1
|
Li X, Liu X, Hussain M, Li J, Chen Z, Fang Y, Su C, He C, Lu J. Engineering Local Coordination and Electronic Structures of Dual-Atom Catalysts. ACS NANO 2025; 19:17114-17139. [PMID: 40310690 DOI: 10.1021/acsnano.5c02353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Heterogeneous dual-atom catalysts (DACs), defined by atomically precise and isolated metal pairs on solid supports, have garnered significant interest in advancing catalytic processes and technologies aimed at achieving sustainable energy and chemical production. DACs present board opportunities for atomic-level structural and property engineering to enhance catalytic performance, which can effectively address the limitations of single-atom catalysts, including restricted active sites, spatial constraints, and the typically positive charge nature of supported single metal species. Despite the rapid progress in this field, the intricate relationship between local atomic environments and the catalytic behavior of dual-metal active sites remains insufficiently understood. This review highlights recent progress and major challenges in this field. We begin by discussing the local modulation of coordination and electronic structures in DACs and its impact on catalytic performance. Through specific case studies, we demonstrate the importance of optimizing the entire catalytic ensemble to achieve efficient, selective, and stable performance in both model and industrially relevant reactions. Additionally, we also outline future research directions, emphasizing the challenges and opportunities in synthesis, characterization, and practical applications, aiming to fully unlock the potential of these advanced catalysts.
Collapse
Affiliation(s)
- Xinzhe Li
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xuan Liu
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Muzammil Hussain
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jiali Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhongxin Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen 518000, China
| | - Yiyun Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chenliang Su
- International Collaboration Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Chi He
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou, Jiangsu 215000, China
| |
Collapse
|
2
|
Zhang H, Wan F, Li X, Zhang M, Zhang N, Wang P, Xiong S, Feng J, Xi B. Atomically Dispersed Co-Ru Dimer Catalyst Boosts Conversion of Polysulfides toward High-Performance Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500950. [PMID: 40317766 DOI: 10.1002/adma.202500950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/07/2025] [Indexed: 05/07/2025]
Abstract
The sluggish sulfur redox reaction in lithium-sulfur (Li-S) batteries triggers the development of highly active electrocatalysts for accelerating the polysulfides conversion kinetics. Rational design of catalysts with satisfactory active sites and high atom utilization toward multistep sulfur-based conversion is much desired but remains challenging. Here, it is shown that the well-designed Co-Ru dimer sites confined on carbon matrix could effectively manipulate the sulfur-involved conversion reactions and thus improve Li-S batteries performance. The orbital coupling of Co-Ru dimer induces the orbital regulation for the atomic pair, resulting the favored lithium polysulfides adsorption strength and lowed conversion energy barrier, as confirmed by systematic electrochemical characterizations and theoretical calculation. Besides, the intrinsic catalytic activity of Ru from Co-Ru moiety also accelerates the Li2S dissociation reaction. Taken together, the as-constructed Co-Ru dimer sites render the Li-S battery with excellent performance, delivering energy density of 468 Wh kg-1 of total assembled pouch cell. This study offers a rational design of catalysts for boosting the catalytic performance in Li-S batteries.
Collapse
Affiliation(s)
- Hua Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Fei Wan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiaogang Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Mingzhe Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Nan Zhang
- Shanghai Research Institute of Petrochemical Technology, Shanghai, 201208, China
| | - Peng Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Jinkui Feng
- School of Materials Science and Engineering, Shandong University, Jinan, 250061, China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| |
Collapse
|
3
|
Meng G, Huang Z, Tao L, Zhuang Z, Zhang Q, Chen Q, Yang H, Zhao H, Ye C, Wang Y, Zhang J, Chen W, Du S, Chen Y, Wang D, Jin H, Lei Y. Atomic Symbiotic-Catalyst for Low-Temperature Zinc-Air Battery. Angew Chem Int Ed Engl 2025; 64:e202501649. [PMID: 39997813 DOI: 10.1002/anie.202501649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/26/2025]
Abstract
Atomic-level designed electrocatalysts, including single-/dual-atom catalysts, have attracted extensive interests due to their maximized atom utilization efficiency and increased activity. Herein, a new electrocatalyst system termed as "atomic symbiotic-catalyst", that marries the advantages of typical single-/dual-atom catalysts while addressing their respective weaknesses, was proposed. In atomic symbiotic-catalyst, single-atom MNx and local carbon defects formed under a specific thermodynamic condition, act synergistically to achieve high electrocatalytic activity and battery efficiency. This symbiotic-catalyst shows greater structural precision and preparation accessibility than those of dual-atom catalysts owing to its reduced complexity in chemical space. Meanwhile, it outperforms the intrinsic activities of conventional single-atom catalysts due to multi-active-sites synergistic effect. As a proof-of-concept study, an atomic symbiotic-catalyst comprising single-atom MnN4 moieties and abundant sp3-hybridized carbon defects was constructed for low-temperature zinc-air battery, which exhibited a high peak power density of 76 mW cm-2 with long-term stability at -40 °C, representing a top-level performance of such batteries.
