1
|
Beavan AJS, Thuburn V, Fatkhullin B, Cunningham J, Hopes TS, Dimascio E, Chan T, Zhao N, Norris K, Chau C, Vasconcelos EJR, Wood A, Whitehouse A, Actis P, Davies B, Fontana J, O'Connell MJ, Thomson E, Aspden JL. Specialized ribosomes: integrating new insights and current challenges. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230377. [PMID: 40045788 PMCID: PMC11883436 DOI: 10.1098/rstb.2023.0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/25/2024] [Accepted: 12/11/2024] [Indexed: 03/09/2025] Open
Abstract
Variation in the composition of different ribosomes, termed ribosome heterogeneity, is a now well established phenomenon. However, the functional implications of this heterogeneity on the regulation of protein synthesis are only now beginning to be revealed. While there are numerous examples of heterogeneous ribosomes, there are comparatively few bona fide specialized ribosomes described. Specialization requires that compositionally distinct ribosomes, through their subtly altered structure, have a functional consequence to the translational output. Even for those examples of ribosome specialization that have been characterized, the precise mechanistic details of how changes in protein and rRNA composition enable the ribosome to regulate translation are still missing. Here, we suggest looking at the evolution of specialization across the tree of life may help reveal central principles of translation regulation. We consider functional and structural studies that have provided insight into the potential mechanisms through which ribosome heterogeneity could affect translation, including through mRNA and open reading frame selectivity, elongation dynamics and post-translational folding. Further, we highlight some of the challenges that must be addressed to show specialization and review the contribution of various models. Several studies are discussed, including recent studies that show how structural insight is starting to shed light on the molecular details of specialization. Finally, we discuss the future of ribosome specialization studies, where advances in technology will likely enable the next wave of research questions. Recent work has helped provide a more comprehensive understanding of how ribosome heterogeneity affects translational control.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Alan J. S. Beavan
- Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of NottinghamNG7 2RD, UK
| | - Veronica Thuburn
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Bulat Fatkhullin
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
| | - Joanne Cunningham
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Tayah S. Hopes
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Ella Dimascio
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
| | - Tessa Chan
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Nan Zhao
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Karl Norris
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Chalmers Chau
- School of Electronic and Electrical Engineering, University of Leeds, LeedsLS2 9JT, UK
- Bragg Centre for Materials Research, University of Leeds, LeedsLS2 9JT, UK
| | | | - Alison Wood
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Adrian Whitehouse
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| | - Paolo Actis
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
- School of Electronic and Electrical Engineering, University of Leeds, LeedsLS2 9JT, UK
- Bragg Centre for Materials Research, University of Leeds, LeedsLS2 9JT, UK
| | - Brendan Davies
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
| | - Juan Fontana
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
| | - Mary J. O'Connell
- Computational and Molecular Evolutionary Biology Group, School of Life Sciences, Faculty of Medicine and Health Sciences, University of NottinghamNG7 2RD, UK
| | - Emma Thomson
- School of Biosciences, Faculty of Science, University of Sheffield, SheffieldS10 2TN, UK
| | - Julie L. Aspden
- Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
| |
Collapse
|
2
|
Aspden J, Faller WJ, Barna M, Lund A. Ribosome heterogeneity and specialization. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230375. [PMID: 40045789 PMCID: PMC11883428 DOI: 10.1098/rstb.2023.0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 03/09/2025] Open
Affiliation(s)
- Julie Aspden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, UK
- LeedsOmics, University of Leeds, LeedsLS2 9JT, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | - Anders Lund
- Biotech Research and Innovation Centre, University of Copenhagen, KobenhavnDK-2200, Denmark
| |
Collapse
|
3
|
Martinez-Seidel F, Suwanchaikasem P, Gentry-Torfer D, Rajarathinam Y, Ebert A, Erban A, Firmino A, Nie S, Leeming M, Williamson N, Roessner U, Kopka J, Boughton BA. Remodelled ribosomal populations synthesize a specific proteome in proliferating plant tissue during cold. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230384. [PMID: 40045790 PMCID: PMC11883437 DOI: 10.1098/rstb.2023.0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/21/2024] [Accepted: 09/11/2024] [Indexed: 03/09/2025] Open
Abstract
Plant acclimation occurs through system-wide mechanisms that include proteome shifts, some of which occur at the level of protein synthesis. All proteins are synthesized by ribosomes. Rather than being monolithic, transcript-to-protein translation machines, ribosomes can be selective and cause proteome shifts. In this study, we use apical root meristems of germinating seedlings of the monocotyledonous plant barley as a model to examine changes in protein abundance and synthesis during cold acclimation. We measured metabolic and physiological parameters that allowed us to compare protein synthesis in the cold to optimal rearing temperatures. We demonstrated that the synthesis and assembly of ribosomal proteins are independent processes in root proliferative tissue. We report the synthesis and accumulation of various macromolecular complexes and propose how ribosome compositional shifts may be associated with functional proteome changes that are part of successful cold acclimation. Our study indicates that translation initiation is limiting during cold acclimation while the ribosome population is remodelled. The distribution of the triggered ribosomal protein heterogeneity suggests that altered compositions may confer 60S subunits selective association capabilities towards translation initiation complexes. To what extent selective translation depends on heterogeneous ribo-proteome compositions in barley proliferative root tissue remains a yet unresolved question.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Federico Martinez-Seidel
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO, USA
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pipob Suwanchaikasem
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Dione Gentry-Torfer
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Yogeswari Rajarathinam
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alina Ebert
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Alexander Erban
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Alexandre Firmino
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Shuai Nie
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Leeming
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas Williamson
- Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Research School of Biology, The Australian National University, Acton, Australia
| | - Joachim Kopka
- Molecular Physiology Department, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Berin A. Boughton
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- La Trobe Institute of Sustainable Agriculture and Food, La Trobe University, Bundoora, Victoria3083, Australia
| |
Collapse
|
4
|
Gugnoni M, Kashyap MK, Wary KK, Ciarrocchi A. lncRNAs: the unexpected link between protein synthesis and cancer adaptation. Mol Cancer 2025; 24:38. [PMID: 39891197 PMCID: PMC11783725 DOI: 10.1186/s12943-025-02236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
Cancer progression relies on the ability of cells to adapt to challenging environments overcoming stresses and growth constraints. Such adaptation is a multifactorial process that depends on the rapid reorganization of many basic cellular mechanisms. Protein synthesis is often dysregulated in cancer, and translational reprogramming is emerging as a driving force of cancer adaptive plasticity. Long non-coding RNAs (lncRNAs) represent the main product of genome transcription. They outnumber mRNAs by an order of magnitude and their expression is regulated in an extremely specific manner depending on context, space and time. This heterogeneity is functional and allows lncRNAs to act as context-specific, fine-tuning controllers of gene expression. Multiple recent evidence underlines how, besides their consolidated role in transcription, lncRNAs are major players in translation control. Their capacity to establish multiple and highly dynamic interactions with proteins and other transcripts makes these molecules able to play a central role across all phases of protein synthesis. Even if through a myriad of different mechanisms, the action of these transcripts is dual. On one hand, by modulating the overall translation speed, lncRNAs participate in the process of metabolic adaptation of cancer cells under stress conditions. On the other hand, by prioritizing the synthesis of specific transcripts they help cancer cells to maintain high levels of essential oncogenes. In this review, we aim to discuss the most relevant evidence regarding the involvement of lncRNAs in translation regulation and to discuss how this specific function may affect cancer plasticity and resistance to stress. We also expect to provide one of the first collective perspectives on the way these transcripts modulate gene expression beyond transcription.
