1
|
Zhang T, Jian Z, Chen J, Xu D, Yang X, Lu Y, Yan S, Pan L, Wu Q, Ouyang Z. Efficiency enhancement in main path extraction in mRNA vaccine field: A novel approach leveraging intermediate patents, with shielding origin and terminus patent edges. Hum Vaccin Immunother 2025; 21:2454078. [PMID: 39838876 DOI: 10.1080/21645515.2025.2454078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/24/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
mRNA vaccines offer groundbreaking technological advantages and broad application potential. Their rapid advancement, particularly during the COVID-19 pandemic, is the result of decades of research and numerous technological breakthroughs. These discoveries build upon each other, forming dense, interconnected networks of progress. Studying the technological development paths of mRNA vaccines is therefore essential. Main path analysis (MPA) is particularly effective for mapping out development trajectories within complex and interconnected networks, which serves as a powerful tool for identifying key nodes and innovations. This study introduces a novel approach to extracting main paths from a patent citation network in the mRNA vaccine field. Initially, we shielded edges connecting the origin and terminus patents. Subsequently, we extracted the main paths from intermediate patents, and then, we reintegrated the edges connecting the origin and terminus patents based on the citation relationships, resulting in a comprehensive extraction of the main paths. The research findings indicate a consistency among the global main paths, global key-route main paths, local forward main paths, and local key-route main paths within the mRNA vaccine field. The patents on the main paths predominantly focus on nucleic acid modifications and delivery systems. The local backward main paths identify a greater number of patents, especially those related to litigation, offering a richer and more diverse set of technological insights. This study significantly advances the methodology of MPA, with the innovative shielding technique offering a fresh perspective for navigating complex networks and providing a deeper understanding of technological development in the mRNA vaccine domain.
Collapse
Affiliation(s)
- Ting Zhang
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zhongquan Jian
- Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian, China
| | - Juan Chen
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Dongzi Xu
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaoyi Yang
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yan Lu
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shu Yan
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Lizi Pan
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | | | - Zhaolian Ouyang
- Institute of Medical Information & Library, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Busch H, Yasir Ateeque M, Taube F, Wiegand T, Corzilius B, Künze G. Probing Biomolecular Interactions with Paramagnetic Nuclear Magnetic Resonance Spectroscopy. Chembiochem 2025; 26:e202400903. [PMID: 39803829 PMCID: PMC11907393 DOI: 10.1002/cbic.202400903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/18/2024] [Indexed: 03/15/2025]
Abstract
Recent advances in computational methods like AlphaFold have transformed structural biology, enabling accurate modeling of protein complexes and driving applications in drug discovery and protein engineering. However, predicting the structure of systems involving weak, transient, or dynamic interactions, or of complexes with disordered regions, remains challenging. Nuclear Magnetic Resonance (NMR) spectroscopy offers atomic-level insights into biomolecular complexes, even in weakly interacting and dynamic systems. Paramagnetic NMR, in particular, provides long-range structural restraints, easily exceeding distances over 25 Å, making it ideal for studying large protein complexes. Advances in chemical tools for introducing paramagnetic tags into proteins, combined with progress in electron paramagnetic resonance (EPR) spectroscopy, have enhanced the method's utility. This perspective article discusses paramagnetic NMR approaches for analyzing biomolecular complexes in solution and in the solid state, emphasizing quantities like pseudocontact shifts, residual dipolar couplings, and paramagnetic relaxation enhancements. Additionally, dynamic nuclear polarization offers a promising method to amplify NMR signals of large complexes, even in complex environments. The integration of AlphaFold protein structure prediction with paramagnetic NMR holds great potential for advancing our understanding of biomolecular interactions.
Collapse
Affiliation(s)
- Hannah Busch
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | | | - Florian Taube
- Institute of Chemistry, Department Life, Light & MatterUniversity of RostockAlbert-Einstein-Str. 2718059RostockGermany
| | - Thomas Wiegand
- Institute of Technical and Macromolecular ChemistryRWTH Aachen UniversityWorringerweg 252074AachenGermany
- Max Planck Institute for Chemical Energy ConversionStiftstr. 34–3645470Mühlheim/RuhrGermany
| | - Björn Corzilius
- Institute of Chemistry, Department Life, Light & MatterUniversity of RostockAlbert-Einstein-Str. 2718059RostockGermany
| | - Georg Künze
- Institute for Drug DiscoveryUniversity of LeipzigBrüderstr. 3404103LeipzigGermany
| |
Collapse
|
3
|
Readnour BM, Tjia-Fleck S, McCann NR, Ayinuola YA, Castellino FJ. High-resolution cryo-EM analysis of a Streptococcus pyogenes M-protein/human plasminogen complex. Structure 2024; 32:2231-2243.e4. [PMID: 39500317 DOI: 10.1016/j.str.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/18/2024] [Accepted: 10/02/2024] [Indexed: 12/08/2024]
Abstract
The importance of human plasminogen (hPg)/plasmin (hPm)/cell receptor complexes in invasiveness of cells has been amply established. The objective of this investigation was to determine a high-resolution structure of a major Group A Streptococcus (GAS) bacterial receptor (PAM) for hPg/hPm when bound on a cell surface to its major ligand, hPg. As a model cell surface with endogenous PAM, we employed engineered PAM-expressing lentivirus (LV) particles. We show that the ectodomain of a PAM-type M-Protein (M-Prt), in complex with hPg, is folded through distinct intra- and inter-domain interactions to a more compact form on the cell surface, thus establishing a new paradigm for membrane-bound M-Prt/ligand structures. These studies provide a framework for addressing the need for treatments of GAS disease by providing a molecular platform to solve structures of virulence-determining membrane proteins.
Collapse
Affiliation(s)
- Bradley M Readnour
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sheiny Tjia-Fleck
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nathan R McCann
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yetunde A Ayinuola
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
4
|
Singh P, Pahari P, Mukherjee S, Karmakar S, Hoffmann M, Mandal T, Das DK. SARS-CoV-2 spike fusion peptide trans interaction with phosphatidylserine lipid triggers membrane fusion for viral entry. mBio 2024; 15:e0107724. [PMID: 39115315 PMCID: PMC11389415 DOI: 10.1128/mbio.01077-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/30/2024] [Indexed: 09/12/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is the fusion machine for host cell entry. Still, the mechanism by which spike protein interacts with the target lipid membrane to facilitate membrane fusion during entry is not fully understood. Here, using steady-state membrane fusion and single-molecule fluorescence resonance energy transfer imaging of spike trimers on the surface of SARS-CoV-2 pseudovirion, we directly show that spike protein interacts with phosphatidylserine (PS) lipid in the target membrane for mediating fusion. We observed that the fusion peptide of the spike S2 domain interacts with the PS lipid of the target membrane. Low pH and Ca2+ trigger the spike conformational change and bring fusion peptide in close proximity to the PS lipid of the membrane. The binding of the spike with PS lipid of its viral membrane (cis interaction) impedes the fusion activation. PS on the target membrane promotes spike binding via trans interaction, prevents the cis interaction, and accelerates fusion. Sequestering or absence of PS lipid abrogates the spike-mediated fusion process and restricts SARS-CoV-2 infectivity. We found that PS-dependent interaction for fusion is conserved across all the SARS-CoV-2 spike variants of concern (D614G, Alpha, Beta, Delta, and Omicron). Our study suggests that PS lipid is indispensable for SARS-CoV-2 spike-mediated virus and target membrane fusion for entry, and restricting PS interaction with spike inhibits the SARS-CoV-2 spike-mediated entry. Therefore, PS is an important cofactor and acts as a molecular beacon in the target membrane for SARS-CoV-2 entry. IMPORTANCE The role of lipids in the host cell target membrane for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry is not clear. We do not know whether SARS-CoV-2 spike protein has any specificity in terms of lipid for membrane fusion reaction. Here, using in vitro reconstitution of membrane fusion assay and single-molecule fluorescence resonance energy transfer imaging of SARS-CoV-2 spike trimers on the surface of the virion, we have demonstrated that phosphatidylserine (PS) lipid plays a key role in SARS-CoV-2 spike-mediated membrane fusion reaction for entry. Membrane-externalized PS lipid strongly promotes spike-mediated membrane fusion and COVID-19 infection. Blocking externalized PS lipid with PS-binding protein or in the absence of PS, SARS-CoV-2 spike-mediated fusion is strongly inhibited. Therefore, PS is an important target for restricting viral entry and intervening spike, and PS interaction presents new targets for COVID-19 interventions.