Collapse
Affiliation(s)
- Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Zaimei Huang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Lei Tao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qingcheng Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Qilin Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Hui Yang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huaping Zhao
- Fachgebiet Angewante Nanophysik, Institut für Physik & IMN MacroNano (ZIK), Technische Universität Ilmenau, Ilmenau, 98693, Germany
| | - Chenliang Ye
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, Hebei, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Pudong New District, Shanghai, 201204, China
| | - Jian Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Wei Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Shixuan Du
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, China
| | - Yihuang Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Huile Jin
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Yong Lei
- Fachgebiet Angewante Nanophysik, Institut für Physik & IMN MacroNano (ZIK), Technische Universität Ilmenau, Ilmenau, 98693, Germany
| |
Collapse
|
4
|
Li H, Yang F, Wang G, Guan L, Lai F, Zhang N, Liu T. Highly Distorted High-Entropy Alloy Aerogels for High-Efficiency Hydrogen Oxidation Reaction. ACS NANO 2025; 19:14434-14444. [PMID: 40165748 DOI: 10.1021/acsnano.5c02198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The development of efficient electrocatalysts for alkaline hydrogen oxidation reaction (HOR) is essential for anion exchange membrane fuel cells and advancing the hydrogen economy. Herein, we demonstrated PtRuRhPdIr high-entropy alloy aerogels (HEAAs) with highly distorted structure as efficient HOR electrocatalysts and realized effective control of PtRu-based metallic aerogels (MAs) with elemental components ranging from two to seven. Specially, PtRuRhPdIr HEAAs on carbon (PtRuRhPdIr HEAAs/C) exhibit excellent HOR activity, with Pt group metal (PGM)-normalized mass activity (5.75 A mgPGM-1) at 50 mV and exchange current density normalized by electrochemical surface area (0.69 mA cm-2), approximately 16.9 and 4.1 times that of the commercial Pt/C (0.34 A mgPGM-1, 0.17 mA cm-2), respectively. The mechanism study shows that the highly distorted PtRuRhPdIr HEAAs provide abundant unsaturated sites for HOR, and the synergistic effect of multiple-active sites balances the adsorption of H* and *OH, boosting the HOR performance.
Collapse
Affiliation(s)
- Hanjun Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Fulin Yang
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Guanghua Wang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Liheng Guan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Nan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Cao P, Mu X, Chen F, Wang S, Liao Y, Liu H, Du Y, Li Y, Peng Y, Gao M, Liu S, Wang D, Dai Z. Breaking symmetry for better catalysis: insights into single-atom catalyst design. Chem Soc Rev 2025; 54:3848-3905. [PMID: 40079812 DOI: 10.1039/d4cs01031k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Breaking structural symmetry has emerged as a powerful strategy for fine-tuning the electronic structure of catalytic sites, thereby significantly enhancing the electrocatalytic performance of single-atom catalysts (SACs). The inherent symmetric electron density in conventional SACs, such as M-N4 configurations, often leads to suboptimal adsorption and activation of reaction intermediates, limiting their catalytic efficiency. By disrupting this symmetry of SACs, the electronic distribution around the active center can be modulated, thereby improving both the selectivity and adsorption strength for key intermediates. These changes directly impact the reaction pathways, lowering energy barriers, and enhancing catalytic activity. However, achieving precise modulation through SAC symmetry breaking for better catalysis remains challenging. This review focuses on the atomic-level symmetry-breaking strategies of catalysts, including charge breaking, coordination breaking, and geometric breaking, as well as their electrocatalytic applications in electronic structure tuning and active site modulation. Through modifications to the M-N4 framework, three primary configurations are achieved: unsaturated coordination M-Nx(x=1,2,3), non-metallic doping MX-Nx(x=1,2,3), and bimetallic doping M1M2-N4. Advanced characterization techniques combined with density functional theory (DFT) elucidate the impact of these strategies on oxidation, reduction, and bifunctional catalytic reactions. This review highlights the significance of symmetry-breaking structures in catalysis and underscores the need for further research to achieve precise control at the atomic-level.