Collapse
Affiliation(s)
- Mila Gugnoni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Manoj Kumar Kashyap
- Molecular Oncology Laboratory, Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon (Manesar), Gurugram, Haryana, India.
| | - Kishore K Wary
- Department of Pharmacology and Regenerative Medicine, University of Illinois, Chicago, IL, USA.
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
5
|
Bourgeois G, Coureux PD, Lazennec-Schurdevin C, Madru C, Gaillard T, Duchateau M, Chamot-Rooke J, Bourcier S, Mechulam Y, Schmitt E. Structures of Saccharolobus solfataricus initiation complexes with leaderless mRNAs highlight archaeal features and eukaryotic proximity. Nat Commun 2025; 16:348. [PMID: 39753558 PMCID: PMC11698992 DOI: 10.1038/s41467-024-55718-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025] Open
Abstract
The archaeal ribosome is of the eukaryotic type. TACK and Asgard superphyla, the closest relatives of eukaryotes, have ribosomes containing eukaryotic ribosomal proteins not found in other archaea, eS25, eS26 and eS30. Here, we investigate the case of Saccharolobus solfataricus, a TACK crenarchaeon, using mainly leaderless mRNAs. We characterize the small ribosomal subunit of S. solfataricus bound to SD-leadered or leaderless mRNAs. Cryo-EM structures show eS25, eS26 and eS30 bound to the small subunit. We identify two ribosomal proteins, aS33 and aS34, and an additional domain of eS6. Leaderless mRNAs are bound to the small subunit with contribution of their 5'-triphosphate group. Archaeal eS26 binds to the mRNA exit channel wrapped around the 3' end of rRNA, as in eukaryotes. Its position is not compatible with an SD:antiSD duplex. Our results suggest a positive role of eS26 in leaderless mRNAs translation and possible evolutionary routes from archaeal to eukaryotic translation.
Collapse
Affiliation(s)
- Gabrielle Bourgeois
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Pierre-Damien Coureux
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
- Retroviruses and Structural Biochemistry Team, Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS-Lyon 1, CNRS, Université de Lyon, Lyon, France
| | - Christine Lazennec-Schurdevin
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Clément Madru
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Thomas Gaillard
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Magalie Duchateau
- Institut Pasteur, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology, Paris, 75015, France
| | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, CNRS UAR 2024, Mass Spectrometry for Biology, Paris, 75015, France
| | - Sophie Bourcier
- Laboratoire de Chimie Moléculaire (LCM), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Yves Mechulam
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France
| | - Emmanuelle Schmitt
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France.
| |
Collapse
|
6
|
Yi G, Li Z, Sun Y, Ma X, Wang Z, Chen J, Cai D, Zhang Z, Chen Z, Wu F, Cao M, Fu M. Integration of multi-omics transcriptome-wide analysis for the identification of novel therapeutic drug targets in diabetic retinopathy. J Transl Med 2024; 22:1146. [PMID: 39719581 DOI: 10.1186/s12967-024-05856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/02/2024] [Indexed: 12/26/2024] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is the most important complication of Type 2 Diabetes (T2D) in eyes. Despite its prevalence, the early detection and management of DR continue to pose considerable challenges. Our research aims to elucidate potent drug targets that could facilitate the identification of DR and propel advancements in its therapeutic strategies. METHODS A broad multi-omics exploration of DR was presented to decipher the drug targets of DR and proliferative diabetic retinopathy (PDR). Transcriptome-Wide Association Studies (TWAS), fine-mapping and conditional analysis were applied to unearth potential tissue-specific gene associations with DR. Summary Data-based Mendelian Randomization (SMR) provided secondary analysis of high confidence genes. Cis-instrument of druggable genes were extracted from the eQTLGen Consortium and PsychENCODE, facilitating drug-target MR supported by colocalization analysis. Phenome-Wide Association Studies (PheWAS) was conducted on the high confidence genes. Metabolomic and immunomic MR-profiling further augmented our research as complement. RESULTS TWAS identified multiple robust genetic loci in both DR and PDR (WFS1, RPS26, and SRPK1) through genetic associations across different tissues. Meanwhile, we have delineated both the commonalities and discrepancies between DR and PDR at the transcriptomic level, represented by DCLRE1B as the hub gene that DR progressed into PDR. SMR revealed 92 key DR-related genes and 55 PDR-related genes. HLA-DQ family genes have a frequent occurrence, while RPS26, WFS1 and SRPK1 were validated as the genetic network's linchpins. Drug-target MR casted ERBB3 and SRPK1 as candidate effector genes for DR and PDR susceptibility. In addition, metabolomics and immunomics analyses also revealed multifaceted pathogenic factors for DR. CONCLUSIONS Our research offers targeted therapeutic insights for early-stage DR and facilitates multi-omic comparisons of it and PDR.
