elongation. Moreover, auxin usually promotes light-grown, but inhibits dark-grown hypocotyl elongation. How dosage and light condition change the plant's response to auxin, also known as auxin's biphasic effect or dual effect, has long been mysterious. Auxin induces cell expansion primarily through apoplastic acidification and the subsequent 'acid growth' mechanism. Here we show that this pathway operates for both stimulatory and inhibitory auxin doses and under both dark and light conditions. Regardless of the dosage, more auxin induces more transcripts of SAURs (Small Auxin-Up RNAs), leading to a stronger activation of plasma membrane H+-ATPases (AHAs) and progressive acidification of the apoplast in hypocotyl epidermis. Apoplastic acidification promotes growth but only above a certain pH threshold, below which excessive acidification inhibits elongation. Auxin overdosage-triggered hypocotyl inhibition can be alleviated by suppressing the AHA activity or raising the apoplastic pH. Light-grown hypocotyls exhibit a higher apoplastic pH, which impedes cell elongation and counteracts auxin-induced over-acidification. Auxin and light antagonistically regulate the SAUR-PP2C.D-AHA pathway in the hypocotyl and influence plant elongation growth. Our findings suggest that the biphasic effect of auxin results from the biphasic response of hypocotyl cells to decreasing apoplastic pH.
Collapse
Affiliation(s)
- Jiajun Wang
- School of Life Sciences, Southwest University, Chongqing, China
- School of Advanced Agricultural Sciences and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
- School of Life Sciences, Xiamen Key Laboratory of Plant Genetics, Xiamen University, Xiamen, China
| | - Dan Jin
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Zhaoguo Deng
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Lidan Zheng
- School of Advanced Agricultural Sciences and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Pengru Guo
- Microlens Technologies Co. Ltd., Beijing, China
| | - Yusi Ji
- Microlens Technologies Co. Ltd., Beijing, China
| | - Zihao Song
- School of Life Sciences, Southwest University, Chongqing, China
| | - Hai Yue Zeng
- School of Life Sciences, Southwest University, Chongqing, China
- School of Advanced Agricultural Sciences and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Toshinori Kinoshita
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Zhihua Liao
- School of Life Sciences, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Haodong Chen
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xing Wang Deng
- School of Advanced Agricultural Sciences and Academy for Advanced Interdisciplinary Studies, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
5
|
Walia A, Carter R, Wightman R, Meyerowitz EM, Jönsson H, Jones AM. Differential growth is an emergent property of mechanochemical feedback mechanisms in curved plant organs. Dev Cell 2024; 59:3245-3258.e3. [PMID: 39378877 DOI: 10.1016/j.devcel.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/21/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Differential growth is central to eukaryotic morphogenesis. We showed using cellular imaging, simulations, and perturbations that light-induced differential growth in a curved organ, the Arabidopsis thaliana apical hook, emerges from the longitudinal expansion of subepidermal cells, acting in parallel with a differential in the material properties of epidermal cell walls that resist expansion. The greater expansion of inner hook cells that results in apical hook opening is gated by wall alkalinity and auxin, both of which are depleted upon illumination. We further identified mechanochemical feedback from wall mechanics to light stimulated auxin depletion, which may contribute to gating hook opening under mechanical restraint. These results highlight how plant cells coordinate growth among tissue layers by linking mechanics and hormonal gradients with the cell wall remodeling required for differential growth.
Collapse
Affiliation(s)
- Ankit Walia
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Ross Carter
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Raymond Wightman
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | - Elliot M Meyerowitz
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK; Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Henrik Jönsson
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK; Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK; Centre for Environmental and Climate Science, Lund University, 223 62 Lund, Sweden.
| | - Alexander M Jones
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK.
| |
Collapse
|
6
|
Ban Z, Hou YJ, Ku E, Zhu Y, Hu Y, Karadanaian N, Zhao Y, Estelle M. BPMs regulate Arabidopsis seedling development by promoting auxin-independent degradation of the Aux/IAA protein IAA10. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625463. [PMID: 39651233 PMCID: PMC11623633 DOI: 10.1101/2024.11.26.625463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
After germination, seedlings undergo etiolated development (skotomorphogenesis), enabling them to grow towards the soil surface. In Arabidopsis, etiolated seedlings exhibit rapid hypocotyl elongation, apical hook formation and closed cotyledons to protect the meristem. In this study, we found that high-order mutants in the BPM gene family displayed defects in seedling development, characterized by a shorter hypocotyl, early apical hook opening, and opened cotyledons in the dark. BPM1, BPM2, BPM4, and BPM5 exhibit distinct expression patterns and subcellular localization in etiolated seedlings. In a hypocotyl segment assay the bpm mutants showed defects in auxin response indicating impaired auxin signaling in the hypocotyl. Expression of the auxin reporter DR5:GFP was also altered in the bpm1,4,5 mutant in various tissues compared to the wild type. Furthermore, we showed that BPM1 and IAA10 interact in yeast two-hybrid, BiFC, and Co-IP assays. Experiments in protoplasts indicated that BPM1 promotes ubiquitylation and degradation of IAA10, and the level of IAA10 protein is greater in the bpm1,4,5 mutant. In addition, IAA10 over-expression resulted in phenotypes similar to the bpm mutants. These results indicate that the BPMs target the Aux/IAA proteins for ubiquitylation and degradation. Overall, our findings shed light on the key roles of the BPMs in auxin signaling during seedling development.
