1
|
Hu X, Liu Z, Zhang Y. Three-Dimensionally Architected Tactile Electronic Skins. ACS NANO 2025; 19:14523-14539. [PMID: 40194921 DOI: 10.1021/acsnano.5c02232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Tactile electronic skins (e-skins) are flexible electronic devices that aim to replicate tactile sensing capabilities of the human skin, while possessing skin-like geometric features and materials properties. Since the human skin is composed of complex 3D constructions, where the various types of mechanoreceptors are distributed in a spatial layout, an important trend of tactile e-skin development involves introduction of 3D device architectures that can replicate certain structural features of human skins. The resulting 3D architected e-skins have demonstrated advantages in the detection of shear forces and the decoupled perception of multiple mechanical stimuli, which are of pivotal importance in many application scenarios. In this perspective, we summarize the main biological prototypes of existing 3D architected e-skins, and focus on the key 3D architectures related to tactile sensing capabilities. Then we highlight the enhanced tactile perception of 3D architected e-skins in terms of the super-resolution tactile sensing and predictions of diverse physical properties and surface features of an object, which allow for a broad spectrum of practical applications, such as object recognition, human-machine interactions, dexterous manipulation, and health monitoring. Finally, we discuss scientific challenges and opportunities for future developments of 3D architected tactile e-skins.
Collapse
Affiliation(s)
- Xiaonan Hu
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Zhi Liu
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control for Aerospace Structures, Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yihui Zhang
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
- State Key Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
2
|
Li Z, Cheng L, Liu Z, Wei J, Wang Y. FOCERS: An Ultrasensitive and Robust Soft Optical 3D Tactile Sensor. Soft Robot 2025. [PMID: 40170610 DOI: 10.1089/soro.2024.0053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025] Open
Abstract
Soft optical sensors, characterized by excellent stability, strong anti-interference ability, and rapid response, are particularly suitable for exploring unknown environments. However, the low sensitivity and large size of optical tactile sensors have limited their widespread application. This study presents an ultrasensitive, highly linear, and highly robust three-dimensional (3D) tactile sensor based on a Foldable Optical Circuit Embedded in Rigid-Soft-coupled (FOCERS) structure. This sensor exhibits a high sensitivity of 1228.7 kPa-1 under normal pressure of 5 kPa, a super high sensitivity of 7399.5 kPa-1 under a sheer pressure of 1.5 kPa, and a fast response time of 5 ms. Under normal pressure conditions, the sensors exhibited high linearity performance across the entire sensing range, with linearity reaching up to 95.3%. The rigid-soft-coupled structure enhances the robustness and overload resistance of the sensor (withstanding 50 times the sensing range). Demonstrations show that the FOCERS structure can detect minute pressure variations (induced by sesame seeds) and withstand extreme pressures (such as being run over by a car). Furthermore, we designed a joystick based on FOCERS for force detection in human-machine interactions. This study provides a new structure for optical sensors to increase both sensitivity and robustness, and also provides a convenient way to fabricate 3D tactile sensors.
Collapse
Affiliation(s)
- Zhengwei Li
- The authors are with the State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Long Cheng
- The authors are with the State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zeyu Liu
- The authors are with the State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiachen Wei
- The authors are with the State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- School of Intelligence Science and Technology and the Institute of Artificial Intelligence, University of Science and Technology Beijing, Beijing, China
| | - Yifan Wang
- The authors are with the State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Liu S. MiR-374a/b-5p Suppresses Cell Growth in Papillary Thyroid Carcinoma Through Blocking Exosomal ANXA1-Induced Macrophage M2 Polarization. Biochem Genet 2025; 63:1258-1274. [PMID: 38536567 DOI: 10.1007/s10528-024-10747-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 02/16/2024] [Indexed: 03/23/2025]
Abstract
Papillary thyroid carcinoma (PTC), comprising 85% of all thyroid cancers, is an epithelial malignancy. The potential for malignant transformation in normal cells by thyroid cancer cells via exosomal Annexin A1 (ANXA1) delivery is investigated in this study. Our aim is to determine the impact of PTC cells on macrophage polarization through exosomal ANXA1 secretion and its implications for tumor progression. Exosomes in PTC cells were examined using transmission electron microscopy, exosome labeling, and nanoparticle tracking analysis. Real-time quantitative polymerase chain reaction was employed to quantify gene expression levels. Protein levels were determined through Western blot analysis. The interplay between genes was assessed using luciferase reporter and RNA pull-down assays. Functional experiments were conducted to investigate PTC cell proliferation and apoptosis. Our findings reveal that ANXA1 promotes PTC cell proliferation and inhibits apoptosis. Exosomes derived from PTC cells were found to promote macrophage M2 polarization. ANXA1 stimulates M2 polarization through the activation of the PI3K/AKT pathway. MicroRNA-374a-5p (miR-374a-5p) and microRNA-374b-5p (miR-374b-5p) were identified as inhibitors of ANXA1 expression and PI3K/AKT pathway activity, thereby inhibiting macrophage M2 polarization. Furthermore, miR-374a-5p and miR-374b-5p were observed to suppress PTC cell proliferation through their regulatory action on ANXA1. Our study suggests that miR-374a/b-5p inhibits PTC cell growth by blocking the macrophage M2 polarization induced by exosomal ANXA1.
Collapse
Affiliation(s)
- Sanbao Liu
- The Second Affiliated Hospital of Wannan Medical College, No.10 Kangfu Road, Wuhu, 241001, Anhui, China.
| |
Collapse
|
4
|
Li P, Li Y, Chen X, Zhang S, Yi L, Liu P, Gong Y, Liu Z, Wu G, Liu F. 3D Integrated Physicochemical-Sensing Electronic Skin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411435. [PMID: 40026062 DOI: 10.1002/smll.202411435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/22/2025] [Indexed: 03/04/2025]
Abstract
The integration of physical and chemical signal sensing is of great significance to bridge the gap between electronic skin (e-skin) and natural skin. However, the existing method of integrating physical and chemical signal sensing units in two dimensions is not conducive to the development of e-skin in multifunctionality and miniaturization. Herein, a new three-dimensional (3D) integrated physicochemical-sensing e-skin (TDPSES) is developed by integrating a piezoresistive sensing unit, a biochemical signal sensing electrode, and a microfluidic system in a 3D superposition mode. For pressure sensing, TDPSES demonstrates an ultra-high sensitivity of 208.6 kPa-1 in 0-15 kPa and excellent stability of 8000 cycles. For glucose sensing in sweat, TDPSES has a sensitivity of 3.925 µA mm-1 and a detection limit of 29.1 µm. Meanwhile, TDPSES can not only continuously detect biological fluids, but also self-monitor its fluid-driving behavior, demonstrating its intelligent fluid-driving characteristics. Furthermore, TDPSES is applied to monitor a variety of physiological signals such as sweat, pulse, and voice, demonstrating its multifunctional sensing capabilities and application potential in health care. In conclusion, the implementation of TDPSES provides a new idea for constructing miniaturized and multifunctional e-skin, which helps to narrow the gap between e-skin and natural skin.
Collapse
Affiliation(s)
- Peilong Li
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yunfan Li
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiao Chen
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Shizhuo Zhang
- Institute of Technological Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Longju Yi
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Peizheng Liu
- Department of Information and Communication Engineering, The University of Tokyo, Tokyo, 113-8654, Japan
| | - Yuan Gong
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zhe Liu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| | - Guoqiang Wu
- Institute of Technological Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Feng Liu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei, 430072, China
| |
Collapse
|
5
|
Su J, He K, Li Y, Tu J, Chen X. Soft Materials and Devices Enabling Sensorimotor Functions in Soft Robots. Chem Rev 2025. [PMID: 40163535 DOI: 10.1021/acs.chemrev.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Sensorimotor functions, the seamless integration of sensing, decision-making, and actuation, are fundamental for robots to interact with their environments. Inspired by biological systems, the incorporation of soft materials and devices into robotics holds significant promise for enhancing these functions. However, current robotics systems often lack the autonomy and intelligence observed in nature due to limited sensorimotor integration, particularly in flexible sensing and actuation. As the field progresses toward soft, flexible, and stretchable materials, developing such materials and devices becomes increasingly critical for advanced robotics. Despite rapid advancements individually in soft materials and flexible devices, their combined applications to enable sensorimotor capabilities in robots are emerging. This review addresses this emerging field by providing a comprehensive overview of soft materials and devices that enable sensorimotor functions in robots. We delve into the latest development in soft sensing technologies, actuation mechanism, structural designs, and fabrication techniques. Additionally, we explore strategies for sensorimotor control, the integration of artificial intelligence (AI), and practical application across various domains such as healthcare, augmented and virtual reality, and exploration. By drawing parallels with biological systems, this review aims to guide future research and development in soft robots, ultimately enhancing the autonomy and adaptability of robots in unstructured environments.
Collapse
Affiliation(s)
- Jiangtao Su
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ke He
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yanzhen Li
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jiaqi Tu
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
6
|
Kim W, Lee K, Choi S, Park E, Kim G, Ha J, Kim Y, Jang J, Oh JH, Kim H, Jiang W, Yoo J, Kim T, Kim Y, Kim KN, Hong J, Javey A, Rha DW, Lee TW, Kang K, Wang G, Park C. Electrochemiluminescent tactile visual synapse enabling in situ health monitoring. NATURE MATERIALS 2025:10.1038/s41563-025-02124-x. [PMID: 39994389 DOI: 10.1038/s41563-025-02124-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/01/2025] [Indexed: 02/26/2025]
Abstract
Tactile visual synapses combine the functionality of tactile artificial synapses with the ability to visualize their activity in real time and provide a direct and intuitive visualization of the activity, offering an efficient route for in situ health monitoring. Herein we present a tactile visual synapse that enables in situ monitoring of finger rehabilitation and electrocardiogram analysis. Repetitive finger flexion and various arrhythmias are monitored and visually guided using the developed tactile visual synapse combined with an electrical and optical output feedback algorithm. The tactile visual synapse has the structure of an electrochemical transistor comprising an elastomeric top gate as a tactile receptor and an electrochemiluminescent ion gel as a light-emitting layer stacked on a polymeric semiconductor layer, forming an electrical synaptic channel between source and drain electrodes. The low-power (~34 μW) visualization of the tactile synaptic activity associated with the repetitive motions of fingers and heartbeats enables the development of a convenient and efficient personalized healthcare system.