Collapse
Affiliation(s)
- Guoguo Yi
- Department of Ophthalmology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, China
- The Department of Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhengran Li
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, China
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuxin Sun
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, China
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Xinyu Ma
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, China
| | - Zijin Wang
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinken Chen
- School of Architecture, South China University of Technology, Guangzhou, Guangdong, China
| | - Dong Cai
- School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Ziran Zhang
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Zejun Chen
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Fanye Wu
- The Second Clinical Medicine School, Southern Medical University, Guangzhou, Guangdong, China
| | - Mingzhe Cao
- Department of Ophthalmology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Min Fu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, China.
| |
Collapse
|
7
|
Lindahl L. Ribosome Structural Changes Dynamically Affect Ribosome Function. Int J Mol Sci 2024; 25:11186. [PMID: 39456968 PMCID: PMC11508205 DOI: 10.3390/ijms252011186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/06/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Ribosomes were known to be multicomponent complexes as early as the 1960s. Nonetheless, the prevailing view for decades considered active ribosomes to be a monolithic population, in which all ribosomes are identical in composition and function. This implied that ribosomes themselves did not actively contribute to the regulation of protein synthesis. In this perspective, I review evidence for a different model, based on results showing that ribosomes can harbor different types of ribosomal RNA (rRNA) and ribosomal proteins (r-proteins) and, furthermore, need not contain a complete set of r-proteins. I also summarize recent results favoring the notion that such distinct types of ribosomes have different affinities for specific messenger RNAs and may execute the translation process differently. Thus, ribosomes should be considered active contributors to the regulation of protein synthesis.
Collapse
Affiliation(s)
- Lasse Lindahl
- Department of Biological Sciences, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250, USA
| |
Collapse
|
8
|
Abstract
Ribosomes synthesize protein in all cells. Maintaining both the correct number and composition of ribosomes is critical for protein homeostasis. To address this challenge, cells have evolved intricate quality control mechanisms during assembly to ensure that only correctly matured ribosomes are released into the translating pool. However, these assembly-associated quality control mechanisms do not deal with damage that arises during the ribosomes' exceptionally long lifetimes and might equally compromise their function or lead to reduced ribosome numbers. Recent research has revealed that ribosomes with damaged ribosomal proteins can be repaired by the release of the damaged protein, thereby ensuring ribosome integrity at a fraction of the energetic cost of producing new ribosomes, appropriate for stress conditions. In this article, we cover the types of ribosome damage known so far, and then we review the known repair mechanisms before surveying the literature for possible additional instances of repair.
Collapse
Affiliation(s)
- Yoon-Mo Yang
- Current affiliation: Graduate School of Biomedical Science and Engineering and Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul, Republic of Korea;
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| | - Katrin Karbstein
- Current affiliation: Department of Biochemistry, Vanderbilt School of Medicine, Vanderbilt University, Nashville, Tennessee, USA;
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, Florida, USA
| |
Collapse
|
9
|
Yang YM, Karbstein K. The ubiquitin-proteasome system regulates the formation of specialized ribosomes during high salt stress in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608112. [PMID: 39185221 PMCID: PMC11343215 DOI: 10.1101/2024.08.15.608112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Rps26-deficient ribosomes are a physiologically relevant ribosome population which arises during osmotic stress to support the translation of mRNAs involved in the response to high salt in yeast. They are formed by binding of the chaperone Tsr2 to fully assembled ribosomes to release Rps26 when intracellular Na+ concentrations rise. Tsr2-mediated Rps26 release is reversible, enabling a rapid response that conserves ribosomes. However, because the concentration of Tsr2 relative to ribosomes is low, how the released Rps26•Tsr2 complex is managed to allow for accumulation of Rps26-deficient ribosomes to nearly 50% of all ribosomes remains unclear. Here we show that released Rps26 is degraded via the Pro/N-degron pathway, enabling the accumulation of Rps26-deficient ribosomes. Substitution of the N-terminal proline of Rps26 to serine increases the stability of free Rps26, limits the accumulation of Rps26-deficient ribosomes and renders yeast sensitive to high salt. The GID-complex, an E3 ubiquitin ligase, and its adaptor Gid4, mediate polyubiquitination of Rps26 at Lys66 and Lys70. Moreover, this ubiquitination event is required for Rps26 degradation, the accumulation of Rps26-deficient ribosomes and the high salt stress resistance. Together, the data show that targeted degradation of released Rps26 from the Rps26•Tsr2 complex allows Tsr2 to be recycled, thus facilitating multiple rounds of Rps26 release.
Collapse
Affiliation(s)
- Yoon-Mo Yang
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Research Innovation and Technology, Jupiter, FL, 33458, USA
- present address: Graduate School for Biomedical Science & Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea
| | - Katrin Karbstein
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Research Innovation and Technology, Jupiter, FL, 33458, USA
- present address: Department of Biochemistry, Vanderbilt University, Nashville, TN 37232-0146, USA
| |
Collapse
|
10
|
Martín-Villanueva S, Galmozzi CV, Ruger-Herreros C, Kressler D, de la Cruz J. The Beak of Eukaryotic Ribosomes: Life, Work and Miracles. Biomolecules 2024; 14:882. [PMID: 39062596 PMCID: PMC11274626 DOI: 10.3390/biom14070882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Ribosomes are not totally globular machines. Instead, they comprise prominent structural protrusions and a myriad of tentacle-like projections, which are frequently made up of ribosomal RNA expansion segments and N- or C-terminal extensions of ribosomal proteins. This is more evident in higher eukaryotic ribosomes. One of the most characteristic protrusions, present in small ribosomal subunits in all three domains of life, is the so-called beak, which is relevant for the function and regulation of the ribosome's activities. During evolution, the beak has transitioned from an all ribosomal RNA structure (helix h33 in 16S rRNA) in bacteria, to an arrangement formed by three ribosomal proteins, eS10, eS12 and eS31, and a smaller h33 ribosomal RNA in eukaryotes. In this review, we describe the different structural and functional properties of the eukaryotic beak. We discuss the state-of-the-art concerning its composition and functional significance, including other processes apparently not related to translation, and the dynamics of its assembly in yeast and human cells. Moreover, we outline the current view about the relevance of the beak's components in human diseases, especially in ribosomopathies and cancer.