Collapse
|
7
|
Sun Z, Yuan L, Wang Y, Fang R, Lin X, Li H, Chen L, Wu Y, Huang X, Kong F, Liu B, Lu S, Kong L. Post-Flowering Photoperiod Sensitivity of Soybean in Pod-Setting Responses. BIOLOGY 2024; 13:868. [PMID: 39596823 PMCID: PMC11592272 DOI: 10.3390/biology13110868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/09/2024] [Accepted: 10/19/2024] [Indexed: 11/29/2024]
Abstract
The development of soybean (Glycine max) is regulated by the photoperiod, with genes related to photoperiod sensitivity primarily focused on the flowering time. However, their roles in post-flowering reproductive development and the mechanisms by which the photoperiod affects them are not yet determined. In this study, we found that pod formation is sensitive to the photoperiod. Long-day conditions tended to extend the time from flowering to pod formation, and the first wave of flowers tended to fall off. Additionally, the photoperiod affected the pistil morphology; under short-day conditions, the stigma had a curved hook-like structure that facilitated better interaction with the filaments when pollen was released, ultimately influencing the timing of pod formation. Photoperiod-insensitive mutants, lacking E1 family and Evening Complex (EC) genes, showed no difference in the pod formation time under long-day or short-day conditions. Hormone content analysis and transcriptome data analysis indicated that various hormones, reactive oxygen species (ROS) burst pathway signals, and the application of sucrose solution in vitro might influence floral organ abscission.
Collapse
Affiliation(s)
- Zhihui Sun
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Limei Yuan
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yulin Wang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Ran Fang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xiaoya Lin
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Haiyang Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Liyu Chen
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yichun Wu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xin Huang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Sijia Lu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Lingping Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
8
|
Wicaksono A, Buaboocha T. Genome-wide identification of CAMTA genes and their expression dependence on light and calcium signaling during seedling growth and development in mung bean. BMC Genomics 2024; 25:992. [PMID: 39443876 PMCID: PMC11515718 DOI: 10.1186/s12864-024-10893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Calmodulin-binding transcription activator (CAMTA) is comprised of a group of transcription factors and plays an important role in the Ca2+ signaling pathway, mediating various molecular responses via interactions with other transcription factors and binding to the promoter region of specific genes. Mung beans (Vigna radiata) are one of the most commonly consumed commodities in Asia. To date, CAMTA proteins have not been characterized in this important crop plant. RESULTS Eight paralogous VrCAMTA genes were identified and found to be distributed on five of the 11 chromosomes. The proteins possessed CG-1 DNA-binding domains with bipartite NLS signals, ankyrin domains, CaM-binding IQ motifs, and CaM-binding domain (CaMBD). The 2 kb upstream regions of VrCAMTA genes contained sequence motifs of abscisic acid-responsive elements (ABRE) and ethylene-responsive elements (ERE), and binding sites for transcription factors of the bZIP and bHLH domains. Analysis of RNA-seq data from a public repository revealed ubiquitous expression of the VrCAMTA genes, as VrCAMTA1 was expressed at the highest level in seedling leaves, whereas VrCAMTA8 was expressed at the lowest level, which agreed with the RT-qPCR analysis performed on the first true leaves. On day four after leaf emergence, all VrCAMTA genes were upregulated, with VrCAMTA1 exhibiting the highest degree of upregulation. In darkness on day 4, upregulation was not observed in most VrCAMTA genes, except VrCAMTA7, for which a low degree of upregulation was found, whereas no difference was found in VrCAMTA8 expression between light and dark conditions. Treatment with calcium ionophores enhanced VrCAMTA expression under light and/or dark conditions at different times after leaf emergence, suggesting that calcium signaling is involved in the light-induced upregulation of VrCAMTA gene expression. CONCLUSIONS The expression dependence of nearly all VrCAMTA genes on light and calcium signaling suggests their possible differential but likely complementary roles during the early stages of mung bean growth and development.
Collapse
Affiliation(s)
- Adhityo Wicaksono
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd., Wang Mai, Pathum Wan, Bangkok, 10330, Thailand
| | - Teerapong Buaboocha
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd., Wang Mai, Pathum Wan, Bangkok, 10330, Thailand.