Collapse
Affiliation(s)
- Puspangana Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Purba Pahari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Srija Mukherjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Sharmistha Karmakar
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland, USA
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, Göttingen, Germany
- Faculty of Biology and Psychology, Georg August University, Göttingen, Germany
| | - Taraknath Mandal
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Dibyendu Kumar Das
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
- Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
5
|
Heo CK, Lim WH, Moon KB, Yang J, Kim SJ, Kim HS, Kim DJ, Cho EW. S2 Peptide-Conjugated SARS-CoV-2 Virus-like Particles Provide Broad Protection against SARS-CoV-2 Variants of Concern. Vaccines (Basel) 2024; 12:676. [PMID: 38932406 PMCID: PMC11209314 DOI: 10.3390/vaccines12060676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Approved COVID-19 vaccines primarily induce neutralizing antibodies targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein. However, the emergence of variants of concern with RBD mutations poses challenges to vaccine efficacy. This study aimed to design a next-generation vaccine that provides broader protection against diverse coronaviruses, focusing on glycan-free S2 peptides as vaccine candidates to overcome the low immunogenicity of the S2 domain due to the N-linked glycans on the S antigen stalk, which can mask S2 antibody responses. Glycan-free S2 peptides were synthesized and attached to SARS-CoV-2 virus-like particles (VLPs) lacking the S antigen. Humoral and cellular immune responses were analyzed after the second booster immunization in BALB/c mice. Enzyme-linked immunosorbent assay revealed the reactivity of sera against SARS-CoV-2 variants, and pseudovirus neutralization assay confirmed neutralizing activities. Among the S2 peptide-conjugated VLPs, the S2.3 (N1135-K1157) and S2.5 (A1174-L1193) peptide-VLP conjugates effectively induced S2-specific serum immunoglobulins. These antisera showed high reactivity against SARS-CoV-2 variant S proteins and effectively inhibited pseudoviral infections. S2 peptide-conjugated VLPs activated SARS-CoV-2 VLP-specific T-cells. The SARS-CoV-2 vaccine incorporating conserved S2 peptides and CoV-2 VLPs shows promise as a universal vaccine capable of generating neutralizing antibodies and T-cell responses against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Chang-Kyu Heo
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Youseong-gu, Daejeon 34141, Republic of Korea; (C.-K.H.); (W.-H.L.)
| | - Won-Hee Lim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Youseong-gu, Daejeon 34141, Republic of Korea; (C.-K.H.); (W.-H.L.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ki-Beom Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (K.-B.M.); (H.-S.K.)
| | - Jihyun Yang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea;
| | - Sang Jick Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea;
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; (K.-B.M.); (H.-S.K.)
| | - Doo-Jin Kim
- Chungbuk National University College of Medicine, 194-15 Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si 28160, Republic of Korea;
| | - Eun-Wie Cho
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Youseong-gu, Daejeon 34141, Republic of Korea; (C.-K.H.); (W.-H.L.)
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Birtles D, Abbas W, Lee J. Bis(Monoacylglycero)Phosphate Promotes Membrane Fusion Facilitated by the SARS-CoV-2 Fusion Domain. J Phys Chem B 2024; 128:2675-2683. [PMID: 38466655 DOI: 10.1021/acs.jpcb.3c07863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Membrane fusion is a critical component of the viral lifecycle. For SARS-CoV-2, fusion is facilitated by the spike glycoprotein and can take place via either the plasma membrane or the endocytic pathway. The fusion domain (FD), which is found within the spike glycoprotein, is primarily responsible for the initiation of fusion as it embeds itself within the target cell's membrane. A preference for SARS-CoV-2 to fuse at low pH akin to the environment of the endocytic pathway has already been established; however, the impact of the target cell's lipid composition on the FD has yet to be explored. Here, we have shown that the SARS-CoV-2 FD preferentially initiates fusion at the late endosomal membrane over the plasma membrane, on the basis of lipid composition alone. A positive, fusogenic relationship with anionic lipids from the plasma membrane (POPS: 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine) and endosomal membrane (BMP: bis(monoacylglycero)phosphate) was established, with a large preference demonstrated for the latter. When comparing the binding affinity and secondary structure of the FD in the presence of different anionic lipids, little deviation was evident while the charge was maintained. However, it was discovered that BMP had a subtle, negative impact on lipid packing in comparison to that of POPS. Furthermore, an inverse relationship between lipid packing and the fusogenecity of the SARS-CoV-2 FD was witnessed. In conclusion, the SARS-CoV-2 FD preferentially initiates fusion at a membrane resembling that of the late endosomal compartment, predominately due to the presence of BMP and its impact on lipid packing.
Collapse
Affiliation(s)
- Daniel Birtles
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, Maryland, United States
| | - Wafa Abbas
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, Maryland, United States
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, Maryland, United States
| |
Collapse
|
7
|
Jin H, Liu D, Ni Y, Wang H, Long D. Quantitative Ensemble Interpretation of Membrane Paramagnetic Relaxation Enhancement (mPRE) for Studying Membrane-Associated Intrinsically Disordered Proteins. J Am Chem Soc 2024; 146:791-800. [PMID: 38146836 DOI: 10.1021/jacs.3c10847] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
An understanding of the functional role played by a membrane-associated intrinsically disordered protein (IDP) requires characterization of its heterogeneous conformations as well as its poses relative to the membranes, which is of great interest but technically challenging. Here, we explore the membrane paramagnetic relaxation enhancement (mPRE) for constructing ensembles of IDPs that dynamically associate with membrane mimetics incorporating spin-labeled lipids. To accurately interpret the mPRE Γ2 rates, both the dynamics of IDPs and spin probe molecules are taken into account, with the latter described by a weighted three-dimensional (3D) grid model built based on all-atom simulations. The IDP internal conformations, orientations, and immersion depths in lipid bilayers are comprehensively optimized in the Γ2-based ensemble modeling. Our approach is tested and validated on the example of POPG bicelle-bound disordered cytoplasmic domain of CD3ε (CD3εCD), a component of the T-cell receptor (TCR) complex. The mPRE-derived CD3εCD ensemble provides new insights into the IDP-membrane fuzzy association, in particular for the tyrosine-based signaling motif that plays a critical role in TCR signaling. The comparative analysis of the ensembles for wild-type CD3εCD and mutants that mimic the mono- and dual-phosphorylation effects suggests a delicate membrane regulatory mechanism for activation and inhibition of the TCR activity.