Collapse
Affiliation(s)
- Sara Martín-Villanueva
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Carla V. Galmozzi
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Carmen Ruger-Herreros
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| | - Dieter Kressler
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland;
| | - Jesús de la Cruz
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, E-41013 Seville, Spain; (S.M.-V.); (C.V.G.); (C.R.-H.)
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, E-41012 Seville, Spain
| |
Collapse
|
11
|
Tkáčiková S, Marcin M, Bober P, Kacírová M, Šuliková M, Parnica J, Tóth D, Lenárt M, Radoňak J, Urdzík P, Fedačko J, Sabo J. B Cell Lymphocytes as a Potential Source of Breast Carcinoma Marker Candidates. Int J Mol Sci 2024; 25:7351. [PMID: 39000458 PMCID: PMC11242293 DOI: 10.3390/ijms25137351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Despite advances in the genomic classification of breast cancer, current clinical tests and treatment decisions are commonly based on protein-level information. Nowadays breast cancer clinical treatment selection is based on the immunohistochemical (IHC) determination of four protein biomarkers: Estrogen Receptor 1 (ESR1), Progesterone Receptor (PGR), Human Epidermal Growth Factor Receptor 2 (HER2), and proliferation marker Ki-67. The prognostic correlation of tumor-infiltrating T cells has been widely studied in breast cancer, but tumor-infiltrating B cells have not received so much attention. We aimed to find a correlation between immunohistochemical results and a proteomic approach in measuring the expression of proteins isolated from B-cell lymphocytes in peripheral blood samples. Shotgun proteomic analysis was chosen for its key advantage over other proteomic methods, which is its comprehensive and untargeted approach to analyzing proteins. This approach facilitates better characterization of disease-associated changes at the protein level. We identified 18 proteins in B cell lymphocytes with a significant fold change of more than 2, which have promising potential to serve as breast cancer biomarkers in the future.
Collapse
Affiliation(s)
- Soňa Tkáčiková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (P.B.); (M.Š.); (J.P.)
| | - Miroslav Marcin
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (P.B.); (M.Š.); (J.P.)
| | - Peter Bober
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (P.B.); (M.Š.); (J.P.)
| | - Mária Kacírová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.K.); (J.F.)
| | - Michaela Šuliková
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (P.B.); (M.Š.); (J.P.)
| | - Jozef Parnica
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (P.B.); (M.Š.); (J.P.)
| | - Dávid Tóth
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Pavol Jozef Šafárik and UNLP in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.T.); (P.U.)
| | - Marek Lenárt
- 1st Department of Surgery, Faculty of Medicine, University of Pavol Jozef Šafárik and UNLP in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.L.); (J.R.)
| | - Jozef Radoňak
- 1st Department of Surgery, Faculty of Medicine, University of Pavol Jozef Šafárik and UNLP in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.L.); (J.R.)
| | - Peter Urdzík
- Department of Gynaecology and Obstetrics, Faculty of Medicine, University of Pavol Jozef Šafárik and UNLP in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (D.T.); (P.U.)
| | - Ján Fedačko
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.K.); (J.F.)
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of Pavol Jozef Šafárik in Košice, Trieda SNP 1, 04011 Košice, Slovakia; (M.M.); (P.B.); (M.Š.); (J.P.)
| |
Collapse
|
12
|
Meng LB, Hu GF, Lv T, Lv C, Liu L, Zhang P. Higher expression of TSR2 aggravating hypertension via the PPAR signaling pathway. Aging (Albany NY) 2024; 16:8980-8997. [PMID: 38814181 PMCID: PMC11164513 DOI: 10.18632/aging.205852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/07/2023] [Indexed: 05/31/2024]
Abstract
Hypertension is a complex disease with unknown causes. Therefore, it's crucial to deeply study its molecular mechanism. The hypertension dataset was obtained from Gene Expression Omnibus data base (GEO), and miRNA regulating central hub genes was screened via weighted gene co-expression network (DEGs) and gene set enrichment (GSEA). Cell experiments validated TSR2's role and the PPAR signaling pathway through western blotting. 500 DEGs were identified for hypertension, mainly enriched in actin cross-linking, insulin signaling, PPAR signaling, and protein localization. Eight hub genes (SEC61G, SRP14, Liy AR, NIP7, SDAD1, POLR1D, DYNLL2, TSR2) were identified. Four hub genes (LYAR, SDAD1, POLR1D, TSR2) exhibited high expression levels in the hypertensive tissue samples, while showing low expression levels in the normal tissue samples. This led us to speculate that they may have relevant regulatory effects on hypertension. When TSR2 was knocked down in the hypertension peripheral blood mononuclear cells (PBMC) model, the critical proteins in the PPAR signaling pathway (FABP, PPAR, PLTP, ME1, SCD1, CYP27, FABP1, OLR1, CPT-1, PGAR, CAP, ADIPO, MMP1, UCP1, ILK, PDK1 UBC AQP7) were downregulated. This also occurred in the hypertension peripheral blood mononuclear cells (PBMC) + TSR2_ OV model. TSR2 is highly expressed in individuals with hypertension and may play a significant role in the development of hypertension through the PPAR signaling pathway. TSR2 could serve as a molecular target for the early diagnosis and precise treatment of hypertension, providing a valuable direction for the mechanism research of this condition.