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, 254 Phaya Thai Rd., Wang Mai, Pathum Wan, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Griffiths J, Rizza A, Tang B, Frommer WB, Jones AM. GIBBERELLIN PERCEPTION SENSOR 2 reveals genesis and role of cellular GA dynamics in light-regulated hypocotyl growth. THE PLANT CELL 2024; 36:4426-4441. [PMID: 39039020 PMCID: PMC11449061 DOI: 10.1093/plcell/koae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/27/2024] [Indexed: 07/24/2024]
Abstract
The phytohormone gibberellic acid (GA) is critical for environmentally sensitive plant development including germination, skotomorphogenesis, and flowering. The Förster resonance energy transfer biosensor GIBBERELLIN PERCEPTION SENSOR1, which permits single-cell GA measurements in vivo, has been used to observe a GA gradient correlated with cell length in dark-grown, but not light-grown, hypocotyls. We sought to understand how light signaling integrates into cellular GA regulation. Here, we show how the E3 ligase CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1) and transcription factor ELONGATED HYPOCOTYL 5 (HY5) play central roles in directing cellular GA distribution in skoto- and photomorphogenic hypocotyls, respectively. We demonstrate that the expression pattern of the GA biosynthetic enzyme gene GA20ox1 is the key determinant of the GA gradient in dark-grown hypocotyls and is a target of COP1 signaling. We engineered a second generation GPS2 biosensor with improved orthogonality and reversibility. GPS2 revealed a previously undetectable cellular pattern of GA depletion during the transition to growth in the light. This GA depletion partly explains the resetting of hypocotyl growth dynamics during photomorphogenesis. Achieving cell-level resolution has revealed how GA distributions link environmental conditions with morphology and morphological plasticity. The GPS2 biosensor is an ideal tool for GA studies in many conditions, organs, and plant species.
Collapse
Affiliation(s)
- Jayne Griffiths
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Annalisa Rizza
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Bijun Tang
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Wolf B Frommer
- Heinrich Heine University, Institute for Molecular Physiology, 40225 Düsseldorf, Germany
| | - Alexander M Jones
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| |
Collapse
|
10
|
Krahmer J, Fankhauser C. Environmental Control of Hypocotyl Elongation. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:489-519. [PMID: 38012051 DOI: 10.1146/annurev-arplant-062923-023852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The hypocotyl is the embryonic stem connecting the primary root to the cotyledons. Hypocotyl length varies tremendously depending on the conditions. This developmental plasticity and the simplicity of the organ explain its success as a model for growth regulation. Light and temperature are prominent growth-controlling cues, using shared signaling elements. Mechanisms controlling hypocotyl elongation in etiolated seedlings reaching the light differ from those in photoautotrophic seedlings. However, many common growth regulators intervene in both situations. Multiple photoreceptors including phytochromes, which also respond to temperature, control the activity of several transcription factors, thereby eliciting rapid transcriptional reprogramming. Hypocotyl growth often depends on sensing in green tissues and interorgan communication comprising auxin. Hypocotyl auxin, in conjunction with other hormones, determines epidermal cell elongation. Plants facing cues with opposite effects on growth control hypocotyl elongation through intricate mechanisms. We discuss the status of the field and end by highlighting open questions.
Collapse
Affiliation(s)
- Johanna Krahmer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland;
- Current affiliation: Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark;
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland;
| |
Collapse
|
11
|
Pérez-Henríquez P, Li H, Zhou X, Pan X, Lin W, Tang W, Nagawa S, Lin D, Xu T, Michniewicz M, Prigge MJ, Strader LC, Estelle M, Hayashi KI, Friml J, Qi L, Liu Z, Van Norman J, Yang Z. Hierarchical global and local auxin signals coordinate cellular interdigitation in Arabidopsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599171. [PMID: 38948792 PMCID: PMC11212924 DOI: 10.1101/2024.06.17.599171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The development of multicellular tissues requires both local and global coordination of cell polarization, however, the mechanisms underlying their interplay are poorly understood. In Arabidopsis, leaf epidermal pavement cells (PC) develop a puzzle-piece shape locally coordinated through apoplastic auxin signaling. Here we show auxin also globally coordinates interdigitation by activating the TIR1/AFB-dependent nuclear signaling pathway. This pathway promotes a transient maximum of auxin at the cotyledon tip, which then moves across the leaf activating local PC polarization, as demonstrated by locally uncaged auxin globally rescuing defects in tir1;afb1;afb2;afb4;afb5 mutant but not in tmk1;tmk2;tmk3;tmk4 mutants. Our findings show that hierarchically integrated global and local auxin signaling systems, which respectively depend on TIR1/AFB-dependent gene transcription in the nucleus and TMK-mediated rapid activation of ROP GTPases at the cell surface, control PC interdigitation patterns in Arabidopsis cotyledons, revealing a mechanism for coordinating a local cellular process with the development of whole tissues.