Collapse
Affiliation(s)
- Pingping Cao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xueqin Mu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Fanjiao Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Shengchen Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yuru Liao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Hui Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yapeng Du
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yuxuan Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Yudi Peng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Mingzhu Gao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Suli Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Zhihui Dai
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
- Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
6
|
Chen D, Cai Y, Xiao Y, Wang C, Li Y, Ma K, Xiao D, Wang HT, Lee CF, Zhang L, Ishii H, Shao YC, Hiraoka N, Han L, Liu X, Xin HL. Electrosynthesis of Urea on High-Density Ga─Y Dual-Atom Catalyst via Cross-Tuning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2420593. [PMID: 40007114 DOI: 10.1002/adma.202420593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/15/2025] [Indexed: 02/27/2025]
Abstract
Electrochemically converting carbon dioxide (CO2) and nitrate (NO3 -) into urea via the C─N coupling route offers a sustainable alternative to the traditional industrial urea production technology, but it is still limited by poor yield rate, low Faradaic efficiency, and insufficient coupling kinetics. Herein, a high-density Ga─Y dual-atom catalyst is developed with loading up to 14.1 wt.% of Ga and Y supported on N, P-co-doped carbon substrate (Ga/Y-CNP) for urea electrosynthesis. The catalyst facilitates efficient C─N coupling through co-reduction of CO2 and NO3 -, resulting in a high urea yield rate of 41.9 mmol h-1 g-1 and a Faradaic efficiency of 22.1% at -1.4 V versus the reversible hydrogen electrode. In situ spectroscopy and theoretical calculations reveal that the superior performance is attributed to the cross-tuning between adjacent pair Ga─Y sites, which can mutually optimize their electronic states for facilitating CO2 reduction to *CO at Ga sites and promoting NO3 - conversion to hydroxylamine (*NH2OH) at Y sites, followed by spontaneous coupling of *CO and *NH2OH intermediates at Ga─Y sites to form C─N bonds. This work offers a pioneering strategy to manipulate C─N coupling pathways by cross-tuning active sites to produce high-value-added chemicals.
Collapse
Affiliation(s)
- Dechao Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Yimeng Cai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yi Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Chengqiang Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Ke Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Dongdong Xiao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hsiao-Tsu Wang
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan
| | - Chi-Feng Lee
- Department of Physics, Tamkang University, New Taipei City, 251301, Taiwan
| | - Linjie Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Hirofumi Ishii
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Yu-Cheng Shao
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Nozomu Hiraoka
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Xueming Liu
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510006, China
| | - Huolin L Xin
- Department of Physics and Astronomy, University of California, Irvine, CA, 92617, USA
| |
Collapse
|
7
|
Zhang Y, Li Z, Jang H, Kim MG, Cho J, Liu S, Liu X, Qin Q. In Situ Grown RuNi Alloy on ZrNiN x as a Bifunctional Electrocatalyst Boosts Industrial Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501586. [PMID: 40052632 DOI: 10.1002/adma.202501586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/15/2025] [Indexed: 04/24/2025]
Abstract
Alkaline water electrolysis represents a pivotal technology for green hydrogen production yet faces critical challenges including limited current density and high energy input. Herein, a heterostructured bimetallic nitrides supported RuNi alloy (RuNi/ZrNiNx) is developed through in situ epitaxial growth under ammonolysis, achieving exceptional bifunctional activity and durability for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 m KOH electrolyte. The RuNi/ZrNiNx exhibits a HER current density of -2 A cm-2 at an overpotential of 392.8 mV, maintaining initial overpotential after 1000 h continuous electrolysis at -500 mA cm-2. For OER, it delivers a current density of 2 A cm-2 at 1.822 V versus RHE, and sustains stable operation for 705 h at 500 mA cm-2. Experimental and theoretical studies unveil that the charge redistribution-induced high-valence Zr centers effectively polarize H─O bonds and promote water dissociation, and the electron-deficient interface Ru sites optimize hydrogen desorption kinetics. Dynamic OH spillovers from Zr sites to the adjacent tri-coordinated Ni hollow sites in NiNx promote rapid *OH intermediate desorption and active site regeneration. Notably, the tri-coordinated Ni hollow sites in NiNx proximal to Zr atoms exhibit tailored adsorption strength for oxo-intermediates, enabling a more energetically favorable pathway for O2 production.
Collapse
Affiliation(s)
- Yaojin Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Haeseong Jang
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, South Korea
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang, 37673, South Korea
| | - Jaephil Cho
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, South Korea
| | - Shangguo Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xien Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qing Qin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
8
|
Zheng X, Zhang S, Zheng X, Zhuang Z, Gao M, Liu Y, Pan H, Sun W. Cluster-Scale Multisite Interface Reinforces Ruthenium-Based Anode Catalysts for Alkaline Anion Exchange Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2502127. [PMID: 40051236 DOI: 10.1002/adma.202502127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/23/2025] [Indexed: 04/30/2025]
Abstract
Ruthenium (Ru) is a more cost-effective alternative to platinum anode catalysts for alkaline anion-exchange membrane fuel cells (AEMFCs), but suffers from severe competitive adsorption of hydrogen (Had) and hydroxyl (OHad). To address this concern, a strongly coupled multisite electrocatalyst with highly active cluster-scale ruthenium-tungsten oxide (Ru-WOx) interface, which could eliminate the competitive adsorption phenomenon and achieve high coverage of OHad and Had at Ru and WOx domains, respectively, is designed. The experimental and theoretical results demonstrate that WOx domain functions as a proton sponge to perpetually accommodate the activated hydrogen species that spillover from the adjacent Ru domain, and the resulting WO-Had species are readily coupled with Ru-OHad at the heterointerface to finish the hydrogen oxidation reaction with faster kinetics via the thermodynamically favorable Tafel-Volmer mechanism. The AEMFC delivers a high peak power density of 1.36 W cm-2 with a low anode catalyst loading of 0.05 mgRu cm-2 and outstanding durability (negligible voltage decay over 80-h operation at 500 mA cm-2). This work offers completely new insights into understanding the alkaline HOR mechanism and designing advanced anode catalysts for AEMFCs.