Collapse
Affiliation(s)
- Hong Jin
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dan Liu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yu Ni
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Hui Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dong Long
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Ramelot TA, Tejero R, Montelione GT. Representing structures of the multiple conformational states of proteins. Curr Opin Struct Biol 2023; 83:102703. [PMID: 37776602 PMCID: PMC10841472 DOI: 10.1016/j.sbi.2023.102703] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 10/02/2023]
Abstract
Biomolecules exhibit dynamic behavior that single-state models of their structures cannot fully capture. We review some recent advances for investigating multiple conformations of biomolecules, including experimental methods, molecular dynamics simulations, and machine learning. We also address the challenges associated with representing single- and multiple-state models in data archives, with a particular focus on NMR structures. Establishing standardized representations and annotations will facilitate effective communication and understanding of these complex models to the broader scientific community.
Collapse
Affiliation(s)
- Theresa A Ramelot
- Dept of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Roberto Tejero
- Dept of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Gaetano T Montelione
- Dept of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
9
|
Aliper ET, Efremov RG. Inconspicuous Yet Indispensable: The Coronavirus Spike Transmembrane Domain. Int J Mol Sci 2023; 24:16421. [PMID: 38003610 PMCID: PMC10671605 DOI: 10.3390/ijms242216421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/07/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Membrane-spanning portions of proteins' polypeptide chains are commonly known as their transmembrane domains (TMDs). The structural organisation and dynamic behaviour of TMDs from proteins of various families, be that receptors, ion channels, enzymes etc., have been under scrutiny on the part of the scientific community for the last few decades. The reason for such attention is that, apart from their obvious role as an "anchor" in ensuring the correct orientation of the protein's extra-membrane domains (in most cases functionally important), TMDs often actively and directly contribute to the operation of "the protein machine". They are capable of transmitting signals across the membrane, interacting with adjacent TMDs and membrane-proximal domains, as well as with various ligands, etc. Structural data on TMD arrangement are still fragmentary at best due to their complex molecular organisation as, most commonly, dynamic oligomers, as well as due to the challenges related to experimental studies thereof. Inter alia, this is especially true for viral fusion proteins, which have been the focus of numerous studies for quite some time, but have provoked unprecedented interest in view of the SARS-CoV-2 pandemic. However, despite numerous structure-centred studies of the spike (S) protein effectuating target cell entry in coronaviruses, structural data on the TMD as part of the entire spike protein are still incomplete, whereas this segment is known to be crucial to the spike's fusogenic activity. Therefore, in attempting to bring together currently available data on the structure and dynamics of spike proteins' TMDs, the present review aims to tackle a highly pertinent task and contribute to a better understanding of the molecular mechanisms underlying virus-mediated fusion, also offering a rationale for the design of novel efficacious methods for the treatment of infectious diseases caused by SARS-CoV-2 and related viruses.
Collapse
Affiliation(s)
- Elena T. Aliper
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Roman G. Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Department of Applied Mathematics, National Research University Higher School of Economics, Moscow 101000, Russia
- L.D. Landau School of Physics, Moscow Institute of Physics and Technology (State University), Dolgoprudny 141701, Russia
| |
Collapse
|
10
|
Birtles D, Lee J. SARS-CoV-2 Fusion Domain Provides Clues toward the Molecular Mechanism for Membrane Fusion. Biochemistry 2023; 62:3033-3035. [PMID: 37862606 DOI: 10.1021/acs.biochem.3c00501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Affiliation(s)
- Daniel Birtles
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
11
|
Zibat A, Zhang X, Dickmanns A, Stegmann KM, Dobbelstein AW, Alachram H, Soliwoda R, Salinas G, Groß U, Görlich D, Kschischo M, Wollnik B, Dobbelstein M. N4-hydroxycytidine, the active compound of Molnupiravir, promotes SARS-CoV-2 mutagenesis and escape from a neutralizing nanobody. iScience 2023; 26:107786. [PMID: 37731621 PMCID: PMC10507161 DOI: 10.1016/j.isci.2023.107786] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/27/2023] [Accepted: 08/28/2023] [Indexed: 09/22/2023] Open
Abstract
N4-hydroxycytidine (NHC), the active compound of the drug Molnupiravir, is incorporated into SARS-CoV-2 RNA, causing false base pairing. The desired result is an "error catastrophe," but this bears the risk of mutated virus progeny. To address this experimentally, we propagated the initial SARS-CoV-2 strain in the presence of NHC. Deep sequencing revealed numerous NHC-induced mutations and host-cell-adapted virus variants. The presence of the neutralizing nanobody Re5D06 selected for immune escape mutations, in particular p.E484K and p.F490S, which are key mutations of the Beta/Gamma and Omicron-XBB strains, respectively. With NHC treatment, nanobody resistance occurred two passages earlier than without. Thus, within the limitations of this purely in vitro study, we conclude that the combined action of Molnupiravir and a spike-neutralizing antagonist leads to the rapid emergence of escape mutants. We propose caution use and supervision when using Molnupiravir, especially when patients are still at risk of spreading virus.
Collapse
Affiliation(s)
- Arne Zibat
- Department of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Xiaoxiao Zhang
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, 53424 Remagen, Germany
- Department of Informatics, Technical University of Munich, 81675 Munich, Germany
| | - Antje Dickmanns
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Kim M. Stegmann
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | | | - Halima Alachram
- Department of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Rebecca Soliwoda
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Gabriela Salinas
- NGS Integrative Genomics Core Unit, Department of Human Genetics, University Medical Center Göttingen, 37077 Göttingen, Germany
| | - Uwe Groß
- Department of Medical Microbiology and Virology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Dirk Görlich
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Maik Kschischo
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, 53424 Remagen, Germany
| | - Bernd Wollnik
- Department of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Matthias Dobbelstein
- Department of Molecular Oncology, Göttingen Center of Molecular Biosciences (GZMB), University Medical Center Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
12
|
Van Doren SR, Scott BS, Koppisetti RK. SARS-CoV-2 fusion peptide sculpting of a membrane with insertion of charged and polar groups. Structure 2023; 31:1184-1199.e3. [PMID: 37625399 PMCID: PMC10592393 DOI: 10.1016/j.str.2023.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
The fusion peptide of SARS-CoV-2 spike is essential for infection. How this charged and hydrophobic domain occupies and affects membranes needs clarification. Its depth in zwitterionic, bilayered micelles at pH 5 (resembling late endosomes) was measured by paramagnetic NMR relaxation enhancements used to bias molecular dynamics simulations. Asp830 inserted deeply, along with Lys825 or Lys835. Protonation of Asp830 appeared to enhance agreement of simulated and NMR-measured depths. While the fusion peptide occupied a leaflet of the DMPC bilayer, the opposite leaflet invaginated with influx of water and choline head groups in around Asp830 and bilayer-inserted polar side chains. NMR-detected hydrogen exchange found corroborating hydration of the backbone of Thr827-Phe833 inserted deeply in bicelles. Pinching of the membrane at the inserted charge and the intramembrane hydration of polar groups agree with theory. Formation of corridors of hydrated, inward-turned head groups was accompanied by flip-flop of head groups. Potential roles of the defects are discussed.