Collapse
Affiliation(s)
- Woojoong Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kyuho Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
- Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sanghyeon Choi
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA
| | - Eunje Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea
| | - Gwanho Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jebong Ha
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yeeun Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jihye Jang
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Ji Hye Oh
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - HoYeon Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Wei Jiang
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jioh Yoo
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Taebin Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Yeonji Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kwan-Nyeong Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Juntaek Hong
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Dong-Wook Rha
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea
- Department of Chemical and Biological Engineering, Institute of Engineering Research, Interdisciplinary Program in Bioengineering, Soft Foundry, Seoul National University, Seoul, Republic of Korea
- SN Display Co., Ltd., Seoul, Republic of Korea
| | - Keehoon Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul, Republic of Korea
- Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea
| | - Gunuk Wang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.
- Department of Integrative Energy Engineering, Korea University, Seoul, Republic of Korea.
- Center for Neuromorphic Engineering, Korea Institute of Science and Technology, Seoul, Republic of Korea.
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, Republic of Korea.
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Mirbakht SS, Golparvar A, Umar M, Kuzubasoglu BA, Irani FS, Yapici MK. Highly Self-Adhesive and Biodegradable Silk Bioelectronics for All-In-One Imperceptible Long-Term Electrophysiological Biosignals Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405988. [PMID: 39792793 PMCID: PMC11848544 DOI: 10.1002/advs.202405988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/01/2024] [Indexed: 01/12/2025]
Abstract
Skin-like bioelectronics offer a transformative technological frontier, catering to continuous and real-time yet highly imperceptible and socially discreet digital healthcare. The key technological breakthrough enabling these innovations stems from advancements in novel material synthesis, with unparalleled possibilities such as conformability, miniature footprint, and elasticity. However, existing solutions still lack desirable properties like self-adhesivity, breathability, biodegradability, transparency, and fail to offer a streamlined and scalable fabrication process. By addressing these challenges, inkjet-patterned protein-based skin-like silk bioelectronics (Silk-BioE) are presented, that integrate all the desirable material features that have been individually present in existing devices but never combined into a single embodiment. The all-in-one solution possesses excellent self-adhesiveness (300 N m-1) without synthetic adhesives, high breathability (1263 g h-1 m-2) as well as swift biodegradability in soil within a mere 2 days. In addition, with an elastic modulus of ≈5 kPa and a stretchability surpassing 600%, the soft electronics seamlessly replicate the mechanics of epidermis and form a conformal skin/electrode interface even on hairy regions of the body under severe perspiration. Therefore, coupled with a flexible readout circuitry, Silk-BioE can non-invasively monitor biosignals (i.e., ECG, EEG, EOG) in real-time for up to 12 h with benchmarking results against Ag/AgCl electrodes.
Collapse
Affiliation(s)
- Seyed Sajjad Mirbakht
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
| | - Ata Golparvar
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
- ICLabÉcole Polytechnique Fédérale de Lausanne (EPFL)Neuchâtel2002Switzerland
| | - Muhammad Umar
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
- Sabanci University SUNUM Nanotechnology Research CenterIstanbul34956Türkiye
| | - Burcu Arman Kuzubasoglu
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
- Sabanci University SUNUM Nanotechnology Research CenterIstanbul34956Türkiye
| | - Farid Sayar Irani
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
- Sabanci University SUNUM Nanotechnology Research CenterIstanbul34956Türkiye
| | - Murat Kaya Yapici
- Faculty of Engineering and Natural SciencesSabanci UniversityIstanbul34956Türkiye
- Sabanci University Micro/Nano Devices and Systems Lab (SU‐MEMS)Sabanci UniversityIstanbul34956Türkiye
- Sabanci University SUNUM Nanotechnology Research CenterIstanbul34956Türkiye
- Department of Electrical EngineeringUniversity of WashingtonSeattleWA98195USA
| |
Collapse
|
8
|
Yan Y, Deng W, Xie D, Hu J. Silk Fibroin Hydrogel for Pulse Waveform Precise and Continuous Perception. Adv Healthc Mater 2025; 14:e2403637. [PMID: 39707661 DOI: 10.1002/adhm.202403637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/24/2024] [Indexed: 12/23/2024]
Abstract
Precise and continuous monitoring of blood pressure and cardiac function is of great importance for early diagnosis and timely treatment of cardiovascular diseases. The common tests rely on on-site diagnosis and bulky equipments, hindering early diagnosis. The emerging hydrogels have gained considerable attention in skin bioelectronics by virtue of the similarities to biological tissues and versatility in mechanical, electrical, and biofunctional engineering. However, hydrogels should overcome intrinsic issues such as poor mechanical strength, easy dehydration and freezing, weak adhesiveness and self-recovery, severely limiting their precision and reliability in practical applications. Here, silk fibroin hydrogels are developed as resistive sensors for pulse waveform monitoring. The silk fibroin hydrogel is simultaneously transparent, extremely stretchable, extra tough, adhesive, printable, and environmentally endurable. The silk fibroin hydrogel is also conductive with high sensitivity, short self-healing time, highly repeatable and reliable response, meeting the requirements for wearable sensors for continuous monitoring. The sensors with silk fibroin hydrogel present high-quality and stable waveforms of radical and brachial pulses with high precision and rich features, providing physiological signals of blood pressure and cardiac function. The sensors are promising for personalized health management, daily monitoring and timely diagnosis.
Collapse
Affiliation(s)
- Yingmei Yan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai, Shanghai, 201418, China
| | - Weijun Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology Shanghai, Shanghai, 201418, China
| | - Du Xie
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai, Shanghai, 201418, China
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai, Shanghai, 201418, China
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
9
|
Jo Y, Lee Y, Kwon J, Kim S, Ryu G, Yun S, Baek S, Ko H, Jung S. 3D active-matrix multimodal sensor arrays for independent detection of pressure and temperature. SCIENCE ADVANCES 2025; 11:eads4516. [PMID: 39823340 PMCID: PMC11740967 DOI: 10.1126/sciadv.ads4516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Pressure and temperature sensing simultaneously and independently is crucial for creating electronic skin that replicates complex sensory functions of human skin. Thin-film transistor (TFT) arrays with sensors have enabled cross-talk-free spatial sensing. However, the thermal dependence of charge transport in semiconductors has resulted in interference between thermal and pressure stimuli. We develop multimodal sensor arrays based on three-dimensional integration of an active matrix to detect temperature and pressure independently. Our approach includes a calibrated compensation to decouple temperature and pressure signals. An individual pixel device consists of a TFT-based pressure sensor layered above a TFT-based temperature sensor. The detected temperature is used to compensate for the thermal effect on TFT-based pressure sensors. We develop large-area sensor arrays to enable accurate detection of two-dimensional pressure and temperature, leveraging these technologies to demonstrate advanced robotic grippers. The grippers stably grasp and lift a cup regardless of temperature, proving their possibility in skin-like electronic applications.
Collapse
Affiliation(s)
- Youngmin Jo
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang 37673, Republic of Korea
| | - Youngoh Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jimin Kwon
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Seongju Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang 37673, Republic of Korea
| | - Gyungin Ryu
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang 37673, Republic of Korea
| | - Soyoung Yun
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang 37673, Republic of Korea
| | - Sanghoon Baek
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang 37673, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sungjune Jung
- Department of Convergence IT Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Pohang 37673, Republic of Korea
| |
Collapse
|
10
|
Li C, Zhang S, Jiang J, Wang S, He S, Song J. Laser-induced adhesives with excellent adhesion enhancement and reduction capabilities for transfer printing of microchips. SCIENCE ADVANCES 2024; 10:eads9226. [PMID: 39642216 PMCID: PMC11623270 DOI: 10.1126/sciadv.ads9226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/30/2024] [Indexed: 12/08/2024]
Abstract
Transfer printing based on tunable and reversible adhesive that enables the heterogeneous integration of materials is essential for developing envisioned electronic systems. An adhesive with both adhesion enhancement and reduction capabilities in a rapid and selective manner is challenging. Here, we report a laser-induced adhesive, featuring a geometrically simple shape memory polymer layer on a glass backing, with excellent adhesion modulation capability for programmable pickup and noncontact printing of microchips. Selective and rapid laser heating substantially enhances the adhesive's adhesion strength from kilopascal to megapascal within 10 ms due to the shape fixing effect, allowing for precise and programmable pickup. Conversely, the enhanced adhesion can be quickly reduced and eliminated within 3 ms through the shape recovery effect, enabling noncontact printing. Demonstrations of transfer printing microlight-emitting diodes (LEDs) and mini-LEDs onto various low-adhesive flat, rough, and curved surfaces highlight the unusual capabilities of this adhesive for deterministic assembly.
Collapse
Affiliation(s)
- Chenglong Li
- Huanjiang Laboratory, Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Zhejiang, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| | - Shun Zhang
- Huanjiang Laboratory, Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Zhejiang, China
| | - Jing Jiang
- Huanjiang Laboratory, Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Zhejiang, China
| | - Suhao Wang
- Huanjiang Laboratory, Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Zhejiang, China
| | - Shuchang He
- Huanjiang Laboratory, Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Zhejiang, China
| | - Jizhou Song
- Huanjiang Laboratory, Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Zhejiang, China
- Nanhu Brain-computer Interface Institute, Zhejiang, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Zhejiang, China
| |
Collapse
|
11
|
Wang Y, Liao W, Yang X, Wang K, Yuan S, Liu D, Liu C, Yang S, Wang L. Highly stable and ultra-fast vibration-responsive flexible iontronic sensors for accurate acoustic signal recognition. NANOSCALE 2024; 16:22021-22028. [PMID: 39523814 DOI: 10.1039/d4nr03370a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Wearable verbal language servers function as sophisticated and effective tools for fostering intelligent interactions between humans and machines. In the realm of collecting acoustic vibration signals, flexible iontronic pressure sensors have demonstrated their efficacy by incorporating microstructures into the functional layer, resulting in heightened pressure sensitivity. However, the substantial viscosity of the integrated iontronic materials or the lack of bonding at the heterogeneous interface emerges as a significant hindrance to capacitance recovery, leading to sluggish response speeds and mechanical instability. Here, we address the issue by introducing hydrogen bonding between naturally microstructured protein micro-fibers and hydrophilic ionic hydrogel into the dielectric layer. Due to the good resilience of protein micro-fibers and the enahnced interfacial bonding, this flexible vibration sensor demonstrates outstanding performance characteristics, featuring exceptional signal stability, a high-pressure resolution of 522 pF kPa-1, an ultra-fast response time of 0.6 ms, and a relaxation time of 0.6 ms, with a limit of detection (LOD) of 0.12 Pa, making it well-suited for acoustic vibration acquisition. By using a one-dimensional convolutional neural network (1D-CNN) deep learning to process and recognize collected acoustic signals, our sensor achieved an impressive accuracy of 98.2%. These wearable vibration sensors exemplify promising versatile applications in biometric authentication, personalized services, and human-computer interaction.
Collapse
Affiliation(s)
- Yan Wang
- Physics Laboratory, Industrial Training Center, Shenzhen Polytechnic University, Shenzhen, Guangdong 518055, China.
| | - Weiqiang Liao
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, China.