Collapse
Affiliation(s)
- Patricio Pérez-Henríquez
- Institute of Integrated Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hongjiang Li
- Institute of Integrated Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Xiang Zhou
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China
- National Key Laboratory for Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Xue Pan
- Department of Biological Sciences, University of Toronto-Scarborough, Toronto, ON M1C 1A4, Canada
| | - Wenwei Lin
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wenxin Tang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shingo Nagawa
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Deshu Lin
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tongda Xu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | | | - Michael J. Prigge
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | - Mark Estelle
- Section of Cell and Developmental Biology and Howard Hughes Medical Institute, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ken-ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Linlin Qi
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China
| | - Zhongchi Liu
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China
| | - Jaimie Van Norman
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Zhenbiao Yang
- Institute of Integrated Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, Guangdong, China
- National Key Laboratory for Quantitative Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Lead Contact
| |
Collapse
|
12
|
Bou Daher F, Serra L, Carter R, Jönsson H, Robinson S, Meyerowitz EM, Gray WM. Xyloglucan deficiency leads to a reduction in turgor pressure and changes in cell wall properties, affecting early seedling establishment. Curr Biol 2024; 34:2094-2106.e6. [PMID: 38677280 PMCID: PMC11111339 DOI: 10.1016/j.cub.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/17/2024] [Accepted: 04/08/2024] [Indexed: 04/29/2024]
Abstract
Xyloglucan is believed to play a significant role in cell wall mechanics of dicot plants. Surprisingly, Arabidopsis plants defective in xyloglucan biosynthesis exhibit nearly normal growth and development. We investigated a mutant line, cslc-Δ5, lacking activity in all five Arabidopsis cellulose synthase like-C (CSLC) genes responsible for xyloglucan backbone biosynthesis. We observed that this xyloglucan-deficient line exhibited reduced cellulose crystallinity and increased pectin levels, suggesting the existence of feedback mechanisms that regulate wall composition to compensate for the absence of xyloglucan. These alterations in cell wall composition in the xyloglucan-absent plants were further linked to a decrease in cell wall elastic modulus and rupture stress, as observed through atomic force microscopy (AFM) and extensometer-based techniques. This raised questions about how plants with such modified cell wall properties can maintain normal growth. Our investigation revealed two key factors contributing to this phenomenon. First, measurements of turgor pressure, a primary driver of plant growth, revealed that cslc-Δ5 plants have reduced turgor, preventing the compromised walls from bursting while still allowing growth to occur. Second, we discovered the conservation of elastic asymmetry (ratio of axial to transverse wall elasticity) in the mutant, suggesting an additional mechanism contributing to the maintenance of normal growth. This novel feedback mechanism between cell wall composition and mechanical properties, coupled with turgor pressure regulation, plays a central role in the control of plant growth and is critical for seedling establishment in a mechanically challenging environment by affecting shoot emergence and root penetration.
Collapse
Affiliation(s)
- Firas Bou Daher
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA; Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK.
| | - Leo Serra
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Ross Carter
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Henrik Jönsson
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Sarah Robinson
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Elliot M Meyerowitz
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK; Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - William M Gray
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
13
|
Wang JL, Wang M, Zhang L, Li YX, Li JJ, Li YY, Pu ZX, Li DY, Liu XN, Guo W, Di DW, Li XF, Guo GQ, Wu L. WAV E3 ubiquitin ligases mediate degradation of IAA32/34 in the TMK1-mediated auxin signaling pathway during apical hook development. Proc Natl Acad Sci U S A 2024; 121:e2314353121. [PMID: 38635634 PMCID: PMC11047095 DOI: 10.1073/pnas.2314353121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
Auxin regulates plant growth and development through downstream signaling pathways, including the best-known SCFTIR1/AFB-Aux/IAA-ARF pathway and several other less characterized "noncanonical" pathways. Recently, one SCFTIR1/AFB-independent noncanonical pathway, mediated by Transmembrane Kinase 1 (TMK1), was discovered through the analyses of its functions in Arabidopsis apical hook development. Asymmetric accumulation of auxin on the concave side of the apical hook triggers DAR1-catalyzed release of the C-terminal of TMK1, which migrates into the nucleus, where it phosphorylates and stabilizes IAA32/34 to inhibit cell elongation, which is essential for full apical hook formation. However, the molecular factors mediating IAA32/34 degradation have not been identified. Here, we show that proteins in the CYTOKININ INDUCED ROOT WAVING 1 (CKRW1)/WAVY GROWTH 3 (WAV3) subfamily act as E3 ubiquitin ligases to target IAA32/34 for ubiquitination and degradation, which is inhibited by TMK1c-mediated phosphorylation. This antagonistic interaction between TMK1c and CKRW1/WAV3 subfamily E3 ubiquitin ligases regulates IAA32/34 levels to control differential cell elongation along opposite sides of the apical hook.
Collapse
Affiliation(s)
- Jun-Li Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Ming Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210008, People’s Republic of China
| | - Li Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Basic Forestry and Proteomics Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou350002, People’s Republic of China
| | - You-Xia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Jing-Jing Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Yu-Yang Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Zuo-Xian Pu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Dan-Yang Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Xing-Nan Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Wang Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Dong-Wei Di
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing210008, People’s Republic of China
| | - Xiao-Feng Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Guang-Qin Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| | - Lei Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
- Gansu Province Key Laboratory of Gene Editing for Breeding, School of Life Sciences, Lanzhou University, Lanzhou730000, People’s Republic of China
| |
Collapse
|
14
|
Gate T, Hill L, Miller AJ, Sanders D. AtIAR1 is a Zn transporter that regulates auxin metabolism in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1437-1450. [PMID: 37988591 PMCID: PMC10901206 DOI: 10.1093/jxb/erad468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Root growth in Arabidopsis is inhibited by exogenous auxin-amino acid conjugates, and mutants resistant to one such conjugate [indole-3-acetic acid (IAA)-Ala] map to a gene (AtIAR1) that is a member of a metal transporter family. Here, we test the hypothesis that AtIAR1 controls the hydrolysis of stored conjugated auxin to free auxin through zinc transport. AtIAR1 complements a yeast mutant sensitive to zinc, but not manganese- or iron-sensitive mutants, and the transporter is predicted to be localized to the endoplasmic reticulum/Golgi in plants. A previously identified Atiar1 mutant and a non-expressed T-DNA mutant both exhibit altered auxin metabolism, including decreased IAA-glucose conjugate levels in zinc-deficient conditions and insensitivity to the growth effect of exogenous IAA-Ala conjugates. At a high concentration of zinc, wild-type plants show a novel enhanced response to root growth inhibition by exogenous IAA-Ala which is disrupted in both Atiar1 mutants. Furthermore, both Atiar1 mutants show changes in auxin-related phenotypes, including lateral root density and hypocotyl length. The findings therefore suggest a role for AtIAR1 in controlling zinc release from the secretory system, where zinc homeostasis plays a key role in regulation of auxin metabolism and plant growth regulation.