Collapse
Affiliation(s)
- Xiaozhong Zheng
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Shuxin Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinying Zheng
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Zhongbin Zhuang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mingxia Gao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yongfeng Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hongge Pan
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Wenping Sun
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
9
|
Hu Y, Chao T, Dou Y, Xiong Y, Liu X, Wang D. Isolated Metal Centers Activate Small Molecule Electrooxidation: Mechanisms and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418504. [PMID: 39865965 DOI: 10.1002/adma.202418504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/24/2024] [Indexed: 01/28/2025]
Abstract
Electrochemical oxidation of small molecules shows great promise to substitute oxygen evolution reaction (OER) or hydrogen oxidation reaction (HOR) to enhance reaction kinetics and reduce energy consumption, as well as produce high-valued chemicals or serve as fuels. For these oxidation reactions, high-valence metal sites generated at oxidative potentials are typically considered as active sites to trigger the oxidation process of small molecules. Isolated atom site catalysts (IASCs) have been developed as an ideal system to precisely regulate the oxidation state and coordination environment of single-metal centers, and thus optimize their catalytic property. The isolated metal sites in IASCs inherently possess a positive oxidation state, and can be more readily produce homogeneous high-valence active sites under oxidative potentials than their nanoparticle counterparts. Meanwhile, IASCs merely possess the isolated metal centers but lack ensemble metal sites, which can alter the adsorption configurations of small molecules as compared with nanoparticle counterparts, and thus induce various reaction pathways and mechanisms to change product selectivity. More importantly, the construction of isolated metal centers is discovered to limit metal d-electron back donation to CO 2p* orbital and reduce the overly strong adsorption of CO on ensemble metal sites, which resolve the CO poisoning problems in most small molecules electro-oxidation reactions and thus improve catalytic stability. Based on these advantages of IASCs in the fields of electrochemical oxidation of small molecules, this review summarizes recent developments and advancements in IASCs in small molecules electro-oxidation reactions, focusing on anodic HOR in fuel cells and OER in electrolytic cells as well as their alternative reactions, such as formic acid/methanol/ethanol/glycerol/urea/5-hydroxymethylfurfural (HMF) oxidation reactions as key reactions. The catalytic merits of different oxidation reactions and the decoding of structure-activity relationships are specifically discussed to guide the precise design and structural regulation of IASCs from the perspective of a comprehensive reaction mechanism. Finally, future prospects and challenges are put forward, aiming to motivate more application possibilities for diverse functional IASCs.
Collapse
Affiliation(s)
- Yanmin Hu
- Center of Advanced Nanocatalysis (CAN), Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Tingting Chao
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Yuhai Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Yuli Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
10
|
Liu S, Liu S, Bao J, Huang Z, Wei L, Chen N, Hu Z, Huang WH, Pao CW, Kong Q, Han J, Li L, Huang X. Optimized Adsorption of H ad and OH ad over Amorphous SrRuPtO xH y Nanobelts towards Efficient Alkaline Fuel Cell Catalysis. Angew Chem Int Ed Engl 2025; 64:e202421013. [PMID: 39714565 DOI: 10.1002/anie.202421013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
PtRu-based catalysts toward hydrogen oxidation reaction (HOR) suffer from low efficiency, CO poisoning and over-oxidation at high potentials. In this work, an amorphization strategy is adopted for preparation of amorphous SrRuPtOxHy nanobelts (a-SrRuPtOxHy NBs). The a-SrRuPtOxHy NBs has optimized adsorption of intermediates (H and OH), increased number of active sites, highly weakened CO poisoning and enhanced anti-oxidation ability owing to the special amorphous structure. Consequently, a-SrRuPtOxHy NBs displays superior HOR performance with a mass activity of 7.5 A/mgPt+Ru, 25 and 5 times of that of SrRuPt(OH)x NBs and commercial PtRu/C, respectively, and long-lasting stability. Besides, a peak power density of 750 mW/cm2 and a specific power of 14.8 W/mgPt+Ru have been achieved for a-SrRuPtOxHy NBs at a low loading of 0.05 mgPt+Ru/cm2, surpassing many reported HOR catalysts. Mechanism investigation indicates that Pt and Ru are present in oxide/hydroxide forms and H in a-SrRuPtOxHy NBs participates in HOR. Ab initio molecular dynamics (AIMD) simulations and density functional theory (DFT) calculations show that there are three catalytic mechanisms participating in a-SrRuPtOxHy NBs, which all exhibit low catalytic barrier and highly improved HOR efficiency. This work provides a new strategy for designing high-performance catalysts towards fuel cells.