- School of Qianhu, Jiluan Academy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Xikai Yang
- School of Qianhu, Jiluan Academy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Kexin Wang
- School of Qianhu, Jiluan Academy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shengpeng Yuan
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Dan Liu
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Cheng Liu
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Shiman Yang
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Li Wang
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
12
|
Shin Y, Hong S, Hur YC, Lim C, Do K, Kim JH, Kim DH, Lee S. Damage-free dry transfer method using stress engineering for high-performance flexible two- and three-dimensional electronics. NATURE MATERIALS 2024; 23:1411-1420. [PMID: 38906994 DOI: 10.1038/s41563-024-01931-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/23/2024] [Indexed: 06/23/2024]
Abstract
Advanced transfer printing technologies have enabled the fabrication of high-performance flexible and stretchable devices, revolutionizing many research fields including soft electronics, optoelectronics, bioelectronics and energy devices. Despite previous innovations, challenges remain, such as safety concerns due to toxic chemicals, the expensive equipment, film damage during the transfer process and difficulty in high-temperature processing. Thus a new transfer printing process is needed for the commercialization of high-performance soft electronic devices. Here we propose a damage-free dry transfer printing strategy based on stress control of the deposited thin films. First, stress-controlled metal bilayer films are deposited using direct current magnetron sputtering. Subsequently, mechanical bending is applied to facilitate the release of the metal bilayer by increasing the overall stress. Experimental and simulation studies elucidate the stress evolution mechanisms during the processes. By using this method, we successfully transfer metal thin films and high-temperature-treated oxide thin films onto flexible or stretchable substrates, enabling the fabrication of two-dimensional flexible electronic devices and three-dimensional multifunctional devices.
Collapse
Affiliation(s)
- Yoonsoo Shin
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Seungki Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Yong Chan Hur
- School of Mechanical Engineering, Pusan National University, Busan, Republic of Korea
| | - Chanhyuk Lim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Kyungsik Do
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Ji Hoon Kim
- School of Mechanical Engineering, Pusan National University, Busan, Republic of Korea.
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea.
| | - Sangkyu Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
| |
Collapse
|
13
|
Yang Y, Tang J, Guo H, Pan F, Jiang H, Wu Y, Chen C, Li X, Yuan B, Lu W. Robust and Environmentally Friendly MXene-Based Electronic Skin Enabling the Three Essential Functions of Natural Skin: Perception, Protection, and Thermoregulation. NANO LETTERS 2024; 24:10883-10891. [PMID: 39172995 DOI: 10.1021/acs.nanolett.4c02583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The development of electronic skin (e-skin) emulating the human skin's three essential functions (perception, protection, and thermoregulation) has great potential for human-machine interfaces and intelligent robotics. However, existing studies mainly focus on perception. This study presents a novel, eco-friendly, mechanically robust e-skin replicating human skin's three essential functions. The e-skin is composed of Ti3C2Tx MXene, polypyrrole, and bacterial cellulose nanofibers, where the MXene nanoflakes form the matrix, the bacterial cellulose nanofibers act as the filler, and the polypyrrole serves as a conductive "cross-linker". This design allows customization of the electrical conductivity, microarchitecture, and mechanical properties, integrating sensing (perception), EMI shielding (protection), and thermal management (thermoregulation). The optimal e-skin can effectively sense various motions (including minuscule artery pulses), achieve an EMI shielding efficiency of 63.32 dB at 78 μm thickness, and regulate temperature up to 129 °C in 30 s at 2.4 V, demonstrating its potential for smart robotics in complex scenarios.
Collapse
Affiliation(s)
- Yang Yang
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Jie Tang
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai 200123, People's Republic of China
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Hongtao Guo
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Fei Pan
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Haojie Jiang
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Yongpeng Wu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Chaolong Chen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Xiang Li
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai 200123, People's Republic of China
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Bin Yuan
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
| | - Wei Lu
- Shanghai Key Lab of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, People's Republic of China
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University, Shanghai 200123, People's Republic of China
| |
Collapse
|
14
|
Xu C, Wang Y, Zhang J, Wan J, Xiang Z, Nie Z, Xu J, Lin X, Zhao P, Wang Y, Zhang S, Zhang J, Liu C, Xue N, Zhao W, Han M. Three-dimensional micro strain gauges as flexible, modular tactile sensors for versatile integration with micro- and macroelectronics. SCIENCE ADVANCES 2024; 10:eadp6094. [PMID: 39167641 PMCID: PMC11338218 DOI: 10.1126/sciadv.adp6094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
Flexible tactile sensors play important roles in many areas, like human-machine interface, robotic manipulation, and biomedicine. However, their flexible form factor poses challenges in their integration with wafer-based devices, commercial chips, or circuit boards. Here, we introduce manufacturing approaches, device designs, integration strategies, and biomedical applications of a set of flexible, modular tactile sensors, which overcome the above challenges and achieve cooperation with commercial electronics. The sensors exploit lithographically defined thin wires of metal or alloy as the sensing elements. Arranging these elements across three-dimensional space enables accurate, hysteresis-free, and decoupled measurements of temperature, normal force, and shear force. Assembly of such sensors on flexible printed circuit boards together with commercial electronics forms various flexible electronic systems with capabilities in wireless measurements at the skin interface, continuous monitoring of biomechanical signals, and spatial mapping of tactile information. The flexible, modular tactile sensors expand the portfolio of functional components in both microelectronics and macroelectronics.
Collapse
Affiliation(s)
- Chen Xu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yiran Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Jingyan Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Ji Wan
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
- School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Zehua Xiang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
- School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Zhongyi Nie
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Jie Xu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Xiang Lin
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Pengcheng Zhao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
- School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Yaozheng Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
- Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
- School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Shaotong Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| | - Jing Zhang
- Department of Microelectronics, North China University of Technology, Beijing 100144, China
| | - Chunxiu Liu
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Medical Sciences, Beijing 100190, China
| | - Ning Xue
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), State Key Laboratory of Transducer Technology, Aerospace Information Research Institute (AIR), Chinese Academy of Medical Sciences, Beijing 100190, China
| | - Wei Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Mengdi Han
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Qiu Y, Wang F, Zhang Z, Shi K, Song Y, Lu J, Xu M, Qian M, Zhang W, Wu J, Zhang Z, Chai H, Liu A, Jiang H, Wu H. Quantitative softness and texture bimodal haptic sensors for robotic clinical feature identification and intelligent picking. SCIENCE ADVANCES 2024; 10:eadp0348. [PMID: 39047112 PMCID: PMC11268415 DOI: 10.1126/sciadv.adp0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
Replicating human somatosensory networks in robots is crucial for dexterous manipulation, ensuring the appropriate grasping force for objects of varying softness and textures. Despite advances in artificial haptic sensing for object recognition, accurately quantifying haptic perceptions to discern softness and texture remains challenging. Here, we report a methodology that uses a bimodal haptic sensor to capture multidimensional static and dynamic stimuli, allowing for the simultaneous quantification of softness and texture features. This method demonstrates synergistic measurements of elastic and frictional coefficients, thereby providing a universal strategy for acquiring the adaptive gripping force necessary for scarless, antislippage interaction with delicate objects. Equipped with this sensor, a robotic manipulator identifies porcine mucosal features with 98.44% accuracy and stably grasps visually indistinguishable mature white strawberries, enabling reliable tissue palpation and intelligent picking. The design concept and comprehensive guidelines presented would provide insights into haptic sensor development, promising benefits for robotics.
Collapse
Affiliation(s)
- Ye Qiu
- College of Mechanical Engineering, Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Fangnan Wang
- College of Mechanical Engineering, Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Zhuang Zhang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Kuanqiang Shi
- College of Mechanical Engineering, Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Yi Song
- College of Mechanical Engineering, Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Jiutian Lu
- College of Mechanical Engineering, Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Minjia Xu
- College of Mechanical Engineering, Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Mengyuan Qian
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Wenan Zhang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Jixuan Wu
- College of Mechanical Engineering, Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Zheng Zhang
- College of Mechanical Engineering, Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| | - Hao Chai
- Zhijiang College of Zhejiang University of Technology, Shaoxing, Zhejiang 312030, China
| | - Aiping Liu
- Center for Optoelectronics Materials and Devices, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Hanqing Jiang
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Huaping Wu
- College of Mechanical Engineering, Key Laboratory of Special Purpose Equipment and Advanced Processing Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
- Collaborative Innovation Center of High-end Laser Manufacturing Equipment (National “2011 Plan”), Zhejiang University of Technology, Hangzhou, Zhejiang 310023, China
| |
Collapse
|
16
|
Wang S, Fan X, Zhang Z, Su Z, Ding Y, Yang H, Zhang X, Wang J, Zhang J, Hu P. A Skin-Inspired High-Performance Tactile Sensor for Accurate Recognition of Object Softness. ACS NANO 2024; 18:17175-17184. [PMID: 38875126 DOI: 10.1021/acsnano.4c04100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
High-performance tactile sensors with skin-sensing properties are crucial for intelligent perception in next-generation smart devices. However, previous studies have mainly focused on the sensitivity and response range of tactile sensation while neglecting the ability to recognize object softness. Therefore, achieving a precise perception of the softness remains a challenge. Here, we report an integrated tactile sensor consisting of a central hole gradient structure pressure sensor and a planar structure strain sensor. The recognition of softness and tactile perception is achieved through the synergistic effect of pressure sensors that sense the applied pressure and strain sensors that recognize the strain of the target object. The results indicate that the softness evaluation parameter (SC) of the integrated structural tactile sensor increases from 0.14 to 0.47 along with Young's modulus of the object decreasing from 2.74 to 0.45 MPa, demonstrating accurate softness recognition. It also exhibits a high sensitivity of 10.55 kPa-1 and an ultrawide linear range of 0-1000 kPa, showing an excellent tactile sensing capability. Further, an intelligent robotic hand system based on integrated structural tactile sensors was developed, which can identify the softness of soft foam and glass and grasp them accurately, indicating human skin-like sensing and grasping capabilities.