Collapse
Affiliation(s)
- Ling-Bing Meng
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Gai-Feng Hu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, National Clinical Research Center for Cardiovascular Diseases, Chaoyang 100029, Beijing, China
| | - Tingting Lv
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Changhua Lv
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Lianfeng Liu
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ping Zhang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
13
|
夏 勇, 王 炼, 陈 孝, 张 雨, 孙 奥, 陈 德. [TSR2 overexpression inhibits proliferation and invasion of gastric cancer cells by downregulating the PI3K/AKT signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:913-919. [PMID: 38862449 PMCID: PMC11166721 DOI: 10.12122/j.issn.1673-4254.2024.05.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE To investigate the expression of TSR2 in gastric cancer and explore its correlation with progression of gastric cancer and the possible mechanism. METHODS We retrospectively analyzed TSR2 expression in clinical specimens from 105 gastric cancer patients and the impact of TSR2 expression level on disease progression and 5-year postoperative survival of the patients. GO and KEGG enrichment analyses were used to predict the biological functions and mechanisms of TSR2. In gastric cancer MGC-803 cells with lentivirus-mediated TSR2 overexpression or knockdown, the changes in cell proliferation, invasion, and migration were assessed with CCK-8 and Transwell assays, and the expressions of p-PI3K and p-AKT were detected using Western blotting. RESULTS TSR2 expression was significantly lower in gastric cancer tissues than in the adjacent tissues with significant correlations with CEA level, CA19-9 level, and T and N staging (P < 0.05). A low TSR2 expression, CEA≥5 μg/L, CA19-9≥37 kU/L, T3-T4 stages, and N2-N3 staged were identified as independent risk factors affecting 5-year survival rate of the patients following radical surgery (P < 0.05), and a high TSR2 expression was associated with a higher 5-year survival rate of the patients (P < 0.001). Bioinformatics analysis suggested the functional involvement of TSR2 with the PI3K/AKT signaling pathway. MGC-803 cells overexpressing TSR2 showed significantly lowered proliferation, migration, and invasion capacities (P < 0.05), while TSR2 knockdown produced the opposite effects (P < 0.05). Western blotting showed that TSR2 overexpression reduced the phosphorylation of PI3K and AKT, and TSR2 knockdown caused the opposite changes in MGC-803 cells (P < 0.05). CONCLUSION TSR2 is lowly expressed in gastric cancer tissues to adversely affect the patients' prognosis, and its overexpression inhibits gastric cancer cell proliferation, invasion, and migration possibly by downregulating the PI3K/AKT pathway.
Collapse
|
14
|
Liu Y, Karlsson S. Perspectives of current understanding and therapeutics of Diamond-Blackfan anemia. Leukemia 2024; 38:1-9. [PMID: 37973818 PMCID: PMC10776401 DOI: 10.1038/s41375-023-02082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/20/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
ABSTACT Diamond-Blackfan anemia (DBA) is a rare congenital bone marrow failure disorder characterized by erythroid hypoplasia. It primarily affects infants and is often caused by heterozygous allelic variations in ribosomal protein (RP) genes. Recent studies also indicated that non-RP genes like GATA1, TSR2, are associated with DBA. P53 activation, translational dysfunction, inflammation, imbalanced globin/heme synthesis, and autophagy dysregulation were shown to contribute to disrupted erythropoiesis and impaired red blood cell production. The main therapeutic option for DBA patients is corticosteroids. However, half of these patients become non-responsive to corticosteroid therapy over prolonged treatment and have to be given blood transfusions. Hematopoietic stem cell transplantation is currently the sole curative option, however, the treatment is limited by the availability of suitable donors and the potential for serious immunological complications. Recent advances in gene therapy using lentiviral vectors have shown promise in treating RPS19-deficient DBA by promoting normal hematopoiesis. With deepening insights into the molecular framework of DBA, emerging therapies like gene therapy hold promise for providing curative solutions and advancing comprehension of the underlying disease mechanisms.
Collapse
Affiliation(s)
- Yang Liu
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden.
| | - Stefan Karlsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden.
| |
Collapse
|
15
|
Choi Y, Shin E, Lee M, Yeom JH, Lee K. Functional conservation of specialized ribosomes bearing genome-encoded variant rRNAs in Vibrio species. PLoS One 2023; 18:e0289072. [PMID: 38051731 DOI: 10.1371/journal.pone.0289072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/10/2023] [Indexed: 12/07/2023] Open
Abstract
Heterogeneity of ribosomal RNA (rRNA) sequences has recently emerged as a mechanism that can lead to subpopulations of specialized ribosomes. Our previous study showed that ribosomes containing highly divergent rRNAs expressed from the rrnI operon (I-ribosomes) can preferentially translate a subset of mRNAs such as hspA and tpiA in the Vibrio vulnificus CMCP6 strain. Here, we explored the functional conservation of I-ribosomes across Vibrio species. Exogenous expression of the rrnI operon in another V. vulnificus strain, MO6-24/O, and in another Vibrio species, V. fischeri (strain MJ11), decreased heat shock susceptibility by upregulating HspA expression. In addition, we provide direct evidence for the preferential synthesis of HspA by I-ribosomes in the V. vulnificus MO6-24/O strain. Furthermore, exogenous expression of rrnI in V. vulnificus MO6-24/O cells led to higher mortality of infected mice when compared to the wild-type (WT) strain and a strain expressing exogenous rrnG, a redundant rRNA gene in the V. vulnificus CMCP6 strain. Our findings suggest that specialized ribosomes bearing heterogeneous rRNAs play a conserved role in translational regulation among Vibrio species. This study shows the functional importance of rRNA heterogeneity in gene expression control by preferential translation of specific mRNAs, providing another layer of specialized ribosome system.