Collapse
Affiliation(s)
- Siyu Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shangheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jingliang Bao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhongliang Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Licheng Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Nanjun Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden, 01187, Germany
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Qingyu Kong
- Synchrotron Soleil L'Orme des Merisiers, St-Aubin, Gif-sur-Yvette 91192 Cedex, France
| | - Jiajia Han
- State Key Lab of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Leigang Li
- College of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
11
|
Yang Y, Wang YH, Gao FY, Zhang XL, Yu PC, Liu SJ, Zhu L, Yan HK, Sun SP, Wu ZZ, Yang XP, Hang CC, Su YD, Gao MR. An Efficient H 2S-Tolerant Hydrogen Oxidation Electrocatalyst Enabled by a Lewis Acid Modifier for Fuel Cells. NANO LETTERS 2025; 25:3620-3629. [PMID: 39984288 DOI: 10.1021/acs.nanolett.4c06621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Industrial hydrogen fuel typically comprises about 5 ppm of hydrogen sulfide (H2S), incurring irreversible poisoning of platinum on carbon (Pt/C) catalyst in fuel cells. For realistic use, H2S should be removed to below 4 ppb; this process, however, is challenging and costly. We describe an exceptional H2S-tolerant yet high-performing hydrogen oxidation reaction (HOR) catalyst prepared by chemical grafting of chromic oxide (Cr2O3) onto a molybdenum-nickel (MoNi4) alloy. Cr2O3 as a Lewis acid enhances the specific adsorption of hydroxyl ions, which in turn prevents from S2- diffusing to the catalyst surface via electrostatic repulsion. Meanwhile, the adsorbed hydroxyl species boost HOR kinetics through improving the hydrogen-bond networks in electrical double layers. The composite catalyst achieved HOR performance comparable to that of commercial Pt/C in an alkaline electrolyte. Moreover, a fuel cell using this catalyst as anode can survive 5 ppm of H2S without deactivation, compared with rapid degradation observed over the Pt/C counterpart.
Collapse
Affiliation(s)
- Yu Yang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Ye-Hua Wang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Fei-Yue Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiao-Long Zhang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Peng-Cheng Yu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shou-Jie Liu
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Lei Zhu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hui-Kun Yan
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shu-Ping Sun
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhi-Zheng Wu
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xue-Peng Yang
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chen-Chen Hang
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Yu-De Su
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Min-Rui Gao
- Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
12
|
Lan L, Wu Y, Pei Y, Wei Y, Hu T, Lützenkirchen-Hecht D, Yuan K, Chen Y. High-Density Accessible Iron Single-Atom Catalyst for Durable and Temperature-Adaptive Laminated Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417711. [PMID: 39916539 DOI: 10.1002/adma.202417711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/09/2025] [Indexed: 03/21/2025]
Abstract
Designing single-atom catalysts (SACs) with high density of accessible sites by improving metal loading and sites utilization is a promising strategy to boost the catalytic activity, but remains challenging. Herein, a high site density (SD) iron SAC (D-Fe-N/C) with 11.8 wt.% Fe-loading is reported. The in situ scanning electrochemical microscopy technique attests that the accessible active SD and site utilization of D-Fe-N/C reach as high as 1.01 × 1021 site g-1 and 79.8%, respectively. Therefore, D-Fe-N/C demonstrates superior oxygen reduction reaction (ORR) activity in terms of a half-wave potential of 0.918 V and turnover frequency of 0.41 e site-1 s-1. The excellent ORR property of D-Fe-N/C is also demonstrated in the liquid zinc-air batteries (ZABs), which exhibit a high peak power density of 306.1 mW cm-2 and an ultra-long cycling stability over 1200 h. Moreover, solid-state laminated ZABs prepared by presetting an air flow layer show a high specific capacity of 818.8 mA h g-1, an excellent cycling stability of 520 h, and a wide temperature-adaptive from -40 to 60 °C. This work not only offers possibilities by improving metal-loading and catalytic site utilization for exploring efficient SACs, but also provides strategies for device structure design toward advanced ZABs.