Collapse
Affiliation(s)
- Steven R Van Doren
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA; Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA.
| | - Benjamin S Scott
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Rama K Koppisetti
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
13
|
Abdollahi H, Prestegard JH, Valafar H. Computational modeling multiple conformational states of proteins with residual dipolar coupling data. Curr Opin Struct Biol 2023; 82:102655. [PMID: 37454402 DOI: 10.1016/j.sbi.2023.102655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023]
Abstract
Solution nuclear magnetic resonance spectroscopy provides unique opportunities to study the structure and dynamics of biomolecules in aqueous environments. While spin relaxation methods are well recognized for their ability to probe timescales of motion, residual dipolar couplings (RDCs) provide access to amplitudes and directions of motion, characteristics that are important to the function of these molecules. Although observed in the 1960s, the acquisition and computational analysis of RDCs has gained significant momentum in recent years, and particularly applications to motion in proteins have become more numerous. This trend may well continue as RDCs can easily leverage structures produced by new computational methods (e.g., AlphaFold) to produce functional descriptions. In this report, we provide examples and a summary of the ways that RDCs have been used to confirm the existence of internal dynamics, characterize the type of dynamics, and recover atomic-scale structural ensembles that define the full range of conformational sampling.
Collapse
Affiliation(s)
- Hamed Abdollahi
- Department of Computer Science and Engineering, University of South Carolina, 29201, Columbia, SC, USA.
| | - James H Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.
| | - Homayoun Valafar
- Department of Computer Science and Engineering, University of South Carolina, 29201, Columbia, SC, USA.
| |
Collapse
|
14
|
Wu M, Li W, Lin S, Fan J, Cui L, Xiang Y, Li K, Tang L, Duan Y, Chen Z, Yang F, Shui W, Lu G, Lai Y. A Suitable Membrane Distance Regulated by the RBD_ACE2 Interaction is Critical for SARS-CoV-2 Spike-Mediated Viral Invasion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301478. [PMID: 37590389 PMCID: PMC10558659 DOI: 10.1002/advs.202301478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/25/2023] [Indexed: 08/19/2023]
Abstract
The receptor-binding domain (RBD) of spike recognizing the receptor angiotensin-converting enzyme 2 (ACE2) initiates membrane fusion between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and cell membrane. Although the structure of the RBD_ACE2 complex has been well studied, its functional mechanism in membrane fusion is still not fully understood. Here, using an in vitro cell-vesicle content-mixing assay, it is found that the cleavage at the S2' site by thrombin (Thr) protease strongly accelerates membrane fusion, compared to that of cleavage at the S1/S2 site by PreScission (3C) protease. Moreover, mutations at the RBD_ACE2 interface resulted in a positive correlation between binding affinity and fusion probability. In both the cell-vesicle and cell-cell fusion assays, by crosslinking two membranes via the neutravidin (NTV)_biotin interaction or complementary DNA strands, it is found that spike drives membrane fusion in the absence of ACE2, and a suitable distance between two membranes is critical for spike-mediated membrane fusion. Finally, unsuitable membrane crosslinkers significantly inhibited the fusion probability in the presence of ACE2. Taken together, the results suggest that the RBD_ACE2 complex may act as a crosslinker to bridge the viral and cell membranes at a suitable distance, which is critical, but also substitutable for spike-mediated SARS-CoV-2 entry.
Collapse
Affiliation(s)
- Mengdan Wu
- National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Wei Li
- National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Sheng Lin
- West China Hospital Emergency DepartmentState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Jiaqi Fan
- National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Lele Cui
- National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yijuan Xiang
- National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Kaiyu Li
- National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Linwei Tang
- National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Yanping Duan
- West China Hospital Emergency DepartmentState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Zimin Chen
- West China Hospital Emergency DepartmentState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Fanli Yang
- West China Hospital Emergency DepartmentState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Weiwei Shui
- National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Guangwen Lu
- West China Hospital Emergency DepartmentState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Ying Lai
- National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| |
Collapse
|
15
|
Nguyen H, Nguyen HL, Lan PD, Thai NQ, Sikora M, Li MS. Interaction of SARS-CoV-2 with host cells and antibodies: experiment and simulation. Chem Soc Rev 2023; 52:6497-6553. [PMID: 37650302 DOI: 10.1039/d1cs01170g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the devastating global COVID-19 pandemic announced by WHO in March 2020. Through unprecedented scientific effort, several vaccines, drugs and antibodies have been developed, saving millions of lives, but the fight against COVID-19 continues as immune escape variants of concern such as Delta and Omicron emerge. To develop more effective treatments and to elucidate the side effects caused by vaccines and therapeutic agents, a deeper understanding of the molecular interactions of SARS-CoV-2 with them and human cells is required. With special interest in computational approaches, we will focus on the structure of SARS-CoV-2 and the interaction of its spike protein with human angiotensin-converting enzyme-2 (ACE2) as a prime entry point of the virus into host cells. In addition, other possible viral receptors will be considered. The fusion of viral and human membranes and the interaction of the spike protein with antibodies and nanobodies will be discussed, as well as the effect of SARS-CoV-2 on protein synthesis in host cells.
Collapse
Affiliation(s)
- Hung Nguyen
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| | - Hoang Linh Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City 700000, Vietnam
- Faculty of Environmental and Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Pham Dang Lan
- Life Science Lab, Institute for Computational Science and Technology, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, 729110 Ho Chi Minh City, Vietnam
- Faculty of Physics and Engineering Physics, VNUHCM-University of Science, 227, Nguyen Van Cu Street, District 5, 749000 Ho Chi Minh City, Vietnam
| | - Nguyen Quoc Thai
- Dong Thap University, 783 Pham Huu Lau Street, Ward 6, Cao Lanh City, Dong Thap, Vietnam
| | - Mateusz Sikora
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Mai Suan Li
- Institute of Physics, Polish Academy of Sciences, al. Lotnikow 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
16
|
Park SB, Khan M, Chiliveri SC, Hu X, Irvin P, Leek M, Grieshaber A, Hu Z, Jang ES, Bax A, Liang TJ. SARS-CoV-2 omicron variants harbor spike protein mutations responsible for their attenuated fusogenic phenotype. Commun Biol 2023; 6:556. [PMID: 37225764 DOI: 10.1038/s42003-023-04923-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
Since the emergence of the Omicron variants at the end of 2021, they quickly became the dominant variants globally. The Omicron variants may be more easily transmitted compared to the earlier Wuhan and the other variants. In this study, we aimed to elucidate mechanisms of the altered infectivity associated with the Omicron variants. We systemically evaluated mutations located in the S2 sequence of spike and identified mutations that are responsible for altered viral fusion. We demonstrated that mutations near the S1/S2 cleavage site decrease S1/S2 cleavage, resulting in reduced fusogenicity. Mutations in the HR1 and other S2 sequences also affect cell-cell fusion. Based on nuclear magnetic resonance (NMR) studies and in silico modeling, these mutations affect fusogenicity possibly at multiple steps of the viral fusion. Our findings reveal that the Omicron variants have accumulated mutations that contribute to reduced syncytial formation and hence an attenuated pathogenicity.
Collapse
Affiliation(s)
- Seung Bum Park
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Mohsin Khan
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sai Chaitanya Chiliveri
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Xin Hu
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, 20850, USA
| | - Parker Irvin
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Madeleine Leek
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ailis Grieshaber
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zongyi Hu
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, 20892, USA
| | - Eun Sun Jang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, 13620, Republic of Korea
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, 20892, USA
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Gu X, Liu D, Yu Y, Wang H, Long D. Quantitative Paramagnetic NMR-Based Analysis of Protein Orientational Dynamics on Membranes: Dissecting the KRas4B-Membrane Interactions. J Am Chem Soc 2023; 145:10295-10303. [PMID: 37116086 DOI: 10.1021/jacs.3c01597] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Peripheral membrane proteins can adopt distinct orientations on the surfaces of lipid bilayers that are often short-lived and challenging to characterize by conventional experimental methods. Here we describe a robust approach for mapping protein orientational landscapes through quantitative interpretation of paramagnetic relaxation enhancement (PRE) data arising from membrane mimetics with spin-labeled lipids. Theoretical analysis, followed by experimental verification, reveals insights into the distinct properties of the PRE observables that are generally distorted in the case of stably membrane-anchored proteins. To suppress the artifacts, we demonstrate that undistorted Γ2 values can be obtained via transient membrane anchoring, based on which a computational framework is established for deriving accurate orientational ensembles obeying Boltzmann statistics. Application of the approach to KRas4B, a classical peripheral membrane protein whose orientations are critical for its functions and drug design, reveals four distinct orientational states that are close but not identical to those reported previously. Similar orientations are also found for a truncated KRas4B without the hypervariable region (HVR) that can sample a broader range of orientations, suggesting a confinement role of the HVR geometrically prohibiting severe tilting. Comparison of the KRas4B Γ2 rates measured using nanodiscs containing different types of anionic lipids reveals identical Γ2 patterns for the G-domain but different ones for the HVR, indicating only the latter is able to selectively interact with anionic lipids.