Collapse
Affiliation(s)
- Younkyung Choi
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Eunkyoung Shin
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Minho Lee
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Republic of Korea
| | - Ji-Hyun Yeom
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Siodmak A, Martinez-Seidel F, Rayapuram N, Bazin J, Alhoraibi H, Gentry-Torfer D, Tabassum N, Sheikh AH, Kise J, Blilou I, Crespi M, Kopka J, Hirt H. Dynamics of ribosome composition and ribosomal protein phosphorylation in immune signaling in Arabidopsis thaliana. Nucleic Acids Res 2023; 51:11876-11892. [PMID: 37823590 PMCID: PMC10681734 DOI: 10.1093/nar/gkad827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023] Open
Abstract
In plants, the detection of microbe-associated molecular patterns (MAMPs) induces primary innate immunity by the activation of mitogen-activated protein kinases (MAPKs). We show here that the MAMP-activated MAPK MPK6 not only modulates defense through transcriptional regulation but also via the ribosomal protein translation machinery. To understand the effects of MPK6 on ribosomes and their constituent ribosomal proteins (RPs), polysomes, monosomes and the phosphorylation status of the RPs, MAMP-treated WT and mpk6 mutant plants were analysed. MAMP-activation induced rapid changes in RP composition of monosomes, polysomes and in the 60S ribosomal subunit in an MPK6-specific manner. Phosphoproteome analysis showed that MAMP-activation of MPK6 regulates the phosphorylation status of the P-stalk ribosomal proteins by phosphorylation of RPP0 and the concomitant dephosphorylation of RPP1 and RPP2. These events coincide with a significant decrease in the abundance of ribosome-bound RPP0s, RPP1s and RPP3s in polysomes. The P-stalk is essential in regulating protein translation by recruiting elongation factors. Accordingly, we found that RPP0C mutant plants are compromised in basal resistance to Pseudomonas syringae infection. These data suggest that MAMP-induced defense also involves MPK6-induced regulation of P-stalk proteins, highlighting a new role of ribosomal regulation in plant innate immunity.
Collapse
Affiliation(s)
- Anna Siodmak
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Federico Martinez-Seidel
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Naganand Rayapuram
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Jeremie Bazin
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Hanna Alhoraibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21551 Jeddah, Saudi Arabia
| | - Dione Gentry-Torfer
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Naheed Tabassum
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Arsheed H Sheikh
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - José Kenyi González Kise
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Ikram Blilou
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Martin Crespi
- CNRS, INRA, Institute of Plant Sciences Paris-Saclay IPS2, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Orsay, France
| | - Joachim Kopka
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Heribert Hirt
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, 1030 Vienna, Austria
| |
Collapse
|
17
|
Landry-Voyer AM, Mir Hassani Z, Avino M, Bachand F. Ribosomal Protein uS5 and Friends: Protein-Protein Interactions Involved in Ribosome Assembly and Beyond. Biomolecules 2023; 13:biom13050853. [PMID: 37238722 DOI: 10.3390/biom13050853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Ribosomal proteins are fundamental components of the ribosomes in all living cells. The ribosomal protein uS5 (Rps2) is a stable component of the small ribosomal subunit within all three domains of life. In addition to its interactions with proximal ribosomal proteins and rRNA inside the ribosome, uS5 has a surprisingly complex network of evolutionarily conserved non-ribosome-associated proteins. In this review, we focus on a set of four conserved uS5-associated proteins: the protein arginine methyltransferase 3 (PRMT3), the programmed cell death 2 (PDCD2) and its PDCD2-like (PDCD2L) paralog, and the zinc finger protein, ZNF277. We discuss recent work that presents PDCD2 and homologs as a dedicated uS5 chaperone and PDCD2L as a potential adaptor protein for the nuclear export of pre-40S subunits. Although the functional significance of the PRMT3-uS5 and ZNF277-uS5 interactions remain elusive, we reflect on the potential roles of uS5 arginine methylation by PRMT3 and on data indicating that ZNF277 and PRMT3 compete for uS5 binding. Together, these discussions highlight the complex and conserved regulatory network responsible for monitoring the availability and the folding of uS5 for the formation of 40S ribosomal subunits and/or the role of uS5 in potential extra-ribosomal functions.
Collapse
Affiliation(s)
- Anne-Marie Landry-Voyer
- Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Zabih Mir Hassani
- Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Mariano Avino
- Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - François Bachand
- Dept of Biochemistry & Functional Genomics, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| |
Collapse
|
18
|
Yang YM, Jung Y, Abegg D, Adibekian A, Carroll KS, Karbstein K. Chaperone-directed ribosome repair after oxidative damage. Mol Cell 2023; 83:1527-1537.e5. [PMID: 37086725 PMCID: PMC10164075 DOI: 10.1016/j.molcel.2023.03.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/07/2023] [Accepted: 03/30/2023] [Indexed: 04/24/2023]
Abstract
Because of the central role ribosomes play for protein translation and ribosome-mediated mRNA and protein quality control (RQC), the ribosome pool is surveyed and dysfunctional ribosomes degraded both during assembly, as well as the functional cycle. Oxidative stress downregulates translation and damages mRNAs and ribosomal proteins (RPs). Although damaged mRNAs are detected and degraded via RQC, how cells mitigate damage to RPs is not known. Here, we show that cysteines in Rps26 and Rpl10 are readily oxidized, rendering the proteins non-functional. Oxidized Rps26 and Rpl10 are released from ribosomes by their chaperones, Tsr2 and Sqt1, and the damaged ribosomes are subsequently repaired with newly made proteins. Ablation of this pathway impairs growth, which is exacerbated under oxidative stress. These findings reveal an unanticipated mechanism for chaperone-mediated ribosome repair, augment our understanding of ribosome quality control, and explain previous observations of protein exchange in ribosomes from dendrites, with broad implications for aging and health.