Collapse
Affiliation(s)
- Liansheng Lan
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yonggan Wu
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yangfan Pei
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yuanhao Wei
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Ting Hu
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Dirk Lützenkirchen-Hecht
- Faculty of Mathematics and Natural Sciences-Physics Department, Bergische Universität Wuppertal, Gauss-Str. 20, D-42119, Wuppertal, Germany
| | - Kai Yuan
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- College of Chemistry and Materials/Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
13
|
Weng Y, Li Q, Li K. Cost-Effective RuNi Solid Solutions Prepared by Electrodeposition for Efficient Alkaline Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410778. [PMID: 39780616 DOI: 10.1002/smll.202410778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/01/2025] [Indexed: 01/11/2025]
Abstract
The development of efficient hydrogen evolution reaction (HER) catalysts is crucial for water electrolysis. Currently, Ru-based catalysts are considered top contenders, but issues with stability, activity, and cost remain. In this work, RuNi alloys possessing a solid solution structure within the Ru lattice are prepared via straightforward electrodeposition on various substrates and assessed as HER catalysts in alkaline media. A RuNi solid solution containing 9.8 at. % Ni deposited on Ti substrate, wherein the Ni content greatly surpasses the solubility limit of Ni in Ru at room temperature, exhibits a considerably low overpotential of 28 mV at a current density of 10 mA cm- 2, along with good long-term stability (less than 100 mV increase in overpotential after 600 h). The enhancement in HER performance results from the increased electron density around Ru atoms due to Ni coordination, which facilitates the desorption of H* from the catalyst surface to produce H2. Concurrently, incorporating Ni reduces the Ru usage, rendering the RuNi alloy a viable cost-effective HER catalyst for practical applications.
Collapse
Affiliation(s)
- Yibo Weng
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Qingqing Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Kaikai Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| |
Collapse
|
14
|
Zhou S, Cao W, Shang L, Zhao Y, Xiong X, Sun J, Zhang T, Yuan J. Facilitating alkaline hydrogen evolution kinetics via interfacial modulation of hydrogen-bond networks by porous amine cages. Nat Commun 2025; 16:1849. [PMID: 39984442 PMCID: PMC11845474 DOI: 10.1038/s41467-025-56962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 02/07/2025] [Indexed: 02/23/2025] Open
Abstract
The electrode-electrolyte interface is pivotal in the electrochemical kinetics. However, modulating the electrochemical interface at the atomic or molecular level is challenging due to the lack of efficient interfacial regulators. Here, we employ a porous amine cage as an interfacial modifier to Pt cluster in a confining configuration, largely enhancing alkaline HER kinetics by facilitating charge transfer. In situ electrochemical surface-enhanced Raman spectra, in combination with the ab initio molecular dynamics simulation, elucidates that the interaction between water and the -NH- moiety of cage frame softens the H-bonds net of interfacial water, making it more flexible for charge transfer. Moreover, our investigation pinpointed that the -NH- moiety acted as a pump for charge transfer by Grotthuss mechanism, lowering the kinetic barrier for hydrogen adsorption. Our findings highlight the strategy of establishing a soft-confining interfacial modifier by porous cage, offering opportunities to optimize electrochemical interfaces and promote reaction kinetics in a targeted way.
Collapse
Affiliation(s)
- Shiqi Zhou
- Department of Chemistry, Stockholm University, Stockholm, Sweden
| | - Wei Cao
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou, PR China
| | - Lu Shang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, PR China
| | - Yunxuan Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, PR China
| | - Xuyang Xiong
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, PR China
| | - Jianke Sun
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, PR China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, PR China.
| | - Jiayin Yuan
- Department of Chemistry, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
15
|
Wang SQ, Yao ZC, Shi ZQ, Liu X, Tang T, Pan HR, Zheng L, Zhang Q, Su D, Zhuang Z, Zhao L, An Q, Hu JS. Pd 1Ni 2 Trimer Sites Drive Efficient and Durable Hydrogen Oxidation in Alkaline Media. J Am Chem Soc 2025; 147:5398-5407. [PMID: 39885727 DOI: 10.1021/jacs.4c17605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Anion-exchange membrane fuel cell (AEMFC) is a cost-effective hydrogen-to-electricity conversion technology under a zero-emission scenario. However, the sluggish kinetics of the anodic hydrogen oxidation reaction (HOR) impedes the commercial implementation of AEMFCs. Here, we develop a Pd single-atom-embedded Ni3N catalyst (Pd1/Ni3N) with unconventional Pd1Ni2 trimer sites to drive efficient and durable HOR in alkaline media. Integrating theoretical and experimental analyses, we demonstrate that dual Pd1Ni2 sites achieve a "*H on Pd1Ni2-HV + *OH on Pd1Ni2-HN" adsorption mode, effectively weakening the overstrong *H and *OH adsorptions on pristine Ni3N. Owing to the unique coordination mode and atomically dispersed catalytic sites, the resulting Pd1/Ni3N catalyst delivers a high intrinsic and mass activity together with excellent antioxidation capability and CO tolerance. Specifically, the HOR mass activity of Pd1/Ni3N reaches 7.54 A mgPd-1 at the overpotential of 50 mV. The AEMFC employing Pd1/Ni3N as the anode catalyst displays a high power density of 31.7 W mgPd-1 with an ultralow anode precious metal loading of only 0.023 mgPd cm-2. This study provides guidance for the design of high-performance alkaline HOR catalytic sites at the atomic level.