Collapse
Affiliation(s)
- Thomas Gate
- Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, UK
| | - Lionel Hill
- Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, UK
| | - Anthony J Miller
- Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, UK
| | - Dale Sanders
- Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
15
|
Jhanji S, Goyal E, Chumber M, Kaur G. Exploring fine tuning between phytohormones and ROS signaling cascade in regulation of seed dormancy, germination and seedling development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108352. [PMID: 38266558 DOI: 10.1016/j.plaphy.2024.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/18/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
In higher plants, seed is a propagule which ensures dissemination and survival of species. Developmental phases of a seed comprise embryogenesis, maturation and germination paving a way to its final fate i.e. seedling establishment. The final stage of seed maturation is marked by dehydration, acquisition of dessication tolerance and induction of dormancy. A precise Abscisic acid (ABA) to Gibberellins (GA) ratio, accumulation of miRNA 156, low level of reactive oxygen species (ROS) and enzyme inactivity govern seed dormancy. This also prevent pre harvest sprouting of the seeds. Overtime, stored seed mRNAs and proteins are degraded through oxidation of specific nucleotides in response to ROS accumulation. This degradation alleviates seed dormancy and transforms a dormant seed into a germinating seed. At this stage, ABA catabolism and degradation accompanied by GA synthesis contribute to low ABA to GA ratio. GA as well as ROS acts downstream, to mobilize reserve food materials, rupture testa, enhance imbibition and protrude radicle. All these events mark seed germination. Further, seedling is established under the governance of auxin and light. ABA and GA are master regulators while auxin, cytokinins, ethylene, jasmonic acid, brassinosteroids act through interdependent pathways to tightly regulate seed dormancy, germination and seedling establishment. In this review, the role of phytohormones and ROS in accordance with environmental factors in governing seed dormancy, promoting seed germination and thus, establishing a seedling is discussed in detail.
Collapse
Affiliation(s)
- Shalini Jhanji
- Department of Floriculture and Landscaping, Punjab Agricultural University, Ludhiana, 141004, India.
| | - Eena Goyal
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| | - Manisha Chumber
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| | - Gurpreet Kaur
- Department of Botany, Punjab Agricultural University, Ludhiana, 141004, India
| |
Collapse
|
16
|
Jobert F, Yadav S, Robert S. Auxin as an architect of the pectin matrix. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6933-6949. [PMID: 37166384 PMCID: PMC10690733 DOI: 10.1093/jxb/erad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023]
Abstract
Auxin is a versatile plant growth regulator that triggers multiple signalling pathways at different spatial and temporal resolutions. A plant cell is surrounded by the cell wall, a complex and dynamic network of polysaccharides. The cell wall needs to be rigid to provide mechanical support and protection and highly flexible to allow cell growth and shape acquisition. The modification of the pectin components, among other processes, is a mechanism by which auxin activity alters the mechanical properties of the cell wall. Auxin signalling precisely controls the transcriptional output of several genes encoding pectin remodelling enzymes, their local activity, pectin deposition, and modulation in different developmental contexts. This review examines the mechanism of auxin activity in regulating pectin chemistry at organ, cellular, and subcellular levels across diverse plant species. Moreover, we ask questions that remain to be addressed to fully understand the interplay between auxin and pectin in plant growth and development.
Collapse
Affiliation(s)
- François Jobert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
- CRRBM, Université de Picardie Jules Verne, 80000, Amiens, France
| | - Sandeep Yadav
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| |
Collapse
|
17
|
Emenecker RJ, Cammarata J, Yuan I, Howard C, Ebrahimi Naghani S, Robert HS, Nambara E, Strader LC. Abscisic acid biosynthesis is necessary for full auxin effects on hypocotyl elongation. Development 2023; 150:dev202106. [PMID: 37846593 PMCID: PMC10730017 DOI: 10.1242/dev.202106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023]
Abstract
In concert with other phytohormones, auxin regulates plant growth and development. However, how auxin and other phytohormones coordinately regulate distinct processes is not fully understood. In this work, we uncover an auxin-abscisic acid (ABA) interaction module in Arabidopsis that is specific to coordinating activities of these hormones in the hypocotyl. From our forward genetics screen, we determine that ABA biosynthesis is required for the full effects of auxin on hypocotyl elongation. Our data also suggest that ABA biosynthesis is not required for the inhibitory effects of auxin treatment on root elongation. Our transcriptome analysis identified distinct auxin-responsive genes in root and shoot tissues, which is consistent with differential regulation of growth in these tissues. Further, our data suggest that many gene targets repressed upon auxin treatment require an intact ABA pathway for full repression. Our results support a model in which auxin stimulates ABA biosynthesis to fully regulate hypocotyl elongation.