Collapse
Affiliation(s)
- Shuai Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| | - Xinyang Fan
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China
| | - Zaoxu Zhang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China
| | - Zhen Su
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - YaNan Ding
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| | - Hongying Yang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Xin Zhang
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| | - Jinzhong Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Jia Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| | - PingAn Hu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150080, China
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
17
|
Zhou W, Yu Y, Xiao P, Deng F, Zhang Y, Chen T. A Suspended, 3D Morphing Sensory System for Robots to Feel and Protect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403447. [PMID: 38728424 DOI: 10.1002/adma.202403447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Artificial sensory systems with synergistic touch and pain perception hold substantial promise for environment interaction and human-robot communication. However, the realization of biological skin-like functional integration of sensors with sensitive touch and pain perception still remains a challenge. Here, a concept is proposed of suspended electronic skins enabling 3D deformation-mechanical contact interactions for achieving synergetic ultrasensitive touch and adjustable pain perception. The suspended sensory system can sensitively capture tiny touch stimuli as low as 0.02 Pa and actively perceive pain response with reliable 5200 cycles via 3D deformation and mechanical contact mechanism, respectively. Based on the touch-pain effect, a visualized feedback demo with miniaturized sensor arrays on artificial fingers is rationally designed to give a pain perception mapping on sharp surfaces. Furthermore, the capability is shown of the suspended electronic skin serving as a safe human-robot communication interface from active and passive view through a feedback control system, demonstrating potential in bionic electronics and intelligent robotics.
Collapse
Affiliation(s)
- Wei Zhou
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Yi Yu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Peng Xiao
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Feng Deng
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Yi Zhang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Tao Chen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| |
Collapse
|
18
|
Wang Y, Zhao J, Zeng X, Huang J, Wen Y, Brugger J, Zhang X. All-Printed Finger-Inspired Tactile Sensor Array for Microscale Texture Detection and 3D Reconstruction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400479. [PMID: 38696643 PMCID: PMC11234443 DOI: 10.1002/advs.202400479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Indexed: 05/04/2024]
Abstract
Electronic skins are expected to replicate a human-like tactile sense, which significantly detects surface information, including geometry, material, and temperature. Although most texture features can be sensed in the horizontal direction, the lack of effective approaches for detecting vertical properties limits the development of artificial skin based on tactile sensors. In this study, an all-printed finger-inspired tactile sensor array is developed to realize the 3D detection and reconstruction of microscale structures. A beam structure with a suspended multilayer membrane is proposed, and a tactile sensor array of 12 units arranged in a dual-column layout is developed. This architecture enables the tactile sensor array to obtain comprehensive geometric information of micro-textures, including 3D morphology and clearance characteristics, and optimizes the 3D reconstruction patterns by self-calibration. Moreover, an innovative screen-printing technology incorporating multilayer printing and sacrificial-layer techniques is adopted to print the entire device. In additon, a Braille recognition system utilizing this tactile sensor array is developed to interpret Shakespeare's quotes printed in Grade 2 Braille. The abovementioned demonstrations reveal an attractive future vision for endowing bioinspired robots with the unique capability of touching and feeling the microscale real world and reconstructing it in the cyber world.
Collapse
Affiliation(s)
- Yilin Wang
- School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jiafeng Zhao
- School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xu Zeng
- School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jingwen Huang
- School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yading Wen
- School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Juergen Brugger
- Microsystems Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, 1015, Switzerland
| | - Xiaosheng Zhang
- School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
19
|
Chen C, Xu FQ, Wu Y, Li XL, Xu JL, Zhao B, He Z, Yang J, Zhang W, Liu JW. Manipulating Hetero-Nanowire Films for Flexible and Multifunctional Thermoelectric Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400020. [PMID: 38477408 DOI: 10.1002/adma.202400020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/10/2024] [Indexed: 03/14/2024]
Abstract
Flexible thermoelectric devices hold significant promise in wearable electronics owing to their capacity for green energy generation, temperature sensing, and comfortable wear. However, the simultaneous achievement of excellent multifunctional sensing and power generation poses a challenge in these devices. Here, ordered tellurium-based hetero-nanowire films are designed for flexible and multifunctional thermoelectric devices by optimizing the Seebeck coefficient and power factor. The obtained devices can efficiently detect both object and environment temperature, thermal conductivity, heat proximity, and airflow. In addition, combining the thermoelectric units with radiative cooling materials exhibits remarkable thermal management capabilities, preventing device overheating and avoiding degradation in power generation. Impressively, this multifunctional electronics exhibits excellent resistance in extreme low earth orbit environments. The fabrication of such thermoelectric devices provides innovative insights into multimodal sensing and energy harvesting.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Feng-Qi Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yabei Wu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin-Lin Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jie-Long Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Bin Zhao
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, 230027, China
| | - Zhen He
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiong Yang
- Department of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Wenqing Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jian-Wei Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
20
|
Chen C, Xu JL, Wang Q, Li XL, Xu FQ, Gao YC, Zhu YB, Wu HA, Liu JW. Biomimetic Multimodal Receptors for Comprehensive Artificial Human Somatosensory System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313228. [PMID: 38330391 DOI: 10.1002/adma.202313228] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Electronic skin (e-skin) capable of acquiring environmental and physiological information has attracted interest for healthcare, robotics, and human-machine interaction. However, traditional 2D e-skin only allows for in-plane force sensing, which limits access to comprehensive stimulus feedback due to the lack of out-of-plane signal detection caused by its 3D structure. Here, a dimension-switchable bioinspired receptor is reported to achieve multimodal perception by exploiting film kirigami. It offers the detection of in-plane (pressure and bending) and out-of-plane (force and airflow) signals by dynamically inducing the opening and reclosing of sensing unit. The receptor's hygroscopic and thermoelectric properties enable the sensing of humidity and temperature. Meanwhile, the thermoelectric receptor can differentiate mechanical stimuli from temperature by the voltage. The development enables a wide range of sensory capabilities of traditional e-skin and expands the applications in real life.
Collapse
Affiliation(s)
- Cheng Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jie-Long Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Quan Wang
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, China
| | - Xin-Lin Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Feng-Qi Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yu-Cheng Gao
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yin-Bo Zhu
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, China
| | - Heng-An Wu
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230026, China
| | - Jian-Wei Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
21
|
Wu Q, Zhou C, Xu Y, Han S, Chen A, Zhang J, Chen Y, Yang X, Huang J, Guan L. Bimodal Intelligent Electronic Skin Based on Proximity and Tactile Interaction for Pressure and Configuration Perception. ACS Sens 2024; 9:2091-2100. [PMID: 38502945 DOI: 10.1021/acssensors.4c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The flexible bimodal e-skin exhibits significant promise for integration into the next iteration of human-computer interactions, owing to the integration of tactile and proximity perception. However, those challenges, such as low tactile sensitivity, complex fabrication processes, and incompatibility with bimodal interactions, have restricted the widespread adoption of bimodal e-skin. Herein, a bimodal capacitive e-skin capable of simultaneous tactile and proximity sensing has been developed. The entire process eliminates intricate fabrication techniques, employing DLP-3D printing for the electrode layers and sacrificial templating for the dielectric layers, conferring high tactile sensitivity (1.672 kPa-1) and rapid response capability (∼30 ms) to the bimodal e-skin. Moreover, exploiting the "fringing electric field" effect inherent in parallel-plate capacitors has facilitated touchless sensing, thereby enabling static distance recognition and dynamic gesture recognition of varying materials. Interestingly, an e-skin sensing array was created to identify the positions and pressure levels of various objects of different masses. Furthermore, with the aid of machine learning techniques, an artificial neural network has been established to possess intelligent object recognition capabilities, facilitating the identification, classification, and training of various object configurations. The advantages of the bimodal e-skin render it highly promising for extensive applications in the field of next-generation human-machine interaction.
Collapse
Affiliation(s)
- Qirui Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, China
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Chunhui Zhou
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Yidan Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Songjiu Han
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, China
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Anbang Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, China
| | - Jiayu Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, China
| | - Yujia Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, China
| | - Xiaoxiang Yang
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Jianren Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, China
| | - Lunhui Guan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, China
| |
Collapse
|
22
|
Xu C, Chen J, Zhu Z, Liu M, Lan R, Chen X, Tang W, Zhang Y, Li H. Flexible Pressure Sensors in Human-Machine Interface Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306655. [PMID: 38009791 DOI: 10.1002/smll.202306655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/30/2023] [Indexed: 11/29/2023]
Abstract
Flexible sensors are highly flexible, malleable, and capable of adapting todifferent shapes, surfaces, and environments, which opens a wide range ofpotential applications in the field of human-machine interface (HMI). Inparticular, flexible pressure sensors as a crucial member of the flexiblesensor family, are widely used in wearable devices, health monitoringinstruments, robots and other fields because they can achieve accuratemeasurement and convert the pressure into electrical signals. The mostintuitive feeling that flexible sensors bring to people is the change ofhuman-machine interface interaction, from the previous rigid interaction suchas keyboard and mouse to flexible interaction such as smart gloves, more inline with people's natural control habits. Many advanced flexible pressuresensors have emerged through extensive research and development, and to adaptto various fields of application. Researchers have been seeking to enhanceperformance of flexible pressure sensors through improving materials, sensingmechanisms, fabrication methods, and microstructures. This paper reviews the flexible pressure sensors in HMI in recent years, mainlyincluding the following aspects: current cutting-edge flexible pressuresensors; sensing mechanisms, substrate materials and active materials; sensorfabrication, performances, and their optimization methods; the flexiblepressure sensors for various HMI applications and their prospects.
Collapse
Affiliation(s)
- Chengsheng Xu
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong, 518118, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Jing Chen
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Zhengfang Zhu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Moran Liu
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong, 518118, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Ronghua Lan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Xiaohong Chen
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Wei Tang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| | - Yan Zhang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Hui Li
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, Guangdong, 518118, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
23
|
Niu H, Li H, Zhang Q, Kim ES, Kim NY, Li Y. Intuition-and-Tactile Bimodal Sensing Based on Artificial-Intelligence-Motivated All-Fabric Bionic Electronic Skin for Intelligent Material Perception. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308127. [PMID: 38009787 DOI: 10.1002/smll.202308127] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/27/2023] [Indexed: 11/29/2023]
Abstract
Developing electronic skins (e-skins) with extraordinary perception through bionic strategies has far-reaching significance for the intellectualization of robot skins. Here, an artificial intelligence (AI)-motivated all-fabric bionic (AFB) e-skin is proposed, where the overall structure is inspired by the interlocked bionics of the epidermis-dermis interface inside the skin, while the structural design inspiration of the dielectric layer derives from the branch-needle structure of conifers. More importantly, AFB e-skin achieves intuition sensing in proximity mode and tactile sensing in pressure mode based on the fringing and iontronic effects, respectively, and is simulated and verified through COMSOL finite element analysis. The proposed AFB e-skin in pressure mode exhibits maximum sensitivity of 15.06 kPa-1 (<50 kPa), linear sensitivity of 6.06 kPa-1 (50-200 kPa), and fast response/recovery time of 5.6 ms (40 kPa). By integrating AFB e-skin with AI algorithm, and with the support of material inference mechanisms based on dielectric constant and softness/hardness, an intelligent material perception system capable of recognizing nine materials with indistinguishable surfaces within one proximity-pressure cycle is established, demonstrating abilities that surpass human perception.