Collapse
Affiliation(s)
- Xue Gu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dan Liu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yongkui Yu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Hui Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dong Long
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
18
|
Tan TJC, Mou Z, Lei R, Ouyang WO, Yuan M, Song G, Andrabi R, Wilson IA, Kieffer C, Dai X, Matreyek KA, Wu NC. High-throughput identification of prefusion-stabilizing mutations in SARS-CoV-2 spike. Nat Commun 2023; 14:2003. [PMID: 37037866 PMCID: PMC10086000 DOI: 10.1038/s41467-023-37786-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/31/2023] [Indexed: 04/12/2023] Open
Abstract
Designing prefusion-stabilized SARS-CoV-2 spike is critical for the effectiveness of COVID-19 vaccines. All COVID-19 vaccines in the US encode spike with K986P/V987P mutations to stabilize its prefusion conformation. However, contemporary methods on engineering prefusion-stabilized spike immunogens involve tedious experimental work and heavily rely on structural information. Here, we establish a systematic and unbiased method of identifying mutations that concomitantly improve expression and stabilize the prefusion conformation of the SARS-CoV-2 spike. Our method integrates a fluorescence-based fusion assay, mammalian cell display technology, and deep mutational scanning. As a proof-of-concept, we apply this method to a region in the S2 domain that includes the first heptad repeat and central helix. Our results reveal that besides K986P and V987P, several mutations simultaneously improve expression and significantly lower the fusogenicity of the spike. As prefusion stabilization is a common challenge for viral immunogen design, this work will help accelerate vaccine development against different viruses.
Collapse
Affiliation(s)
- Timothy J C Tan
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zongjun Mou
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ruipeng Lei
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Wenhao O Ouyang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Collin Kieffer
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xinghong Dai
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Kenneth A Matreyek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Nicholas C Wu
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
19
|
Cai M, Tugarinov V, Chaitanya Chiliveri S, Huang Y, Schwieters CD, Mizuuchi K, Clore GM. Interaction of the bacterial division regulator MinE with lipid bicelles studied by NMR spectroscopy. J Biol Chem 2023; 299:103037. [PMID: 36806683 PMCID: PMC10031476 DOI: 10.1016/j.jbc.2023.103037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
The bacterial MinE and MinD division regulatory proteins form a standing wave enabling MinC, which binds MinD, to inhibit FtsZ polymerization everywhere except at the midcell, thereby assuring correct positioning of the cytokinetic septum and even distribution of contents to daughter cells. The MinE dimer undergoes major structural rearrangements between a resting six-stranded state present in the cytoplasm, a membrane-bound state, and a four-stranded active state bound to MinD on the membrane, but it is unclear which MinE motifs interact with the membrane in these different states. Using NMR, we probe the structure and global dynamics of MinE bound to disc-shaped lipid bicelles. In the bicelle-bound state, helix α1 no longer sits on top of the six-stranded β-sheet, losing any contact with the protein core, but interacts directly with the bicelle surface; the structure of the protein core remains unperturbed and also interacts with the bicelle surface via helix α2. Binding may involve a previously identified excited state of free MinE in which helix α1 is disordered, thereby allowing it to target the membrane surface. Helix α1 and the protein core undergo nanosecond rigid body motions of differing amplitudes in the plane of the bicelle surface. Global dynamics on the sub-millisecond time scale between a ground state and a sparsely populated excited state are also observed and may represent a very early intermediate on the transition path between the resting six-stranded and active four-stranded conformations. In summary, our results provide insights into MinE structural rearrangements important during bacterial cell division.
Collapse
Affiliation(s)
- Mengli Cai
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Vitali Tugarinov
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Sai Chaitanya Chiliveri
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ying Huang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Charles D Schwieters
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; Computational Biomolecular Magnetic Resonance Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kyoshi Mizuuchi
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
20
|
Sardar A, Bera T, Kumar Samal S, Dewangan N, Kamble M, Guha S, Tarafdar PK. C-Terminal Lipidation of SARS-CoV-2 Fusion Peptide Reinstates Superior Membrane Fusion Catalytic Ability. Chemistry 2023; 29:e202203034. [PMID: 36422064 DOI: 10.1002/chem.202203034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
The spike (S) protein of severe acute respiratory syndrome-associated coronavirus-2 (SARS-CoV-2) mediates a critical stage in infection, the fusion between viral and host membranes. The protein is categorized as a class I viral fusion protein and has two distinct cleavage sites that can be activated by proteases. The activation deploys the fusion peptide (FP) for insertion into the target cell membranes. Recent studies including our experiments showed that the FP was unable to modulate the kinetics of fusion at a low peptide-to-lipid ratio akin to the spike density at the viral surface. Therefore, we modified the C terminus of FP and attached a myristoyl chain (C-myr-FP) to restrict the C terminus near to the interface, bridge both membranes, and increase the effective local concentration. The lipidated FP (C-myr-FP) of SARS-CoV-2 greatly accelerates membrane fusion at a low peptide-to-lipid ratio as compared to the FP with no lipidation. Biophysical experiments suggest that C-myr-FP adopts a helical structure, perturbs the membrane interface, and increases water penetration to catalyze fusion. Scrambled peptide (C-myr-sFP) and truncated peptide (C-myr-8FP) could not significantly catalyze the fusion, thus suggesting the important role of myristoylation and the N terminus. C-myr-FP enhances murine coronavirus infection by promoting syncytia formation in L2 cells. The C-terminal lipidation of the FP might be a useful strategy to induce artificial fusion in biomedical applications.
Collapse
Affiliation(s)
- Avijit Sardar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| | - Tapas Bera
- Department of Chemistry, Jadavpur University, 700032, Kolkata, India
| | - Santosh Kumar Samal
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| | - Nikesh Dewangan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| | - Mithila Kamble
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| | - Samit Guha
- Department of Chemistry, Jadavpur University, 700032, Kolkata, India
| | - Pradip K Tarafdar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| |
Collapse
|
21
|
Samsudin F, Raghuvamsi P, Petruk G, Puthia M, Petrlova J, MacAry P, Anand GS, Bond PJ, Schmidtchen A. SARS-CoV-2 spike protein as a bacterial lipopolysaccharide delivery system in an overzealous inflammatory cascade. J Mol Cell Biol 2023; 14:6761401. [PMID: 36240490 PMCID: PMC9940780 DOI: 10.1093/jmcb/mjac058] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/11/2022] [Indexed: 11/14/2022] Open
Abstract
Accumulating evidence indicates a potential role for bacterial lipopolysaccharide (LPS) in the overactivation of the immune response during SARS-CoV-2 infection. LPS is recognized by Toll-like receptor 4, mediating proinflammatory effects. We previously reported that LPS directly interacts with SARS-CoV-2 spike (S) protein and enhances proinflammatory activities. Using native gel electrophoresis and hydrogen-deuterium exchange mass spectrometry, we showed that LPS binds to multiple hydrophobic pockets spanning both the S1 and S2 subunits of the S protein. Molecular simulations validated by a microscale thermophoresis binding assay revealed that LPS binds to the S2 pocket with a lower affinity compared to S1, suggesting a role as an intermediate in LPS transfer. Congruently, nuclear factor-kappa B (NF-κB) activation in monocytic THP-1 cells is strongly boosted by S2. Using NF-κB reporter mice followed by bioimaging, a boosting effect was observed for both S1 and S2, with the former potentially facilitated by proteolysis. The Omicron S variant binds to LPS, but with reduced affinity and LPS boosting in vitro and in vivo. Taken together, the data provide a molecular mechanism by which S protein augments LPS-mediated hyperinflammation.