Collapse
Affiliation(s)
- Ryan J. Emenecker
- Department of Biology, Washington University, St. Louis, MO 63130, USA
- Center for Biomolecular Condensates, Washington University, St. Louis, MO 63130, USA
- Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
| | | | - Irene Yuan
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | - Caroline Howard
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Shekufeh Ebrahimi Naghani
- Mendel Centre for Genomics and Proteomics of Plant Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czechia
| | - Helene S. Robert
- Mendel Centre for Genomics and Proteomics of Plant Systems, CEITEC MU - Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic
| | - Eiji Nambara
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Lucia C. Strader
- Center for Biomolecular Condensates, Washington University, St. Louis, MO 63130, USA
- Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
18
|
Zhang J, Chen W, Li X, Shi H, Lv M, He L, Bai W, Cheng S, Chu J, He K, Gou X, Li J. Jasmonates regulate apical hook development by repressing brassinosteroid biosynthesis and signaling. PLANT PHYSIOLOGY 2023; 193:1561-1579. [PMID: 37467431 PMCID: PMC10517256 DOI: 10.1093/plphys/kiad399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/31/2023] [Indexed: 07/21/2023]
Abstract
An apical hook is a special structure formed during skotomorphogenesis in dicotyledonous plant species. It is critical for protecting the shoot apical meristem from mechanical damage during seed germination and hypocotyl elongation in soil. Brassinosteroid (BR) and jasmonate (JA) phytohormones antagonistically regulate apical hook formation. However, the interrelationship between BRs and JAs in this process has not been well elucidated. Here, we reveal that JAs repress BRs to regulate apical hook development in Arabidopsis (Arabidopsis thaliana). Exogenous application of methyl jasmonate (MeJA) repressed the expression of the rate-limiting BR biosynthetic gene DWARF4 (DWF4) in a process relying on 3 key JA-dependent transcription factors, MYC2, MYC3, and MYC4. We demonstrated that MYC2 interacts with the critical BR-activated transcription factor BRASSINAZOLE RESISTANT 1 (BZR1), disrupting the association of BZR1 with its partner transcription factors, such as those of the PHYTOCHROME INTERACTING FACTOR (PIF) family and downregulating the expression of their target genes, such as WAVY ROOT GROWTH 2 (WAG2), encoding a protein kinase essential for apical hook development. Our results indicate that JAs not only repress the expression of BR biosynthetic gene DWF4 but, more importantly, attenuate BR signaling by inhibiting the transcriptional activation of BZR1 by MYC2 during apical hook development.
Collapse
Affiliation(s)
- Jingjie Zhang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Weiyue Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xiaopeng Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Hongyong Shi
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Minghui Lv
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Liming He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wenhua Bai
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shujing Cheng
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Gou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jia Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
19
|
Zhao P, Zhang J, Chen S, Zhang Z, Wan G, Mao J, Wang Z, Tan S, Xiang C. ERF1 inhibits lateral root emergence by promoting local auxin accumulation and repressing ARF7 expression. Cell Rep 2023; 42:112565. [PMID: 37224012 DOI: 10.1016/j.celrep.2023.112565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
Lateral roots (LRs) are crucial for plants to sense environmental signals in addition to water and nutrient absorption. Auxin is key for LR formation, but the underlying mechanisms are not fully understood. Here, we report that Arabidopsis ERF1 inhibits LR emergence by promoting local auxin accumulation with altered distribution and regulating auxin signaling. Loss of ERF1 increases LR density compared with the wild type, whereas ERF1 overexpression causes the opposite phenotype. ERF1 enhances auxin transport by upregulating PIN1 and AUX1, resulting in excessive auxin accumulation in the endodermal, cortical, and epidermal cells surrounding LR primordia. Furthermore, ERF1 represses ARF7 transcription, thereby downregulating the expression of cell-wall remodeling genes that facilitate LR emergence. Together, our study reveals that ERF1 integrates environmental signals to promote local auxin accumulation with altered distribution and repress ARF7, consequently inhibiting LR emergence in adaptation to fluctuating environments.