Collapse
Affiliation(s)
- Hongsen Niu
- School of Microelectronics, Shandong University, Jinan, 250101, China
- RFIC Centre, Kwangwoon University, Seoul, 01897, South Korea
| | - Hao Li
- School of Microelectronics, Shandong University, Jinan, 250101, China
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Eun-Seong Kim
- RFIC Centre, Kwangwoon University, Seoul, 01897, South Korea
| | - Nam-Young Kim
- RFIC Centre, Kwangwoon University, Seoul, 01897, South Korea
| | - Yang Li
- School of Microelectronics, Shandong University, Jinan, 250101, China
| |
Collapse
|
24
|
Xi J, Yang H, Li X, Wei R, Zhang T, Dong L, Yang Z, Yuan Z, Sun J, Hua Q. Recent Advances in Tactile Sensory Systems: Mechanisms, Fabrication, and Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:465. [PMID: 38470794 DOI: 10.3390/nano14050465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/07/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Flexible electronics is a cutting-edge field that has paved the way for artificial tactile systems that mimic biological functions of sensing mechanical stimuli. These systems have an immense potential to enhance human-machine interactions (HMIs). However, tactile sensing still faces formidable challenges in delivering precise and nuanced feedback, such as achieving a high sensitivity to emulate human touch, coping with environmental variability, and devising algorithms that can effectively interpret tactile data for meaningful interactions in diverse contexts. In this review, we summarize the recent advances of tactile sensory systems, such as piezoresistive, capacitive, piezoelectric, and triboelectric tactile sensors. We also review the state-of-the-art fabrication techniques for artificial tactile sensors. Next, we focus on the potential applications of HMIs, such as intelligent robotics, wearable devices, prosthetics, and medical healthcare. Finally, we conclude with the challenges and future development trends of tactile sensors.
Collapse
Affiliation(s)
- Jianguo Xi
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Huaiwen Yang
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Xinyu Li
- School of Integrated Circuit Science and Engineering, Beihang University, Beijing 100191, China
| | - Ruilai Wei
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
- Institute of Flexible Electronics, Beijing Institute of Technology, Beijing 102488, China
| | - Taiping Zhang
- Tianfu Xinglong Lake Laboratory, Chengdu 610299, China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenjun Yang
- Hefei Hospital Affiliated to Anhui Medical University (The Second People's Hospital of Hefei), Hefei 230011, China
| | - Zuqing Yuan
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
- Institute of Flexible Electronics, Beijing Institute of Technology, Beijing 102488, China
| | - Junlu Sun
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Qilin Hua
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
- Institute of Flexible Electronics, Beijing Institute of Technology, Beijing 102488, China
- Guangxi Key Laboratory of Brain-Inspired Computing and Intelligent Chips, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
25
|
Fu Y, Kang S, Xiang G, Su C, Gao C, Tan L, Gu H, Wang S, Zheng Z, Dai S, Lin C. Ultraflexible Temperature-Strain Dual-Sensor Based on Chalcogenide Glass-Polymer Film for Human-Machine Interaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313101. [PMID: 38417448 DOI: 10.1002/adma.202313101] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Indexed: 03/01/2024]
Abstract
Skin-like thermoelectric (TE) films with temperature- and strain-sensing functions are highly desirable for human-machine interaction systems and wearable devices. However, current TE films still face challenges in achieving high flexibility and excellent sensing performance simultaneously. Herein, for the first time, a facile roll-to-roll strategy is proposed to fabricate an ultraflexible chalcogenide glass-polytetrafluoroethylene composite film with superior temperature- and strain-sensing performance. The unique reticular network of the composite film endows it with efficient Seebeck effect and flexibility, leading to a high Seebeck coefficient (731 µV/K), rapid temperature response (≈0.7 s), and excellent strain sensitivity (gauge factor = 836). Based on this high-performance composite film, an intelligent robotic hand for action feedback and temperature alarm is fabricated, demonstrating its great potential in human-machine interaction. Such TE film fabrication strategy not only brings new inspiration for wearable inorganic TE devices, but also sets the stage for a wide implementation of multifunctional human-machine interaction systems.
Collapse
Affiliation(s)
- Yanqing Fu
- Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, P. R. China
- Zhejiang Key Laboratory of Photoelectric Materials and Devices, Ningbo, 315211, P. R. China
- Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo, 315211, P. R. China
| | - Shiliang Kang
- Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, P. R. China
- Zhejiang Key Laboratory of Photoelectric Materials and Devices, Ningbo, 315211, P. R. China
- Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo, 315211, P. R. China
| | - Guofeng Xiang
- Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, P. R. China
- Zhejiang Key Laboratory of Photoelectric Materials and Devices, Ningbo, 315211, P. R. China
- Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo, 315211, P. R. China
| | - Chengran Su
- Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, P. R. China
- Zhejiang Key Laboratory of Photoelectric Materials and Devices, Ningbo, 315211, P. R. China
- Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo, 315211, P. R. China
| | - Chengwei Gao
- Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, P. R. China
- Zhejiang Key Laboratory of Photoelectric Materials and Devices, Ningbo, 315211, P. R. China
- Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo, 315211, P. R. China
| | - Linling Tan
- Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, P. R. China
- Zhejiang Key Laboratory of Photoelectric Materials and Devices, Ningbo, 315211, P. R. China
- Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo, 315211, P. R. China
| | - Hao Gu
- Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, P. R. China
- Zhejiang Key Laboratory of Photoelectric Materials and Devices, Ningbo, 315211, P. R. China
- Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo, 315211, P. R. China
| | - Shengpeng Wang
- Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, P. R. China
- Zhejiang Key Laboratory of Photoelectric Materials and Devices, Ningbo, 315211, P. R. China
- Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo, 315211, P. R. China
| | - Zhuanghao Zheng
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shixun Dai
- Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, P. R. China
- Zhejiang Key Laboratory of Photoelectric Materials and Devices, Ningbo, 315211, P. R. China
- Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo, 315211, P. R. China
| | - Changgui Lin
- Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo, 315211, P. R. China
- Zhejiang Key Laboratory of Photoelectric Materials and Devices, Ningbo, 315211, P. R. China
- Engineering Research Center for Advanced Infrared Photoelectric Materials and Devices of Zhejiang Province, Ningbo, 315211, P. R. China
| |
Collapse
|
26
|
Luo H, Li C, Wang S, Zhang S, Song J. Switchable Adhesive Based on Shape Memory Polymer with Micropillars of Different Heights for Laser-Driven Noncontact Transfer Printing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9443-9452. [PMID: 38335021 DOI: 10.1021/acsami.3c16282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Switchable adhesive is essential to develop transfer printing, which is an advanced heterogeneous material integration technique for developing electronic systems. Designing a switchable adhesive with strong adhesion strength that can also be easily eliminated to enable noncontact transfer printing still remains a challenge. Here, we report a simple yet robust design of switchable adhesive based on a thermally responsive shape memory polymer with micropillars of different heights. The adhesive takes advantage of the shape-fixing property of shape memory polymer to provide strong adhesion for a reliable pick-up and the various levels of shape recovery of micropillars under laser heating to eliminate the adhesion for robust printing in a noncontact way. Systematic experimental and numerical studies reveal the adhesion switch mechanism and provide insights into the design of switchable adhesives. This switchable adhesive design provides a good solution to develop laser-driven noncontact transfer printing with the capability of eliminating the influence of receivers on the performance of transfer printing. Demonstrations of transfer printing of silicon wafers, microscale Si platelets, and micro light emitting diode (μ-LED) chips onto various challenging nonadhesive receivers (e.g., sandpaper, stainless steel bead, leaf, or glass) to form desired two-dimensional or three-dimensional layouts illustrate its great potential in deterministic assembly.
Collapse
Affiliation(s)
- Hongyu Luo
- Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, and State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Chenglong Li
- Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, and State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China
| | - Suhao Wang
- Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, and State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China
| | - Shun Zhang
- Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, and State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China
| | - Jizhou Song
- Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, and State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310027, China
- Nanhu Brain-Computer Interface Institute, Hangzhou 311100, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
27
|
Wang X, Zhang J, Liu P, Wei D, Tian D, Liu S, Chen Q, Cao J, Wang Z, Huang X. Metal chalcogenide nanorings for temperature-strain dual-mode sensing. NANOSCALE 2024; 16:3484-3491. [PMID: 38269423 DOI: 10.1039/d3nr05561b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Most metal chalcogenides exhibit layered structures and anisotropic morphologies such as nanosheets, nanoplates, and nanotubes, as well as nanosheet-assembled nanoflowers. Unconventional morphologies such as nanorings may bring appealing properties to functional materials, but they have not been realized with metal chalcogenides. Herein, we report that Sn0.2Mo0.8S2 nanorings with a mixed 1T/2H phase were synthesized by etching SnS2 cores from Sn1-xMoxS2/SnS2 lateral heterostructures. Flexible electronic sensors based on these Sn0.2Mo0.8S2 nanorings exhibited excellent temperature and strain sensing performance, with a negative temperature coefficient of resistance of -0.013 °C-1 and a minimum detectable strain of 0.09%. In addition, the dual-functional flexible electronic sensors with easy fabrication and good wearability showed great promise for tracking human activities and monitoring inapparent health-related signals.
Collapse
Affiliation(s)
- Xiaoshan Wang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan 750021, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jinhao Zhang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| | - Peiyuan Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Danlin Wei
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan 750021, China
| | - Daobo Tian
- Ningxia Key Laboratory of Photovoltaic Materials, School of Materials and New Energy, Ningxia University, Yinchuan 750021, China
| | - Shipeng Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qian Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jiacheng Cao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Zhiwei Wang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.
| |
Collapse
|
28
|
Shao B, Lu MH, Wu TC, Peng WC, Ko TY, Hsiao YC, Chen JY, Sun B, Liu R, Lai YC. Large-area, untethered, metamorphic, and omnidirectionally stretchable multiplexing self-powered triboelectric skins. Nat Commun 2024; 15:1238. [PMID: 38336848 PMCID: PMC10858173 DOI: 10.1038/s41467-024-45611-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Large-area metamorphic stretchable sensor networks are desirable in haptic sensing and next-generation electronics. Triboelectric nanogenerator-based self-powered tactile sensors in single-electrode mode constitute one of the best solutions with ideal attributes. However, their large-area multiplexing utilizations are restricted by severe misrecognition between sensing nodes and high-density internal circuits. Here, we provide an electrical signal shielding strategy delivering a large-area multiplexing self-powered untethered triboelectric electronic skin (UTE-skin) with an ultralow misrecognition rate (0.20%). An omnidirectionally stretchable carbon black-Ecoflex composite-based shielding layer is developed to effectively attenuate electrostatic interference from wirings, guaranteeing low-level noise in sensing matrices. UTE-skin operates reliably under 100% uniaxial, 100% biaxial, and 400% isotropic strains, achieving high-quality pressure imaging and multi-touch real-time visualization. Smart gloves for tactile recognition, intelligent insoles for gait analysis, and deformable human-machine interfaces are demonstrated. This work signifies a substantial breakthrough in haptic sensing, offering solutions for the previously challenging issue of large-area multiplexing sensing arrays.