Collapse
Affiliation(s)
- Firdaus Samsudin
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Palur Raghuvamsi
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Ganna Petruk
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Manoj Puthia
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Jitka Petrlova
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | - Paul MacAry
- Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore 117546, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.,Department of Chemistry, The Pennsylvania State University, PA 16801, USA
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden.,Copenhagen Wound Healing Center, Bispebjerg Hospital, Department of Biomedical Sciences, University of Copenhagen, DK-2400 Copenhagen, Denmark
| |
Collapse
|
22
|
Brogna C, Cristoni S, Brogna B, Bisaccia DR, Marino G, Viduto V, Montano L, Piscopo M. Toxin-like Peptides from the Bacterial Cultures Derived from Gut Microbiome Infected by SARS-CoV-2-New Data for a Possible Role in the Long COVID Pattern. Biomedicines 2022; 11:87. [PMID: 36672595 PMCID: PMC9855837 DOI: 10.3390/biomedicines11010087] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
It has been 3 years since the beginning of the SARS-CoV-2 outbreak, however it is as yet little known how to care for the acute COVID-19 and long COVID patients. COVID-19 clinical manifestations are of both pulmonary and extra-pulmonary types. Extra-pulmonary ones include extreme tiredness (fatigue), shortness of breath, muscle aches, hyposmia, dysgeusia, and other neurological manifestations. In other autoimmune diseases, such as Parkinson's disease (PD) or Alzheimer's Disease (AD), it is well known that role of acetylcholine is crucial in olfactory dysfunction. We have already observed the presence of toxin-like peptides in plasma, urine, and faecal samples from COVID-19 patients, which are very similar to molecules known to alter acetylcholine signaling. After observing the production of these peptides in bacterial cultures, we have performed additional proteomics analyses to better understand their behavior and reported the extended data from our latest in vitro experiment. It seems that the gut microbiome continues to produce toxin-like peptides also after the decrease of RNA SARS-CoV-2 viral load at molecular tests. These toxicological interactions between the gut/human microbiome bacteria and the virus suggest a new scenario in the study of the clinical symptoms in long COVID and also in acute COVID-19 patients. It is discussed that in the bacteriophage similar behavior, the presence of toxins produced by bacteria continuously after viral aggression can be blocked using an appropriate combination of certain drugs.
Collapse
Affiliation(s)
- Carlo Brogna
- Department of Research, Craniomed Group Facility Srl., 20091 Bresso, Italy
| | | | - Barbara Brogna
- Department of Radiology, Moscati Hospital, Contrada Amoretta, 83100 Avellino, Italy
| | | | - Giuliano Marino
- Marsanconsulting Srl. Public Health Company, Via dei Fiorentini, 80133 Napoli, Italy
| | | | - Luigi Montano
- Andrology Unit and Service of Life Style Medicine in Uro-Andrology, Local Health Authority (ASL), 84124 Salerno, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| |
Collapse
|
23
|
Polo-Megías D, Cano-Muñoz M, Berruezo AG, Laumond G, Moog C, Conejero-Lara F. Exploring Highly Conserved Regions of SARS-CoV-2 Spike S2 Subunit as Targets for Fusion Inhibition Using Chimeric Proteins. Int J Mol Sci 2022; 23:ijms232415511. [PMID: 36555153 PMCID: PMC9778920 DOI: 10.3390/ijms232415511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Since the beginning of the COVID-19 pandemic, considerable efforts have been made to develop protective vaccines against SARS-CoV-2 infection. However, immunity tends to decline within a few months, and new virus variants are emerging with increased transmissibility and capacity to evade natural or vaccine-acquired immunity. Therefore, new robust strategies are needed to combat SARS-CoV-2 infection. The viral spike composed of S1 and S2 subunits mediates viral attachment and membrane fusion to infect the host cell. In this process, interaction between the highly conserved heptad repeat 1 and 2 regions (HR1 and HR2) of S2 is crucial and for this reason; these regions are promising targets to fight SARS-CoV-2. Here, we describe the design and characterization of chimeric proteins that structurally imitate the S2 HR1 region in a trimeric coiled-coil conformation. We biophysically characterized the proteins and determined their capacity to bind the HR2 region, as well as their inhibitory activity of SARS-CoV-2 infection in vitro. HR1 mimetic proteins showed conformational heterogeneity and a propensity to form oligomers. Moreover, their structure is composed of subdomains with varied stability. Interestingly, the full HR1 proteins showed high affinity for HR2-derived peptides and SARS-CoV-2 inhibitory activity, whereas smaller proteins mimicking HR1 subdomains had a decreased affinity for their complementary HR2 region and did not inhibit the virus. The results provide insight into effective strategies to create mimetic proteins with broad inhibitory activity and therapeutic potential against SARS-CoV-2.