Collapse
Affiliation(s)
- Shu-Qi Wang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ze-Cheng Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo-Qi Shi
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuerui Liu
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Tang Tang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hai-Rui Pan
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lu Zhao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Han P, Wu L, Zhang Y, Yue J, Jin Y, Jia H, Luo W. An Interstitial Boron Inserted Metastable Hexagonal Rh Nanocrystal for Efficient Hydrogen Oxidation Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202419320. [PMID: 39578235 DOI: 10.1002/anie.202419320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/22/2024] [Indexed: 11/24/2024]
Abstract
Constructing metastable phase structure plays an important role in changing the physicochemical properties and improving the catalytic performance of nanocrystals. Unfortunately, the synthesis of metastable phase metallic nanocrystals is highly challenging, mainly due to the thermodynamically unstable ground-state. Here, we report a synthesis of unconventional metastable hexagonal rhodium nanocrystal (Bint-Rhhcp/C) via interstitial boron insertion. The insertion of boron atoms into the interstitial sites of cubic Rh lattice not only induces the atomic arrangements from face-centered cubic (fcc) to hexagonal close-packed (hcp), but also stabilizes the metastable hexagonal Rh structure. Benefiting from the phase transition and interstitial boron doping, the Bint-Rhhcp/C catalyst exhibits remarkable catalytic performance toward hydrogen oxidation reaction (HOR) under alkaline media, with a mass activity of 1.413 mA μgPGM -1. Experimental measurements including in situ surface-enhanced infrared absorption spectroscopy (SEIRAS) and density functional theory (DFT) calculations indicate that the strengthened adsorption of hydroxyl species on the electrode surface of Bint-Rhhcp/C is responsible for the reconstruction of interfacial water structure and increased water proportions in the gap region in the electric double layers. As a result, the increased water connectivity and hydrogen bond network facilitate high-efficiency hydrogen transfer across the interface, thereby boost the alkaline HOR performance.
Collapse
Affiliation(s)
- Pengyu Han
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Liqing Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Yu Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Jianchao Yue
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Yiming Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Hongnan Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| |
Collapse
|
17
|
Wei L, Dong Y, Yan W, Zhang Y, Zhan C, Huang WH, Pao CW, Hu Z, Lin H, Xu Y, Geng H, Huang X. Hollow Pt-Encrusted RuCu Nanocages Optimizing OH Adsorption for Efficient Hydrogen Oxidation Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202420177. [PMID: 39589084 DOI: 10.1002/anie.202420177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
As one of the best candidates for hydrogen oxidation reaction (HOR), ruthenium (Ru) has attracted significant attention for anion exchange membrane fuel cells (AEMFCs), although it suffers from sluggish kinetics under alkaline conditions due to its strong hydroxide affinity. In this work, we develop ternary hollow nanocages with Pt epitaxy on RuCu (Pt-RuCu NCs) as efficient HOR catalysts for application in AEMFCs. Experimental characterizations and theoretical calculations confirm that the synergy in optimized Pt8.7-RuCu NCs significantly modifies the electronic structure and coordination environment of Ru, thereby balancing the binding strengths of H* and OH* species, which leads to a markedly enhanced HOR performance. Specifically, the optimized Pt8.7-RuCu NCs/C achieves a mass activity of 5.91 A mgPt+Ru -1, which is ~3.3, ~2.2, and ~15.0 times higher than that of RuCu NCs/C (1.38 A mgRu -1), PtRu/C (1.83 A mgPt+Ru -1) and Pt/C (0.37 A mgPt -1), respectively. Impressively, the specific peak power density of fuel cells reaches 15.9 W mgPt+Ru -1, significantly higher than those of most reported PtRu-based fuel cells.