Collapse
Affiliation(s)
- Beibei Shao
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano & Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou, 215006, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, PR China
| | - Ming-Han Lu
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Tai-Chen Wu
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Wei-Chen Peng
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Tien-Yu Ko
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yung-Chi Hsiao
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Jiann-Yeu Chen
- Innovation and Development Center of Sustainable Agriculture, i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Baoquan Sun
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano & Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou, 215006, PR China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, PR China.
- Macau Institute of Materials Science and Engineering MUST-SUDA Joint Research Center for Advanced Functional Materials Macau University of Science and Technology Macau, 999078, Macao, PR China.
| | - Ruiyuan Liu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Institute of Functional Nano & Soft Materials (FUNSOM) and College of Energy, Soochow University, Suzhou, 215006, PR China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, PR China.
| | - Ying-Chih Lai
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung, 40227, Taiwan.
- Innovation and Development Center of Sustainable Agriculture, i-Center for Advanced Science and Technology, National Chung Hsing University, Taichung, 40227, Taiwan.
- Department of Physics, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
29
|
Li C, Luo H, Lin X, Zhang S, Song J. Laser-driven noncontact bubble transfer printing via a hydrogel composite stamp. Proc Natl Acad Sci U S A 2024; 121:e2318739121. [PMID: 38266054 PMCID: PMC10835071 DOI: 10.1073/pnas.2318739121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/12/2023] [Indexed: 01/26/2024] Open
Abstract
Transfer printing that enables heterogeneous integration of materials into spatially organized, functional arrangements is essential for developing unconventional electronic systems. Here, we report a laser-driven noncontact bubble transfer printing via a hydrogel composite stamp, which features a circular reservoir filled with hydrogel inside a stamp body and encapsulated by a laser absorption layer and an adhesion layer. This composite structure of stamp provides a reversible thermal controlled adhesion in a rapid manner through the liquid-gas phase transition of water in the hydrogel. The ultrasoft nature of hydrogel minimizes the influence of preload on the pick-up performance, which offers a strong interfacial adhesion under a small preload for a reliable damage-free pick-up. The strong light-matter interaction at the interface induces a liquid-gas phase transition to form a bulge on the stamp surface, which eliminates the interfacial adhesion for a successful noncontact printing. Demonstrations of noncontact transfer printing of microscale Si platelets onto various challenging nonadhesive surfaces (e.g., glass, key, wrench, steel sphere, dry petal, droplet) in two-dimensional or three-dimensional layouts illustrate the unusual capabilities for deterministic assembly to develop unconventional electronic systems such as flexible inorganic electronics, curved electronics, and micro-LED display.
Collapse
Affiliation(s)
- Chenglong Li
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou310027, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou310003, China
| | - Hongyu Luo
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Xinyi Lin
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Shun Zhang
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Jizhou Song
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou310027, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou310003, China
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou310058, China
- Institute of Flexible Electronics Technology of Tsinghua University, Zhejiang, Jiaxing314000, China
| |
Collapse
|
30
|
Jiao Z, Hu Z, Shi Y, Xu K, Lin F, Zhu P, Tang W, Zhong Y, Yang H, Zou J. Reprogrammable, intelligent soft origami LEGO coupling actuation, computation, and sensing. Innovation (N Y) 2024; 5:100549. [PMID: 38192379 PMCID: PMC10772819 DOI: 10.1016/j.xinn.2023.100549] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024] Open
Abstract
Tightly integrating actuation, computation, and sensing in soft materials allows soft robots to respond autonomously to their environments. However, fusing these capabilities within a single soft module in an efficient, programmable, and compatible way is still a significant challenge. Here, we introduce a strategy for integrating actuation, computation, and sensing capabilities in soft origami. Unified and plug-and-play soft origami modules can be reconfigured into diverse morphologies with specific functions or reprogrammed into a variety of soft logic circuits, similar to LEGO bricks. We built an untethered autonomous soft turtle that is able to sense stimuli, store data, process information, and perform swimming movements. The function multiplexing and signal compatibility of the origami minimize the number of soft devices, thereby reducing the complexity and redundancy of soft robots. Moreover, this origami also exhibits strong damage resistance and high durability. We envision that this work will offer an effective way to readily create on-demand soft robots that can operate in unknown environments.
Collapse
Affiliation(s)
- Zhongdong Jiao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Zhenhan Hu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Yuhao Shi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Kaichen Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Fangye Lin
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Pingan Zhu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Wei Tang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Yiding Zhong
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| | - Jun Zou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
31
|
Zhang H, Zhang Y. Rational Design of Flexible Mechanical Force Sensors for Healthcare and Diagnosis. MATERIALS (BASEL, SWITZERLAND) 2023; 17:123. [PMID: 38203977 PMCID: PMC10780056 DOI: 10.3390/ma17010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Over the past decade, there has been a significant surge in interest in flexible mechanical force sensing devices and systems. Tremendous efforts have been devoted to the development of flexible mechanical force sensors for daily healthcare and medical diagnosis, driven by the increasing demand for wearable/portable devices in long-term healthcare and precision medicine. In this review, we summarize recent advances in diverse categories of flexible mechanical force sensors, covering piezoresistive, capacitive, piezoelectric, triboelectric, magnetoelastic, and other force sensors. This review focuses on their working principles, design strategies and applications in healthcare and diagnosis, with an emphasis on the interplay among the sensor architecture, performance, and application scenario. Finally, we provide perspectives on the remaining challenges and opportunities in this field, with particular discussions on problem-driven force sensor designs, as well as developments of novel sensor architectures and intelligent mechanical force sensing systems.
Collapse
Affiliation(s)
- Hang Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
32
|
Kim TY, Hong SH, Jeong SH, Bae H, Cheong S, Choi H, Hahn SK. Multifunctional Intelligent Wearable Devices Using Logical Circuits of Monolithic Gold Nanowires. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303401. [PMID: 37499253 DOI: 10.1002/adma.202303401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/25/2023] [Indexed: 07/29/2023]
Abstract
Although multifunctional wearable devices have been widely investigated for healthcare systems, augmented/virtual realities, and telemedicines, there are few reports on multiple signal monitoring and logical signal processing by using one single nanomaterial without additional algorithms or rigid application-specific integrated circuit chips. Here, multifunctional intelligent wearable devices are developed using monolithically patterned gold nanowires for both signal monitoring and processing. Gold bulk and hollow nanowires show distinctive electrical properties with high chemical stability and high stretchability. In accordance, the monolithically patterned gold nanowires can be used to fabricate the robust interfaces, programmable sensors, on-demand heating systems, and strain-gated logical circuits. The stretchable sensors show high sensitivity for strain and temperature changes on the skin. Furthermore, the micro-wrinkle structures of gold nanowires exhibit the negative gauge factor, which can be used for strain-gated logical circuits. Taken together, this multifunctional intelligent wearable device would be harnessed as a promising platform for futuristic electronic and biomedical applications.
Collapse
Affiliation(s)
- Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sang Hoon Hong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sang Hoon Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Hanseo Bae
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Sunah Cheong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Hyunsik Choi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, Barcelona, 08028, Spain
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| |
Collapse
|
33
|
Song Y, Ren W, Zhang Y, Liu Q, Peng Z, Wu X, Wang Z. Synergetic Monitoring of both Physiological Pressure and Epidermal Biopotential Based on a Simplified on-Skin-Printed Sensor Modality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303301. [PMID: 37423977 DOI: 10.1002/smll.202303301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/07/2023] [Indexed: 07/11/2023]
Abstract
Flexible electronic sensors show great potential for health monitoring but are usually limited to single sensing functionality. To enrich their functions, complicated device configurations, sophisticated material systems, and preparation processes are typically involved, obstructing their large-scale deployment and widespread application. Herein, to achieve a good balance between simplicity and multifunctionality, a new paradigm of sensor modality for both mechanical sensing and bioelectrical sensing is presented based on a single material system and a simple solution processing approach. The whole multifunctional sensors are constructed with a pair of highly conductive ultrathin electrodes (WPU/MXene-1) and an elastic micro-structured mechanical sensing layer (WPU/MXene-2), with the human skin serving as the substrate for the whole sensors. The resultant sensors show high pressure sensitivity and low skin-electrode interfacial impedance, enabling to synergetically monitor both physiological pressure (e.g., arterial pulse signals) and epidermal bioelectrical signals (including electrocardiograph and electromyography). The universality and extensibility of this methodology to construct multifunctional sensors with different material systems are also verified. This simplified sensor modality with enhanced multifunctionality provides a novel design concept to construct future smart wearables for health monitoring and medical diagnosis.
Collapse
Affiliation(s)
- Yangyang Song
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
- Med + X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenjuan Ren
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiqun Zhang
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
- Med + X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qi Liu
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
- Med + X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen Peng
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
- Med + X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaodong Wu
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhuqing Wang
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
- Med + X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
34
|
Han S, Zhi X, Xia Y, Guo W, Li Q, Chen D, Liu K, Wang X. All Resistive Pressure-Temperature Bimodal Sensing E-Skin for Object Classification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301593. [PMID: 37259272 DOI: 10.1002/smll.202301593] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/20/2023] [Indexed: 06/02/2023]
Abstract
Electronic skin (E-skin) with multimodal sensing ability demonstrates huge prospects in object classification by intelligent robots. However, realizing the object classification capability of E-skin faces severe challenges in multiple types of output signals. Herein, a hierarchical pressure-temperature bimodal sensing E-skin based on all resistive output signals is developed for accurate object classification, which consists of laser-induced graphene/silicone rubber (LIG/SR) pressure sensing layer and NiO temperature sensing layer. The highly conductive LIG is employed as pressure-sensitive material as well as the interdigital electrode. Benefiting from high conductivity of LIG, pressure perception exhibits an excellent sensitivity of -34.15 kPa-1 . Meanwhile, a high temperature coefficient of resistance of -3.84%°C-1 is obtained in the range of 24-40 °C. More importantly, based on only electrical resistance as the output signal, the bimodal sensing E-skin with negligible crosstalk can simultaneously achieve pressure and temperature perception. Furthermore, a smart glove based on this E-skin enables classifying various objects with different shapes, sizes, and surface temperatures, which achieves over 92% accuracy under assistance of deep learning. Consequently, the hierarchical pressure-temperature bimodal sensing E-skin demonstrates potential application in human-machine interfaces, intelligent robots, and smart prosthetics.