Collapse
Affiliation(s)
- Yoon-Mo Yang
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Youngeun Jung
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Daniel Abegg
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Alexander Adibekian
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Kate S Carroll
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Katrin Karbstein
- Department of Integrative Structural and Computational Biology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA; HHMI Faculty Scholar, Chevy Chase, MD 20815, USA.
| |
Collapse
|
19
|
Abstract
Although differential transcription drives the development of multicellular organisms, the ultimate readout of a protein-coding gene is ribosome-dependent mRNA translation. Ribosomes were once thought of as uniform molecular machines, but emerging evidence indicates that the complexity and diversity of ribosome biogenesis and function should be given a fresh look in the context of development. This Review begins with a discussion of different developmental disorders that have been linked with perturbations in ribosome production and function. We then highlight recent studies that reveal how different cells and tissues exhibit variable levels of ribosome production and protein synthesis, and how changes in protein synthesis capacity can influence specific cell fate decisions. We finish by touching upon ribosome heterogeneity in stress responses and development. These discussions highlight the importance of considering both ribosome levels and functional specialization in the context of development and disease.
Collapse
Affiliation(s)
- Chunyang Ni
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
20
|
McNutt ZA, Roy B, Gemler BT, Shatoff EA, Moon KM, Foster L, Bundschuh R, Fredrick K. Ribosomes lacking bS21 gain function to regulate protein synthesis in Flavobacterium johnsoniae. Nucleic Acids Res 2023; 51:1927-1942. [PMID: 36727479 PMCID: PMC9976891 DOI: 10.1093/nar/gkad047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 02/03/2023] Open
Abstract
Ribosomes of Bacteroidia (formerly Bacteroidetes) fail to recognize Shine-Dalgarno (SD) sequences even though they harbor the anti-SD (ASD) of 16S rRNA. Inhibition of SD-ASD pairing is due to sequestration of the 3' tail of 16S rRNA in a pocket formed by bS21, bS18, and bS6 on the 30S platform. Interestingly, in many Flavobacteriales, the gene encoding bS21, rpsU, contains an extended SD sequence. In this work, we present genetic and biochemical evidence that bS21 synthesis in Flavobacterium johnsoniae is autoregulated via a subpopulation of ribosomes that specifically lack bS21. Mutation or depletion of bS21 in the cell increases translation of reporters with strong SD sequences, such as rpsU'-gfp, but has no effect on other reporters. Purified ribosomes lacking bS21 (or its C-terminal region) exhibit higher rates of initiation on rpsU mRNA and lower rates of initiation on other (SD-less) mRNAs than control ribosomes. The mechanism of autoregulation depends on extensive pairing between mRNA and 16S rRNA, and exceptionally strong SD sequences, with predicted pairing free energies of < -13 kcal/mol, are characteristic of rpsU across the Bacteroidota. This work uncovers a clear example of specialized ribosomes in bacteria.
Collapse
Affiliation(s)
- Zakkary A McNutt
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Bappaditya Roy
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Bryan T Gemler
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Elan A Shatoff
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Kyung-Mee Moon
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V3T1Z4, Canada
| | - Leonard J Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V3T1Z4, Canada
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Interdisciplinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kurt Fredrick
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
21
|
Inhibition of Ribosome Assembly and Ribosome Translation Has Distinctly Different Effects on Abundance and Paralogue Composition of Ribosomal Protein mRNAs in Saccharomyces cerevisiae. mSystems 2023; 8:e0109822. [PMID: 36651729 PMCID: PMC9948716 DOI: 10.1128/msystems.01098-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Many mutations in genes for ribosomal proteins (r-proteins) and assembly factors cause cell stress and altered cell fate, resulting in congenital diseases collectively called ribosomopathies. Even though all such mutations depress the cell's protein synthesis capacity, they generate many different phenotypes, suggesting that the diseases are not due simply to insufficient protein synthesis capacity. To learn more, we investigated how the global transcriptome in Saccharomyces cerevisiae responds to reduced protein synthesis generated in two different ways: abolishing the assembly of new ribosomes and inhibiting ribosomal function. Our results showed that the mechanism by which protein synthesis is obstructed affects the ribosomal protein transcriptome differentially: ribosomal protein mRNA abundance increases during the abolition of ribosome formation but decreases during the inhibition of ribosome function. Interestingly, the ratio between mRNAs from some, but not all, pairs of paralogous ribosomal protein genes encoding slightly different versions of a given r-protein changed differently during the two types of stress, suggesting that expression of specific ribosomal protein paralogous mRNAs may contribute to the stress response. Unexpectedly, the abundance of transcripts for ribosome assembly factors and translation factors remained relatively unaffected by the stresses. On the other hand, the state of the translation apparatus did affect cell physiology: mRNA levels for some other proteins not directly related to the translation apparatus also changed differentially, though not coordinately with the r-protein genes, in response to the stresses. IMPORTANCE Mutations in genes for ribosomal proteins or assembly factors cause a variety of diseases called ribosomopathies. These diseases are typically ascribed to a reduction in the cell's capacity for protein synthesis. Paradoxically, ribosomal mutations result in a wide variety of disease phenotypes, even though they all reduce protein synthesis. Here, we show that the transcriptome changes differently depending on how the protein synthesis capacity is reduced. Most strikingly, inhibiting ribosome formation and ribosome function had opposite effects on the abundance of mRNA for ribosomal proteins, while genes for ribosome translation and assembly factors showed no systematic responses. Thus, the process by which the protein synthesis capacity is reduced contributes decisively to global mRNA composition. This emphasis on process is a new concept in understanding ribosomopathies and other stress responses.
Collapse
|
22
|
Dörner K, Ruggeri C, Zemp I, Kutay U. Ribosome biogenesis factors-from names to functions. EMBO J 2023; 42:e112699. [PMID: 36762427 PMCID: PMC10068337 DOI: 10.15252/embj.2022112699] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
The assembly of ribosomal subunits is a highly orchestrated process that involves a huge cohort of accessory factors. Most eukaryotic ribosome biogenesis factors were first identified by genetic screens and proteomic approaches of pre-ribosomal particles in Saccharomyces cerevisiae. Later, research on human ribosome synthesis not only demonstrated that the requirement for many of these factors is conserved in evolution, but also revealed the involvement of additional players, reflecting a more complex assembly pathway in mammalian cells. Yet, it remained a challenge for the field to assign a function to many of the identified factors and to reveal their molecular mode of action. Over the past decade, structural, biochemical, and cellular studies have largely filled this gap in knowledge and led to a detailed understanding of the molecular role that many of the players have during the stepwise process of ribosome maturation. Such detailed knowledge of the function of ribosome biogenesis factors will be key to further understand and better treat diseases linked to disturbed ribosome assembly, including ribosomopathies, as well as different types of cancer.