Collapse
Affiliation(s)
- Pingxia Zhao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| | - Jing Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Siyan Chen
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Zisheng Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Guangyu Wan
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jieli Mao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Zhen Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Shutang Tan
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Chengbin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| |
Collapse
|
20
|
Xiong J, Yang F, Wei F, Yang F, Lin H, Zhang D. Inhibition of SIZ1-mediated SUMOylation of HOOKLESS1 promotes light-induced apical hook opening in Arabidopsis. THE PLANT CELL 2023; 35:2027-2043. [PMID: 36890719 PMCID: PMC10226575 DOI: 10.1093/plcell/koad072] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/19/2023] [Accepted: 02/12/2023] [Indexed: 05/12/2023]
Abstract
The apical hook protects cotyledons and the shoot apical meristem from mechanical injuries during seedling emergence from the soil. HOOKLESS1 (HLS1) is a central regulator of apical hook development, as a terminal signal onto which several pathways converge. However, how plants regulate the rapid opening of the apical hook in response to light by modulating HLS1 function remains unclear. In this study, we demonstrate that the small ubiquitin-like modifier (SUMO) E3 ligase SAP AND MIZ1 DOMAIN-CONTAINING LIGASE1 (SIZ1) interacts with HLS1 and mediates its SUMOylation in Arabidopsis thaliana. Mutating SUMO attachment sites of HLS1 results in impaired function of HLS1, indicating that HLS1 SUMOylation is essential for its function. SUMOylated HLS1 was more likely to assemble into oligomers, which are the active form of HLS1. During the dark-to-light transition, light induces rapid apical hook opening, concomitantly with a drop in SIZ1 transcript levels, resulting in lower HLS1 SUMOylation. Furthermore, ELONGATED HYPOCOTYL5 (HY5) directly binds to the SIZ1 promoter and suppresses its transcription. HY5-initiated rapid apical hook opening partially depended on HY5 inhibition of SIZ1 expression. Taken together, our study identifies a function for SIZ1 in apical hook development, providing a dynamic regulatory mechanism linking the post-translational modification of HLS1 during apical hook formation and light-induced apical hook opening.
Collapse
Affiliation(s)
- Jiawei Xiong
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| | - Fabin Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| | - Fan Wei
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| | - Feng Yang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, P.R. China
| |
Collapse
|
21
|
Wang Y, Peng Y, Guo H. To curve for survival: Apical hook development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:324-342. [PMID: 36562414 DOI: 10.1111/jipb.13441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Apical hook is a simple curved structure formed at the upper part of hypocotyls when dicot seeds germinate in darkness. The hook structure is transient but essential for seedlings' survival during soil emergence due to its efficient protection of the delicate shoot apex from mechanical injury. As a superb model system for studying plant differential growth, apical hook has fascinated botanists as early as the Darwin age, and significant advances have been achieved at both the morphological and molecular levels to understand how apical hook development is regulated. Here, we will mainly summarize the research progress at these two levels. We will also briefly compare the growth dynamics between apical hook and hypocotyl gravitropic bending at early seed germination phase, with the aim to deduce a certain consensus on their connections. Finally, we will outline the remaining questions and future research perspectives for apical hook development.
Collapse
Affiliation(s)
- Yichuan Wang
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yang Peng
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Hongwei Guo
- Department of Biology, School of Life Sciences, Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
22
|
Wang J, Sun N, Zheng L, Zhang F, Xiang M, Chen H, Deng XW, Wei N. Brassinosteroids promote etiolated apical structures in darkness by amplifying the ethylene response via the EBF-EIN3/PIF3 circuit. THE PLANT CELL 2023; 35:390-408. [PMID: 36321994 PMCID: PMC9806594 DOI: 10.1093/plcell/koac316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Germinated plants grow in darkness until they emerge above the soil. To help the seedling penetrate the soil, most dicot seedlings develop an etiolated apical structure consisting of an apical hook and folded, unexpanded cotyledons atop a rapidly elongating hypocotyl. Brassinosteroids (BRs) are necessary for etiolated apical development, but their precise role and mechanisms remain unclear. Arabidopsis thaliana SMALL AUXIN UP RNA17 (SAUR17) is an apical-organ-specific regulator that promotes production of an apical hook and closed cotyledons. In darkness, ethylene and BRs stimulate SAUR17 expression by transcription factor complexes containing PHYTOCHROME-INTERACTING FACTORs (PIFs), ETHYLENE INSENSITIVE 3 (EIN3), and its homolog EIN3-LIKE 1 (EIL1), and BRASSINAZOLE RESISTANT1 (BZR1). BZR1 requires EIN3 and PIFs for enhanced DNA-binding and transcriptional activation of the SAUR17 promoter; while EIN3, PIF3, and PIF4 stability depends on BR signaling. BZR1 transcriptionally downregulates EIN3-BINDING F-BOX 1 and 2 (EBF1 and EBF2), which encode ubiquitin ligases mediating EIN3 and PIF3 protein degradation. By modulating the EBF-EIN3/PIF protein-stability circuit, BRs induce EIN3 and PIF3 accumulation, which underlies BR-responsive expression of SAUR17 and HOOKLESS1 and ultimately apical hook development. We suggest that in the etiolated development of apical structures, BRs primarily modulate plant sensitivity to darkness and ethylene.