Collapse
Affiliation(s)
- Shilei Han
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Xinrong Zhi
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Yifan Xia
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Wenyu Guo
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Qingqing Li
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Delu Chen
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Kangting Liu
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, P. R. China
| | - Xin Wang
- Henan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
35
|
Wu Q, Xu Y, Han S, Zhu J, Chen A, Zhang J, Chen Y, Yang X, Huang J, Guan L. A liquid-free conducting ionoelastomer for 3D printable multifunctional self-healing electronic skin with tactile sensing capabilities. MATERIALS HORIZONS 2023; 10:3610-3621. [PMID: 37334834 DOI: 10.1039/d3mh00612c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Conductive elastomers with both softness and conductivity are widely used in the field of flexible electronics. Nonetheless, conductive elastomers typically exhibit prominent problems such as solvent volatilization and leakage, and poor mechanical and conductive properties, which limit their applications in electronic skin (e-skin). In this work, a liquid-free conductive ionogel (LFCIg) with excellent performance was fabricated by utilizing the innovative double network design approach based on a deep eutectic solvent (DES). The double-network LFCIg is cross-linked by dynamic non-covalent bonds, which exhibit excellent mechanical properties (2100% strain while sustaining a fracture strength of 1.23 MPa) and >90% self-healing efficiency, and a superb electrical conductivity of 23.3 mS m-1 and 3D printability. Moreover, the conductive elastomer based on LFCIg has been developed into a stretchable strain sensor that achieves accurate response recognition, classification, and identification of different robot gestures. More impressively, an e-skin with tactile sensing functions is produced by in situ 3D printing of sensor arrays on flexible electrodes to detect light weight objects and recognize the resulting spatial pressure variations. Collectively, the results demonstrate that the designed LFCIg has unparalleled advantages and presents wide application potential in flexible robotics, e-skin and physiological signal monitoring.
Collapse
Affiliation(s)
- Qirui Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, China
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Yidan Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China
| | - Songjiu Han
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, China
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Jundong Zhu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, China
| | - Anbang Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, China
| | - Jiayu Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, China
| | - Yujia Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, China
| | - Xiaoxiang Yang
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Jianren Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, China
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China
| | - Lunhui Guan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350108, China
- A College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
36
|
Hegde C, Su J, Tan JMR, He K, Chen X, Magdassi S. Sensing in Soft Robotics. ACS NANO 2023; 17:15277-15307. [PMID: 37530475 PMCID: PMC10448757 DOI: 10.1021/acsnano.3c04089] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Abstract
Soft robotics is an exciting field of science and technology that enables robots to manipulate objects with human-like dexterity. Soft robots can handle delicate objects with care, access remote areas, and offer realistic feedback on their handling performance. However, increased dexterity and mechanical compliance of soft robots come with the need for accurate control of the position and shape of these robots. Therefore, soft robots must be equipped with sensors for better perception of their surroundings, location, force, temperature, shape, and other stimuli for effective usage. This review highlights recent progress in sensing feedback technologies for soft robotic applications. It begins with an introduction to actuation technologies and material selection in soft robotics, followed by an in-depth exploration of various types of sensors, their integration methods, and the benefits of multimodal sensing, signal processing, and control strategies. A short description of current market leaders in soft robotics is also included in the review to illustrate the growing demands of this technology. By examining the latest advancements in sensing feedback technologies for soft robots, this review aims to highlight the potential of soft robotics and inspire innovation in the field.
Collapse
Affiliation(s)
- Chidanand Hegde
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Jiangtao Su
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Joel Ming Rui Tan
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Ke He
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Xiaodong Chen
- School
of Materials Science and Engineering, Nanyang
Technological University, Singapore 639798, Singapore
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
| | - Shlomo Magdassi
- Singapore-HUJ
alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE) Singapore 138602, Singapore
- Casali
Center for Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
37
|
Shi L, Li Z, Chen M, Zhu T, Wu L. Ultrasensitive and Ultraprecise Pressure Sensors for Soft Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210091. [PMID: 36625165 DOI: 10.1002/adma.202210091] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Highly sensitive soft pressure sensors have attracted tremendous attention in recent years due to their great promise in robotics, healthcare, smart wearables, etc. Although high sensitivities can be realized by existing sensing mechanisms, they usually cause large random errors owing to inhomogeneous sensing layers, thus considerably reducing the sensing precision for practical applications. Herein, a pure-polymer and field emission bilayer structure (PFEBS)-based transduction mechanism is presented to successfully design an ultrasensitive and ultraprecise soft pressure sensor for the first time. This unique structure enables numerous tunneling electrons generated by field emission to be transmitted through the homogeneous sensing layer, which undergoes uniform deformation under subtle pressures, simultaneously achieving a sensing precision with variation <1.62% and a sensitivity of 372.2 kPa-1 . This study offers a new design strategy to develop next-generation high-performance flexible pressure sensors for soft systems.
Collapse
Affiliation(s)
- Lan Shi
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Zhuo Li
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Min Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Tianyu Zhu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
38
|
Wang Y, Ping X, Chen X, Wang D. Flexible Electrodes as a Measuring System of Electrical Impedance Imaging. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1901. [PMID: 36903016 PMCID: PMC10004451 DOI: 10.3390/ma16051901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Electrical Impedance Tomography (EIT) is a detection imaging technology developed 30 years ago. When the conventional EIT measurement system is used, the electrode and the excitation measurement terminal are connected with a long wire, which is easily affected by external interference, and the measurement result is unstable. In this paper, we developed a flexible electrode device based on flexible electronics technology, which can be softly attached to the skin surface for real-time physiological monitoring. The flexible equipment includes an excitation measuring circuit and electrode, which eliminates the adverse effects of connecting long wires and improves the effectiveness of measuring signals. At the same time, the design also uses flexible electronic technology to make the system structure achieve ultra-low modulus and high tensile strength so that the electronic equipment has soft mechanical properties. Experiments have shown that when the flexible electrode is deformed, its function is completely unaffected, the measurement results remain stable, and the static and fatigue performances are satisfactory. The flexible electrode has high system accuracy and good anti-interference.
Collapse
Affiliation(s)
- Yi Wang
- College of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
- Tianjin Key Laboratory of Integrated Design and On-Line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin 300222, China
| | - Xuecheng Ping
- College of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
- Tianjin Key Laboratory of Integrated Design and On-Line Monitoring for Light Industry & Food Machinery and Equipment, Tianjin 300222, China
| | - Xiaoyan Chen
- College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Di Wang
- College of Electronic Information and Automation, Tianjin University of Science and Technology, Tianjin 300222, China
| |
Collapse
|
39
|
Wang Y, Adam ML, Zhao Y, Zheng W, Gao L, Yin Z, Zhao H. Machine Learning-Enhanced Flexible Mechanical Sensing. NANO-MICRO LETTERS 2023; 15:55. [PMID: 36800133 PMCID: PMC9936950 DOI: 10.1007/s40820-023-01013-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/08/2023] [Indexed: 05/31/2023]
Abstract
To realize a hyperconnected smart society with high productivity, advances in flexible sensing technology are highly needed. Nowadays, flexible sensing technology has witnessed improvements in both the hardware performances of sensor devices and the data processing capabilities of the device's software. Significant research efforts have been devoted to improving materials, sensing mechanism, and configurations of flexible sensing systems in a quest to fulfill the requirements of future technology. Meanwhile, advanced data analysis methods are being developed to extract useful information from increasingly complicated data collected by a single sensor or network of sensors. Machine learning (ML) as an important branch of artificial intelligence can efficiently handle such complex data, which can be multi-dimensional and multi-faceted, thus providing a powerful tool for easy interpretation of sensing data. In this review, the fundamental working mechanisms and common types of flexible mechanical sensors are firstly presented. Then how ML-assisted data interpretation improves the applications of flexible mechanical sensors and other closely-related sensors in various areas is elaborated, which includes health monitoring, human-machine interfaces, object/surface recognition, pressure prediction, and human posture/motion identification. Finally, the advantages, challenges, and future perspectives associated with the fusion of flexible mechanical sensing technology and ML algorithms are discussed. These will give significant insights to enable the advancement of next-generation artificial flexible mechanical sensing.
Collapse
Affiliation(s)
- Yuejiao Wang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Mukhtar Lawan Adam
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Yunlong Zhao
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Weihao Zheng
- School of Mechano-Electronic Engineering, Xidian University, Xi'an , 710071, People's Republic of China
| | - Libo Gao
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Zongyou Yin
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia.
| | - Haitao Zhao
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
40
|
Li D, Zhou J, Yao K, Liu S, He J, Su J, Qu Q, Gao Y, Song Z, Yiu C, Sha C, Sun Z, Zhang B, Li J, Huang L, Xu C, Wong TH, Huang X, Li J, Ye R, Wei L, Zhang Z, Guo X, Dai Y, Xie Z, Yu X. Touch IoT enabled by wireless self-sensing and haptic-reproducing electronic skin. SCIENCE ADVANCES 2022; 8:eade2450. [PMID: 36563155 PMCID: PMC9788763 DOI: 10.1126/sciadv.ade2450] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Tactile sensations are mainly transmitted to each other by physical touch. Wireless touch perception could be a revolution for us to interact with the world. Here, we report a wireless self-sensing and haptic-reproducing electronic skin (e-skin) to realize noncontact touch communications. A flexible self-sensing actuator was developed to provide an integrated function in both tactile sensing and haptic feedback. When this e-skin was dynamically pressed, the actuator generated an induced voltage as tactile information. Via wireless communication, another e-skin could receive this tactile data and run a synchronized haptic reproduction. Thus, touch could be wirelessly conveyed in bidirections between two users as a touch intercom. Furthermore, this e-skin could be connected with various smart devices to form a touch internet of things where one-to-one and one-to-multiple touch delivery could be realized. This wireless touch presents huge potentials in remote touch video, medical care/assistance, education, and many other applications.
Collapse
Affiliation(s)
- Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Sitong Liu
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Jiahui He
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Jingyou Su
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Qing’ao Qu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Yuyu Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhen Song
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Chunki Yiu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
| | - Chuanlu Sha
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhi Sun
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Binbin Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
| | - Jian Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
| | - Libei Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Chenyu Xu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Tsz Hung Wong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Jiyu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
| | - Ruquan Ye
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Lei Wei
- Tencent Robotics X, Shenzhen 518054, China
| | | | - Xu Guo
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Yuan Dai
- Tencent Robotics X, Shenzhen 518054, China
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
41
|
Li S, Chen X, Li X, Tian H, Wang C, Nie B, He J, Shao J. Bioinspired robot skin with mechanically gated electron channels for sliding tactile perception. SCIENCE ADVANCES 2022; 8:eade0720. [PMID: 36459548 PMCID: PMC10936060 DOI: 10.1126/sciadv.ade0720] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Human-like tactile perception is critical for promoting robotic intelligence. However, reproducing tangential "sliding" perception of human skin is still struggling. Inspired by the lateral gating mechanosensing mechanism of mechanosensory cells, which perceives mechanical stimuli by lateral tension-induced opening-closing of ion channels, we report a robot skin (R-skin) with mechanically gated electron channels, achieving ultrasensitive and fast-response sliding tactile perception via pyramidal artificial fingerprint-triggered opening-closing of electron gates (E-gates, namely, customized V-shaped cracks within embedded mesh electron channels). By imitating cytomembrane to modulate membrane mechanics, local strain is enhanced at E-gates to effectively regulate electron pathways for high sensitivity while weakened at other positions to suppress random cracks for robust stability. The R-skin can directly recognize ultrafine surface microstructure (5 μm) at a response frequency (485 Hz) outshining humans and achieve human-like sliding perception functions, including dexterously distinguishing texture of complex-shaped objects and providing real-time feedback for grasping.