Collapse
Affiliation(s)
- Kerstin Dörner
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | - Chiara Ruggeri
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,RNA Biology Ph.D. Program, Zurich, Switzerland
| | - Ivo Zemp
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Kochavi A, Lovecchio D, Faller WJ, Agami R. Proteome diversification by mRNA translation in cancer. Mol Cell 2023; 83:469-480. [PMID: 36521491 DOI: 10.1016/j.molcel.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
mRNA translation is a highly conserved and tightly controlled mechanism for protein synthesis and is well known to be altered by oncogenes to promote cancer development. This distorted mRNA translation is accompanied by the vulnerability of cancer to inhibitors of key mRNA translation components. Novel studies also suggest that these alternations could be utilized for immunotherapy. Ribosome heterogeneity and alternative responses to nutrient shortages, which aid cancer growth and spread, are proposed to elicit aberrant protein production but may also result in previously unidentified therapeutic targets, such as the presentation of cancer-specific peptides at the surface of cancer cells (neoepitopes). This review will assess the driving forces in tRNA and ribosome function that underlie proteome diversification due to alterations in mRNA translation in cancer cells.
Collapse
Affiliation(s)
- Adva Kochavi
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands
| | - Domenica Lovecchio
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands
| | - William James Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands; Erasmus MC, Rotterdam University, Rotterdam, the Netherlands.
| |
Collapse
|
24
|
Piantanida N, La Vecchia M, Sculco M, Talmon M, Palattella G, Kurita R, Nakamura Y, Ronchi AE, Dianzani I, Ellis SR, Fresu LG, Aspesi A. Deficiency of ribosomal protein S26, which is mutated in a subset of patients with Diamond Blackfan anemia, impairs erythroid differentiation. Front Genet 2022; 13:1045236. [PMID: 36579335 PMCID: PMC9790993 DOI: 10.3389/fgene.2022.1045236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Introduction: Diamond Blackfan anemia (DBA) is a rare congenital disease characterized by defective maturation of the erythroid progenitors in the bone marrow, for which treatment involves steroids, chronic transfusions, or hematopoietic stem cells transplantation. Diamond Blackfan anemia is caused by defective ribosome biogenesis due to heterozygous pathogenic variants in one of 19 ribosomal protein (RP) genes. The decreased number of functional ribosomes leads to the activation of pro-apoptotic pathways and to the reduced translation of key genes for erythropoiesis. Results and discussion: Here we characterized the phenotype of RPS26-deficiency in a cell line derived from human umbilical cord blood erythroid progenitors (HUDEP-1 cells). This model recapitulates cellular hallmarks of Diamond Blackfan anemia including: imbalanced production of ribosomal RNAs, upregulation of pro-apoptotic genes and reduced viability, and shows increased levels of intracellular calcium. Evaluation of the expression of erythroid markers revealed the impairment of erythroid differentiation in RPS26-silenced cells compared to control cells. Conclusions: In conclusion, for the first time we assessed the effect of RPS26 deficiency in a human erythroid progenitor cell line and demonstrated that these cells can be used as a scalable model system to study aspects of DBA pathophysiology that have been refractory to detailed investigation because of the paucity of specific cell types affected in this disorder.
Collapse
Affiliation(s)
- Noemy Piantanida
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Marta La Vecchia
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Marika Sculco
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Maria Talmon
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Gioele Palattella
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | | | - Irma Dianzani
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Steven R. Ellis
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States
| | - Luigia Grazia Fresu
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Anna Aspesi
- Department of Health Sciences, Università Del Piemonte Orientale, Novara, Italy,*Correspondence: Anna Aspesi,
| |
Collapse
|
25
|
Alkan F, Wilkins OG, Hernández-Pérez S, Ramalho S, Silva J, Ule J, Faller WJ. Identifying ribosome heterogeneity using ribosome profiling. Nucleic Acids Res 2022; 50:e95. [PMID: 35687114 PMCID: PMC9458444 DOI: 10.1093/nar/gkac484] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 11/14/2022] Open
Abstract
Recent studies have revealed multiple mechanisms that can lead to heterogeneity in ribosomal composition. This heterogeneity can lead to preferential translation of specific panels of mRNAs, and is defined in large part by the ribosomal protein (RP) content, amongst other things. However, it is currently unknown to what extent ribosomal composition is heterogeneous across tissues, which is compounded by a lack of tools available to study it. Here we present dripARF, a method for detecting differential RP incorporation into the ribosome using Ribosome Profiling (Ribo-seq) data. We combine the 'waste' rRNA fragment data generated in Ribo-seq with the known 3D structure of the human ribosome to predict differences in the composition of ribosomes in the material being studied. We have validated this approach using publicly available data, and have revealed a potential role for eS25/RPS25 in development. Our results indicate that ribosome heterogeneity can be detected in Ribo-seq data, providing a new method to study this phenomenon. Furthermore, with dripARF, previously published Ribo-seq data provides a wealth of new information, allowing the identification of RPs of interest in many disease and normal contexts. dripARF is available as part of the ARF R package and can be accessed through https://github.com/fallerlab/ARF.
Collapse
Affiliation(s)
- Ferhat Alkan
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Oscar G Wilkins
- The Francis Crick Institute, London, UK.,UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK
| | | | - Sofia Ramalho
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joana Silva
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jernej Ule
- The Francis Crick Institute, London, UK.,UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK.,UK Dementia Research Institute Centre, King's College London, London, UK
| | - William J Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|