Collapse
Affiliation(s)
- Daniel Polo-Megías
- Departamento de Química Física, Instituto de Biotecnología y Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Mario Cano-Muñoz
- Departamento de Química Física, Instituto de Biotecnología y Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Alberto G Berruezo
- Departamento de Química Física, Instituto de Biotecnología y Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| | - Géraldine Laumond
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, F-67000 Strasbourg, France
| | - Christiane Moog
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, F-67000 Strasbourg, France
- Vaccine Research Institute (VRI), F-94000 Créteil, France
| | - Francisco Conejero-Lara
- Departamento de Química Física, Instituto de Biotecnología y Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
24
|
Pang W, Lu Y, Zhao YB, Shen F, Fan CF, Wang Q, He WQ, He XY, Li ZK, Chen TT, Yang CX, Li YZ, Xiao SX, Zhao ZJ, Huang XS, Luo RH, Yang LM, Zhang M, Dong XQ, Li MH, Feng XL, Zhou QC, Qu W, Jiang S, Ouyang S, Zheng YT. A variant-proof SARS-CoV-2 vaccine targeting HR1 domain in S2 subunit of spike protein. Cell Res 2022; 32:1068-1085. [PMID: 36357786 PMCID: PMC9648449 DOI: 10.1038/s41422-022-00746-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
The emerging SARS-CoV-2 variants, commonly with many mutations in S1 subunit of spike (S) protein are weakening the efficacy of the current vaccines and antibody therapeutics. This calls for the variant-proof SARS-CoV-2 vaccines targeting the more conserved regions in S protein. Here, we designed a recombinant subunit vaccine, HR121, targeting the conserved HR1 domain in S2 subunit of S protein. HR121 consisting of HR1-linker1-HR2-linker2-HR1, is conformationally and functionally analogous to the HR1 domain present in the fusion intermediate conformation of S2 subunit. Immunization with HR121 in rabbits and rhesus macaques elicited highly potent cross-neutralizing antibodies against SARS-CoV-2 and its variants, particularly Omicron sublineages. Vaccination with HR121 achieved near-full protections against prototype SARS-CoV-2 infection in hACE2 transgenic mice, Syrian golden hamsters and rhesus macaques, and effective protection against Omicron BA.2 infection in Syrian golden hamsters. This study demonstrates that HR121 is a promising candidate of variant-proof SARS-CoV-2 vaccine with a novel conserved target in the S2 subunit for application against current and future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Wei Pang
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Ying Lu
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Yan-Bo Zhao
- grid.411503.20000 0000 9271 2478The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian China
| | - Fan Shen
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Chang-Fa Fan
- grid.410749.f0000 0004 0577 6238Division of Animal Model Research, Institute for Laboratory Animal Resources, National Institutes for Food and Drug Control, Beijing, China
| | - Qian Wang
- grid.8547.e0000 0001 0125 2443Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wen-Qiang He
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yan He
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Ze-Kai Li
- grid.411503.20000 0000 9271 2478The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian China
| | - Tao-Tao Chen
- grid.411503.20000 0000 9271 2478The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian China
| | - Cui-Xian Yang
- grid.508267.eYunnan Provincial Infectious Disease Hospital, Kunming, Yunnan China
| | - You-Zhi Li
- grid.411503.20000 0000 9271 2478The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian China
| | - Si-Xuan Xiao
- grid.411503.20000 0000 9271 2478The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian China
| | - Zu-Jiang Zhao
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Xu-Sheng Huang
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China ,grid.410726.60000 0004 1797 8419University of the Chinese Academy of Sciences, Beijing, China
| | - Rong-Hua Luo
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Liu-Meng Yang
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Mi Zhang
- grid.508267.eYunnan Provincial Infectious Disease Hospital, Kunming, Yunnan China
| | - Xing-Qi Dong
- grid.508267.eYunnan Provincial Infectious Disease Hospital, Kunming, Yunnan China
| | - Ming-Hua Li
- grid.9227.e0000000119573309Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Xiao-Li Feng
- grid.9227.e0000000119573309Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Qing-Cui Zhou
- grid.9227.e0000000119573309Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Wang Qu
- grid.9227.e0000000119573309Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Songying Ouyang
- The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China.
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China. .,University of the Chinese Academy of Sciences, Beijing, China. .,Kunming National High-level Biosafety Research Center for Non-human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
25
|
Jang Y, Young Kim T, Jeon S, Lim H, Lee J, Kim S, Justin Lee C, Han S. Synthesis and structure-activity relationship study of saponin-based membrane fusion inhibitors against SARS-CoV-2. Bioorg Chem 2022; 127:105985. [PMID: 35809512 PMCID: PMC9233891 DOI: 10.1016/j.bioorg.2022.105985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022]
Abstract
We previously discovered that triterpenoid saponin platycodin D inhibits the SARS-CoV-2 entry to the host cell. Herein, we synthesized various saponin derivatives and established a structure-activity relationship of saponin-based antiviral agents against SARS-CoV-2. We discovered that the C3-glucose, the C28-oligosaccharide moiety that consist of (→3)-β-d-Xyl-(1 → 4)-α-l-Rham-(1 → 2)-β-d-Ara-(1 → ) as the last three sugar units, and the C16-hydroxyl group were critical components of saponin-based coronavirus cell entry inhibitors. These findings enabled us to develop minimal saponin-based antiviral agents that are equipotent to the originally discovered platycodin D. We found that our saponin-based antiviral agents inhibited both the endosomal and transmembrane protease serine 2-mediated cell surface viral entries. Cell fusion assay experiment revealed that our newly developed compounds inhibit the SARS-CoV-2 entry by blocking the fusion between the viral and host cell membranes. The effectiveness of the newly developed antiviral agents over various SARS-CoV-2 variants hints at the broad-spectrum antiviral efficacy of saponin-based therapeutics against future coronavirus variants.
Collapse
Affiliation(s)
- Youngho Jang
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - Tai Young Kim
- Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon 34126, Republic of Korea
| | - Sangeun Jeon
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Republic of Korea
| | - Hyeonggeun Lim
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea
| | - JinAh Lee
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Republic of Korea
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam 13488, Republic of Korea.
| | - C. Justin Lee
- Center for Cognition and Sociality, Cognitive Glioscience Group, Institute for Basic Science, Daejeon 34126, Republic of Korea,Corresponding authors
| | - Sunkyu Han
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, South Korea.
| |
Collapse
|
26
|
Tan TJ, Mou Z, Lei R, Ouyang WO, Yuan M, Song G, Andrabi R, Wilson IA, Kieffer C, Dai X, Matreyek KA, Wu NC. High-throughput identification of prefusion-stabilizing mutations in SARS-CoV-2 spike. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.24.509341. [PMID: 36203547 PMCID: PMC9536033 DOI: 10.1101/2022.09.24.509341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Designing prefusion-stabilized SARS-CoV-2 spike is critical for the effectiveness of COVID-19 vaccines. All COVID-19 vaccines in the US encode spike with K986P/V987P mutations to stabilize its prefusion conformation. However, contemporary methods on engineering prefusion-stabilized spike immunogens involve tedious experimental work and heavily rely on structural information. Here, we established a systematic and unbiased method of identifying mutations that concomitantly improve expression and stabilize the prefusion conformation of the SARS-CoV-2 spike. Our method integrated a fluorescence-based fusion assay, mammalian cell display technology, and deep mutational scanning. As a proof-of-concept, this method was applied to a region in the S2 domain that includes the first heptad repeat and central helix. Our results revealed that besides K986P and V987P, several mutations simultaneously improved expression and significantly lowered the fusogenicity of the spike. As prefusion stabilization is a common challenge for viral immunogen design, this work will help accelerate vaccine development against different viruses.
Collapse
Affiliation(s)
- Timothy J.C. Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zongjun Mou
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ruipeng Lei
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenhao O. Ouyang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Collin Kieffer
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xinghong Dai
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kenneth A. Matreyek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Nicholas C. Wu
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
27
|
Birtles D, Oh AE, Lee J. Exploring the
pH
dependence of the
SARS‐CoV
‐2 complete fusion domain and the role of its unique structural features. Protein Sci 2022. [PMCID: PMC9538437 DOI: 10.1002/pro.4390] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
SARS‐CoV‐2 may enter target cells through the process of membrane fusion at either the plasma (~pH 7.4–7.0) or endosomal (~pH 6.5–5.0) membrane in order to deliver its genetic information. The fusion domain (FD) of the spike glycoprotein is responsible for initiating fusion and is thus integral to the viral life cycle. The FD of SARS‐CoV‐2 is unique in that it consists of two structurally distinctive regions referred to as the fusion peptide (FP) and the fusion loop (FL); yet the molecular mechanisms behind how this FD perturbs the membrane to initiate fusion remains unclear. In this study via solution NMR, we witnessed only a slight conformational change in the FD between pH 7.4 and pH 5.0, resulting in a minor elongation of helix 1. However, we found that the FD's ability to mediate membrane fusion has a large and significant pH dependence, with fusion events being more readily induced at low pH. Interestingly, a biphasic relationship between the environmental pH and fusogenicity was discovered, suggesting a preference for the FD to initiate fusion at the late endosomal membrane. Furthermore, the conserved disulfide bond and hydrophobic motif “LLF” were found to be critical for the function of the complete FD, with minimal activity witnessed when either was perturbed. In conclusion, these findings indicate that the SARS‐CoV‐2 FD preferably initiates fusion at a pH similar to the late endosome through a mechanism that heavily relies on the internal disulfide bond of the FL and hydrophobic LLF motif within the FP.