Collapse
Affiliation(s)
- Sheng Li
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Xiaoliang Chen
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Xiangming Li
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Hongmiao Tian
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Chunhui Wang
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Bangbang Nie
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Juan He
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| | - Jinyou Shao
- Micro-/Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
- Frontier Institute of Science and Technology (FIST), Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
| |
Collapse
|
42
|
Jia S, Gao H, Xue Z, Meng X. Recent Advances in Multifunctional Wearable Sensors and Systems: Design, Fabrication, and Applications. BIOSENSORS 2022; 12:bios12111057. [PMID: 36421175 PMCID: PMC9688294 DOI: 10.3390/bios12111057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 05/24/2023]
Abstract
Multifunctional wearable sensors and systems are of growing interest over the past decades because of real-time health monitoring and disease diagnosis capability. Owing to the tremendous efforts of scientists, wearable sensors and systems with attractive advantages such as flexibility, comfort, and long-term stability have been developed, which are widely used in temperature monitoring, pulse wave detection, gait pattern analysis, etc. Due to the complexity of human physiological signals, it is necessary to measure multiple physiological information simultaneously to evaluate human health comprehensively. This review summarizes the recent advances in multifunctional wearable sensors, including single sensors with various functions, planar integrated sensors, three-dimensional assembled sensors, and stacked integrated sensors. The design strategy, manufacturing method, and potential application of each type of sensor are discussed. Finally, we offer an outlook on future developments and provide perspectives on the remaining challenges and opportunities of wearable multifunctional sensing technology.
Collapse
|
43
|
Redefinable planar microwave passive electronics enabled by thermal controlled VO 2/Cu hybrid matrix. iScience 2022; 25:105060. [PMID: 36147957 PMCID: PMC9485911 DOI: 10.1016/j.isci.2022.105060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/07/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
A planar microwave array device with complex electromagnetic functional reconfigurability is demonstrated by means of phase transition film VO2 to manipulate the electromagnetic distribution. Based on planar patch architecture, the microwave device can switch between antenna array and cascaded filter functions. Furthermore, hybrid EM functions such as cascaded antenna arrays and filters are enabled, themselves with further reconfigurability. Therefore, a single design realizes many mono and hybrid antenna and filter functions, which are determined by the order of the array. For simplicity of demonstration, a 2 × 2 array device working at three reconfigurable center frequency points of 3.1, 3.7, and 4.4 GHz, fully compatible with standard planar CMOS processing. A comprehensive design method is proposed to meet the design requirements of a patch-based antenna array and cascaded filter. Based on the functionally reconfigurable microwave device, the front-end circuit could be recombined to suitable for multifunctional microwave systems.
Collapse
|
44
|
Klimaszewski J, Wildner K, Ostaszewska-Liżewska A, Władziński M, Możaryn J. Robot-Based Calibration Procedure for Graphene Electronic Skin. SENSORS (BASEL, SWITZERLAND) 2022; 22:6122. [PMID: 36015884 PMCID: PMC9416129 DOI: 10.3390/s22166122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The paper describes the semi-automatised calibration procedure of an electronic skin comprising screen-printed graphene-based sensors intended to be used for robotic applications. The variability of sensitivity and load characteristics among sensors makes the practical use of the e-skin extremely difficult. As the number of active elements forming the e-skin increases, this problem becomes more significant. The article describes the calibration procedure of multiple e-skin array sensors whose parameters are not homogeneous. We describe how an industrial robot equipped with a reference force sensor can be used to automatise the e-skin calibration procedure. The proposed methodology facilitates, speeds up, and increases the repeatability of the e-skin calibration. Finally, for the chosen example of a nonhomogeneous sensor matrix, we provide details of the data preprocessing, the sensor modelling process, and a discussion of the obtained results.
Collapse
Affiliation(s)
- Jan Klimaszewski
- Warsaw University of Technology, Faculty of Mechatronics, Institute of Automatic Control and Robotics, A. Boboli 8 Street, 02-525 Warsaw, Poland
| | - Krzysztof Wildner
- Warsaw University of Technology, Faculty of Mechatronics, Institute of Metrology and Biomedical Engineering, A. Boboli 8 Street, 02-525 Warsaw, Poland
| | - Anna Ostaszewska-Liżewska
- Warsaw University of Technology, Faculty of Mechatronics, Institute of Metrology and Biomedical Engineering, A. Boboli 8 Street, 02-525 Warsaw, Poland
| | - Michał Władziński
- Warsaw University of Technology, Faculty of Mechatronics, Institute of Metrology and Biomedical Engineering, A. Boboli 8 Street, 02-525 Warsaw, Poland
| | - Jakub Możaryn
- Warsaw University of Technology, Faculty of Mechatronics, Institute of Automatic Control and Robotics, A. Boboli 8 Street, 02-525 Warsaw, Poland
| |
Collapse
|
45
|
Su Q, Liu C, Xue T, Zou Q. Sensitivity-Photo-Patternable Ionic Pressure Sensor Array with a Wearable Measurement Unit. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33641-33649. [PMID: 35833900 DOI: 10.1021/acsami.2c09341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A flexible pressure sensor array provides more information than a single pressure sensor as electronic skin, and independently definable sensitivities of sensing pixels enable more accurate pressure measurements. However, the reported approaches, either changing the mold for the dielectric layer or tuning the dielectric properties, overcomplicate the manufacturing process for the devices. Here, we present a pressure sensor array with photo-patterned sensitivity, which is realized through the synergistic creation of the photo-defined mechanical properties of the dielectric layer and the interfacial capacitive sensing mechanism. Via this design, the sensitivity of each sensing pixel can be photo-defined over a range of ∼70 times of magnitude. Additionally, we created the first wearable measurement unit for the ionic pressure sensor array. The sensitivity-photo-patternable pressure sensor array and the wearable measurement unit fulfill the open need of mapping the pressure distribution over a broad range of magnitude, such as the plantar pressure.
Collapse
Affiliation(s)
- Qi Su
- School of Microelectronics, Tianjin International Joint Research Center for Internet of Things, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Chenyu Liu
- School of Microelectronics, Tianjin International Joint Research Center for Internet of Things, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Tao Xue
- Analysis and Testing Center, Tianjin University, Tianjin 300072, P. R. China
| | - Qiang Zou
- School of Microelectronics, Tianjin International Joint Research Center for Internet of Things, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
46
|
Wu J, Fan X, Liu X, Ji X, Shi X, Wu W, Yue Z, Liang J. Highly Sensitive Temperature-Pressure Bimodal Aerogel with Stimulus Discriminability for Human Physiological Monitoring. NANO LETTERS 2022; 22:4459-4467. [PMID: 35608193 DOI: 10.1021/acs.nanolett.2c01145] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multimodal sensor with high sensitivity, accurate sensing resolution, and stimuli discriminability is very desirable for human physiological state monitoring. A dual-sensing aerogel is fabricated with independent pyro-piezoresistive behavior by leveraging MXene and semicrystalline polymer to assemble shrinkable nanochannel structures inside multilevel cellular walls of aerogel for discriminable temperature and pressure sensing. The shrinkable nanochannels, controlled by the melt flow-triggered volume change of semicrystalline polymer, act as thermoresponsive conductive channels to endow the pyroresistive aerogel with negative temperature coefficient of resistance of -10.0% °C-1 and high accuracy within 0.2 °C in human physiological temperature range of 30-40 °C. The flexible cellular walls, working as pressure-responsive conductive channels, enable the piezoresistive aerogel to exhibit a pressure sensitivity up to 777 kPa-1 with a detectable pressure limit of 0.05 Pa. The pyro-piezoresistive aerogel can detect the temperature-dependent characteristics of pulse pressure waveforms from artery vessels under different human body temperature states.
Collapse
Affiliation(s)
- Jinhua Wu
- School of Materials Science and Engineering, National Institute for Advanced Materials Nankai University, Tianjin 300350, China
| | - Xiangqian Fan
- School of Materials Science and Engineering, National Institute for Advanced Materials Nankai University, Tianjin 300350, China
| | - Xue Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials Nankai University, Tianjin 300350, China
| | - Xinyi Ji
- School of Materials Science and Engineering, National Institute for Advanced Materials Nankai University, Tianjin 300350, China
| | - Xinlei Shi
- School of Materials Science and Engineering, National Institute for Advanced Materials Nankai University, Tianjin 300350, China
| | - Wenbin Wu
- Department of Microelectronics, Nankai University, Tianjin 300350, China
| | - Zhao Yue
- Department of Microelectronics, Nankai University, Tianjin 300350, China
| | - Jiajie Liang
- School of Materials Science and Engineering, National Institute for Advanced Materials Nankai University, Tianjin 300350, China
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300350, China
| |
Collapse
|
47
|
One-Step Genotyping Method in loxP-Based Conditional Knockout Mice Generated by CRISPR-Cas9 Technology. Mol Biotechnol 2022; 64:1227-1233. [PMID: 35503156 PMCID: PMC9515137 DOI: 10.1007/s12033-022-00500-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/04/2022] [Indexed: 11/21/2022]
Abstract
With the development of CRISPR-Cas9 gene editing and in vitro fertilization (IVF) technology, we can now easily construct genetically modified mouse strains with indels, especially for loxP-based strategy. However, the general genotyping methods are time-consuming and unreliable given the loxP site is only 34 bp long. Here, based on the tetra primer-paired PCR amplification, we describe an efficient genotyping method which can simultaneously generate the internal control band, wild type (wt)-genotype band, and/or loxP-genotype band through one single PCR amplification. It is easy to interpret the mouse genotypes from the pattern of the bands. Further, the results could also help to exclude the possibility of minor cross-contamination, since the ratio between the bands’ quantity in wt/wt, wt/loxP, and loxP/loxP mice are relatively constant, which makes the genotyping more reliable when it is performed in a large amount.
Collapse
|