Collapse
Affiliation(s)
- Jiajun Wang
- School of Life Sciences, Southwest University, Chongqing 400715, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ning Sun
- Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Lidan Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fangfang Zhang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Mengda Xiang
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Haodong Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
23
|
Gao M, Sun Q, Zhai L, Zhao D, Lv J, Han Z, Wu T, Zhang X, Xu X, Wang Y. Genome-wide identification of apple PPI genes and a functional analysis of the response of MxPPI1 to Fe deficiency stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:94-103. [PMID: 36063740 DOI: 10.1016/j.plaphy.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/14/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe) deficiency affects plant growth and development. The proton pump interactor (PPI) in plants responds to multiple abiotic stresses, although it has not been well characterized under Fe deficiency stress. In this study, we systematically identified and analyzed the PPI gene family in apple. Three PPI candidate genes were found, and they contained 318-1349 amino acids and 3-7 introns. Under Fe deficiency stress, we analyzed the expression of all the PPI genes in roots of apple rootstock Malus xiaojinensis. Expression of the gene MD11G1247800, designated PPI1, is obviously induced by Fe deficiency treatment in M. xiaojinensis. We first cloned MxPPI1 from M. xiaojinensis and determined its subcellular localization, which indicated that it is localized in the cell membrane and nucleus in tobacco. We found that the level of expression of the MxPPI1 protein increased significantly under Fe deficiency stress in apple calli. Moreover, overexpressing MxPPI1 in apple calli enhanced the activities of ferric chelate reductase and H+-ATPase, H+ secretion, MxHA2 gene expression and total Fe content when compared with the wild type calli. We further found that MxPPI1 interacted with MxHA2 using bimolecular fluorescence complementation and luciferase complementation assays. Overall, we demonstrated that MxPPI1 interacts with MxHA2 to enhance the activity of H+-ATPase to regulate Fe absorption in M. xiaojinensis.
Collapse
Affiliation(s)
- Min Gao
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Qiran Sun
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Longmei Zhai
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Danrui Zhao
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Jiahong Lv
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China.
| |
Collapse
|
24
|
Modulation of receptor-like transmembrane kinase 1 nuclear localization by DA1 peptidases in Arabidopsis. Proc Natl Acad Sci U S A 2022; 119:e2205757119. [PMID: 36161927 PMCID: PMC9546594 DOI: 10.1073/pnas.2205757119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Signals are often perceived by proteins in one cellular location and transduced to other locations such as the nucleus. Signaling proteins can be cleaved by peptidases to facilitate this movement, but the peptidases involved in this are poorly understood despite their widespread role. We describe a role for the ubiquitin-activated peptidase DA1 in cleaving the membrane-localized receptor-like kinase transmembrane kinase 1 (TMK1) in Arabidopsis. TMK1 is phosphorylated in response to auxin and mediates several auxin responses including growth induction by cell expansion. DA1-mediated cleavage of TMK1 facilitates nuclear localization of its intracellular kinase domain to repress auxin-mediated gene expression, facilitating differential cell expansion during growth. These analyses establish a wider role for DA1 family activities in cell growth. The cleavage of intracellular domains of receptor-like kinases (RLKs) has an important functional role in the transduction of signals from the cell surface to the nucleus in many organisms. However, the peptidases that catalyze protein cleavage during signal transduction remain poorly understood despite their crucial roles in diverse signaling processes. Here, we report in the flowering plant Arabidopsis thaliana that members of the DA1 family of ubiquitin-regulated Zn metallopeptidases cleave the cytoplasmic kinase domain of transmembrane kinase 1 (TMK1), releasing it for nuclear localization where it represses auxin-responsive cell growth during apical hook formation by phosphorylation and stabilization of the transcriptional repressors IAA32 and IAA34. Mutations in DA1 family members exhibited reduced apical hook formation, and DA1 family-mediated cleavage of TMK1 was promoted by auxin treatment. Expression of the DA1 family-generated intracellular kinase domain of TMK1 by an auxin-responsive promoter fully restored apical hook formation in a tmk1 mutant, establishing the function of DA1 family peptidase activities in TMK1-mediated differential cell growth and apical hook formation. DA1 family peptidase activity therefore modulates TMK1 kinase activity between a membrane location where it stimulates acid cell growth and initiates an auxin-dependent kinase cascade controlling cell proliferation in lateral roots and a nuclear localization where it represses auxin-mediated gene expression and growth.
Collapse
|
25
|
Aizezi Y, Xie Y, Guo H, Jiang K. New Wine in an Old Bottle: Utilizing Chemical Genetics to Dissect Apical Hook Development. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081285. [PMID: 36013464 PMCID: PMC9410295 DOI: 10.3390/life12081285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 02/08/2023]
Abstract
The apical hook is formed by dicot seedlings to protect the tender shoot apical meristem during soil emergence. Regulated by many phytohormones, the apical hook has been taken as a model to study the crosstalk between individual signaling pathways. Over recent decades, the roles of different phytohormones and environmental signals in apical hook development have been illustrated. However, key regulators downstream of canonical hormone signaling have rarely been identified via classical genetics screening, possibly due to genetic redundancy and/or lethal mutation. Chemical genetics that utilize small molecules to perturb and elucidate biological processes could provide a complementary strategy to overcome the limitations in classical genetics. In this review, we summarize current progress in hormonal regulation of the apical hook, and previously reported chemical tools that could assist the understanding of this complex developmental process. We also provide insight into novel strategies for chemical screening and target identification, which could possibly lead to discoveries of new regulatory components in apical hook development, or unidentified signaling crosstalk that is overlooked by classical genetics screening.
Collapse
Affiliation(s)
- Yalikunjiang Aizezi
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yinpeng Xie
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongwei Guo
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: (H.G.); (K.J.)
| | - Kai Jiang
- Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: (H.G.); (K.J.)
| |
Collapse
|