Collapse
Affiliation(s)
- Daniel Birtles
- Department of Chemistry and Biochemistry University of Maryland College Park Maryland USA
| | - Anna E. Oh
- Department of Chemistry and Biochemistry University of Maryland College Park Maryland USA
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry University of Maryland College Park Maryland USA
| |
Collapse
|
28
|
Chiliveri SC, Louis JM, Best RB, Bax A. Real-time Exchange of the Lipid-bound Intermediate and Post-fusion States of the HIV-1 gp41 Ectodomain. J Mol Biol 2022; 434:167683. [PMID: 35700771 PMCID: PMC9378563 DOI: 10.1016/j.jmb.2022.167683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
The envelope glycoprotein gp41 of the HIV-1 virus mediates its entry into the host cell. During this process, gp41 undergoes large conformational changes and the energy released in the remodeling events is utilized to overcome the barrier associated with fusing the viral and host membranes. Although the structural intermediates of this fusion process are attractive targets for drug development, no detailed high-resolution structural information or quantitative thermodynamic characterization are available. By measuring the dynamic equilibrium between the lipid-bound intermediate and the post-fusion six-helical bundle (6HB) states of the gp41 ectodomain in the presence of bilayer membrane mimetics, we derived both the reaction kinetics and energies associated with these two states by solution NMR spectroscopy. At equilibrium, an exchange time constant of about 12 seconds at 38 °C is observed, and the post-fusion conformation is energetically more stable than the lipid-bound state by 3.4 kcal mol-1. The temperature dependence of the kinetics indicates that the folding occurs through a high-energy transition state which may resemble a 5HB structure. The energetics and kinetics of gp41 folding in the context of membrane bilayers provide a molecular basis for an improved understanding of viral membrane fusion.
Collapse
Affiliation(s)
- Sai Chaitanya Chiliveri
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA. https://twitter.com/SaiChiliveri
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Aliper ET, Krylov NA, Nolde DE, Polyansky AA, Efremov RG. A Uniquely Stable Trimeric Model of SARS-CoV-2 Spike Transmembrane Domain. Int J Mol Sci 2022; 23:ijms23169221. [PMID: 36012488 PMCID: PMC9409440 DOI: 10.3390/ijms23169221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
Understanding fusion mechanisms employed by SARS-CoV-2 spike protein entails realistic transmembrane domain (TMD) models, while no reliable approaches towards predicting the 3D structure of transmembrane (TM) trimers exist. Here, we propose a comprehensive computational framework to model the spike TMD only based on its primary structure. We performed amino acid sequence pattern matching and compared the molecular hydrophobicity potential (MHP) distribution on the helix surface against TM homotrimers with known 3D structures and selected an appropriate template for homology modeling. We then iteratively built a model of spike TMD, adjusting “dynamic MHP portraits” and residue variability motifs. The stability of this model, with and without palmitoyl modifications downstream of the TMD, and several alternative configurations (including a recent NMR structure), was tested in all-atom molecular dynamics simulations in a POPC bilayer mimicking the viral envelope. Our model demonstrated unique stability under the conditions applied and conforms to known basic principles of TM helix packing. The original computational framework looks promising and could potentially be employed in the construction of 3D models of TM trimers for a wide range of membrane proteins.
Collapse
Affiliation(s)
- Elena T. Aliper
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
| | - Nikolay A. Krylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Dmitry E. Nolde
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Anton A. Polyansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Campus Vienna BioCenter 5, A-1030 Vienna, Austria
| | - Roman G. Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia
- National Research University Higher School of Economics, 101000 Moscow, Russia
- Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
- Correspondence:
| |
Collapse
|
30
|
Zuzic L, Samsudin F, Shivgan AT, Raghuvamsi PV, Marzinek JK, Boags A, Pedebos C, Tulsian NK, Warwicker J, MacAry P, Crispin M, Khalid S, Anand GS, Bond PJ. Uncovering cryptic pockets in the SARS-CoV-2 spike glycoprotein. Structure 2022; 30:1062-1074.e4. [PMID: 35660160 PMCID: PMC9164293 DOI: 10.1016/j.str.2022.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/19/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022]
Abstract
The COVID-19 pandemic has prompted a rapid response in vaccine and drug development. Herein, we modeled a complete membrane-embedded SARS-CoV-2 spike glycoprotein and used molecular dynamics simulations with benzene probes designed to enhance discovery of cryptic pockets. This approach recapitulated lipid and host metabolite binding sites previously characterized by cryo-electron microscopy, revealing likely ligand entry routes, and uncovered a novel cryptic pocket with promising druggable properties located underneath the 617-628 loop. A full representation of glycan moieties was essential to accurately describe pocket dynamics. A multi-conformational behavior of the 617-628 loop in simulations was validated using hydrogen-deuterium exchange mass spectrometry experiments, supportive of opening and closing dynamics. The pocket is the site of multiple mutations associated with increased transmissibility found in SARS-CoV-2 variants of concern including Omicron. Collectively, this work highlights the utility of the benzene mapping approach in uncovering potential druggable sites on the surface of SARS-CoV-2 targets.
Collapse
Affiliation(s)
- Lorena Zuzic
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore; Department of Chemistry, Faculty of Science and Engineering, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| | - Firdaus Samsudin
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore
| | - Aishwary T Shivgan
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore
| | - Palur V Raghuvamsi
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Jan K Marzinek
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore
| | - Alister Boags
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore; School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Conrado Pedebos
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Nikhil K Tulsian
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; Department of Biochemistry, National University of Singapore, Singapore 117546, Singapore
| | - Jim Warwicker
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
| | - Paul MacAry
- Life Sciences Institute, Centre for Life Sciences, National University of Singapore, Singapore 117546, Singapore
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK; Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A∗STAR), Singapore 138671, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
31
|
Tran A, Kervin TA, Overduin M. Multifaceted membrane binding head of the SARS-CoV-2 spike protein. Curr Res Struct Biol 2022; 4:146-157. [PMID: 35602928 PMCID: PMC9109970 DOI: 10.1016/j.crstbi.2022.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/04/2022] [Accepted: 05/05/2022] [Indexed: 12/23/2022] Open
Abstract
The SARS-CoV-2 spike protein presents a surface with enormous membrane binding potential to host tissues and organelles of infected cells. Its exposed trimeric head binds not only the angiotensin-converting enzyme 2 (ACE2), but also host phospholipids which are missing from all existing structures. Hence, the membrane interaction surfaces that mediate viral fusion, entry, assembly and egress remain unclear. Here the spike:membrane docking sites are identified based on membrane optimal docking area (MODA) analysis of 3D structures of spike proteins in closed and open conformations at endocytic and neutral pH levels as well as ligand complexes. This reveals multiple membrane binding sites in the closed spike head that together prefer convex membranes and are modulated by pH, fatty acids and post-translational modifications including glycosylation. The exposure of the various membrane interaction sites adjusts upon domain repositioning within the trimer, allowing formation of intermediate bilayer complexes that lead to the prefusion state while also enabling ACE2 receptor recognition. In contrast, all antibodies that target the spike head would block the membrane docking process that precedes ACE2 recognition. Together this illuminates the engagements of the spike protein with plasma, endocytic, ER or exocytic vesicle membranes that help to drive the cycle of viral infection, and offers novel sites for intervention.
Collapse
Affiliation(s)
- Anh Tran
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Troy A. Kervin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|