Collapse
Affiliation(s)
- Licheng Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- National energy key laboratory for new hydrogen-ammonia energy technologies, Foshan Xianhu Laboratory, 1 Yangming Road, Foshan, 528200, China
| | - Yuanting Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yuqi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Changhong Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden, 01187, Germany
| | - Haixin Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| | - Yong Xu
- i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, 215123, China
| | - Hongbo Geng
- School of Materials Engineering, Changshu Institute of Technology
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, China
| |
Collapse
|
18
|
Liu S, Wang X, Huang WH, Zhang Q, Han J, Zhang Y, Pao CW, Hu Z, Xu Y, Huang X. Solvation Effect-Determined Mechanisms of Cation Exchange Reactions for Efficient Multicomponent Nanocatalysts. Angew Chem Int Ed Engl 2025; 64:e202418248. [PMID: 39412955 DOI: 10.1002/anie.202418248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/18/2024]
Abstract
Cation exchange (CE) reaction is a classical synthesis method for creating complex structures. A lock of study on intrinsic mechanism limits its understanding and practical application. Using X-ray absorption spectroscopy, we observed that the evolution from Ru-Cl to Ru-O/OH occurs during the CE between K2RuCl6 and CoSn(OH)6 in aqueous solution, while CE between K2PtCl6 and CoSn(OH)6 is inhibited due to the failure of structural evolution from Pt-Cl to Pt-O/OH. Theoretical simulations imply that the interaction between Ru-O and CoSn(OH)6 with Co vacancy (CoVCoSn(OH)6) endows the electron transfer, as a result of strengthened adsorption on CoVCoSn(OH)6. Moreover, this mechanism is validated for CE between K2RuCl6 and ASn(OH)6 (A=Mg, Ca, Mn, Co, Cu, Zn), and CE between K2PdCl6/Na3RhCl6/K2IrCl6 and CoSn(OH)6. Impressively, the Pt-free CoRuSn(OH)x produced via CE displays a mass activity and a power density of 15.0 A mgRu -1 and 11.6 W mgRu -1, respectively, for anion exchange membrane fuel cell (AEMFC) exceeding the values of commercial PtRu/C (11.8 A mgRu+Pt -1 and 9.0 W mgRu+Pt -1). This work, for the first time, reveals the intrinsic mechanism of CE as structural evolution of target ion breaking through the traditional classic etch-adsorption mechanism and will promote fundamental research and practical application in various fields.
Collapse
Affiliation(s)
- Shangheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, 361005, China
- i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, 215123, China
| | - Xiaocan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, 361005, China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Qiugen Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, 361005, China
| | - Jiajia Han
- Department of Materials Science and Engineering, College of Materials, Xiamen University, 422 Siming South Road, Xiamen, 361005, China
| | - Yingtian Zhang
- School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, China
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden, 01187, Germany
| | - Yong Xu
- i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, 215123, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
19
|
Huo J, Dou Y, Wu C, Liu H, Dou S, Yuan D. Defect Engineering of Metal-Based Atomically Thin Materials for Catalyzing Small-Molecule Conversion Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416483. [PMID: 39707647 DOI: 10.1002/adma.202416483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Recently, metal-based atomically thin materials (M-ATMs) have experienced rapid development due to their large specific surface areas, abundant electrochemically accessible sites, attractive surface chemistry, and strong in-plane chemical bonds. These characteristics make them highly desirable for energy-related conversion reactions. However, the insufficient active sites and slow reaction kinetics leading to unsatisfactory electrocatalytic performance limited their commercial application. To address these issues, defect engineering of M-ATMs has emerged to increase the active sites, modify the electronic structure, and enhance the catalytic reactivity and stability. This review provides a comprehensive summary of defect engineering strategies for M-ATM nanostructures, including vacancy creation, heteroatom doping, amorphous phase/grain boundary generation, and heterointerface construction. Introducing recent advancements in the application of M-ATMs in electrochemical small molecule conversion reactions (e.g., hydrogen, oxygen, carbon dioxide, nitrogen, and sulfur), which can contribute to a circular economy by recycling molecules like H2, O2, CO2, N2, and S. Furthermore, a crucial link between the reconstruction of atomic-level structure and catalytic activity via analyzing the dynamic evolution of M-ATMs during the reaction process is established. The review also outlines the challenges and prospects associated with M-ATM-based catalysts to inspire further research efforts in developing high-performance M-ATMs.
Collapse
Affiliation(s)
- Juanjuan Huo
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhai Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chao Wu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Huakun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shixue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ding Yuan
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
20
|
Do VH, Lee JM. Transforming Adsorbate Surface Dynamics in Aqueous Electrocatalysis: Pathways to Unconstrained Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417516. [PMID: 39871686 DOI: 10.1002/adma.202417516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/05/2025] [Indexed: 01/29/2025]
Abstract
Developing highly efficient catalysts to accelerate sluggish electrode reactions is critical for the deployment of sustainable aqueous electrochemical technologies, yet remains a great challenge. Rationally integrating functional components to tailor surface adsorption behaviors and adsorbate dynamics would divert reaction pathways and alleviate energy barriers, eliminating conventional thermodynamic constraints and ultimately optimizing energy flow within electrochemical systems. This approach has, therefore, garnered significant interest, presenting substantial potential for developing highly efficient catalysts that simultaneously enhance activity, selectivity, and stability. The immense promise and rapid evolution of this design strategy, however, do not overshadow the substantial challenges and ambiguities that persist, impeding the realization of significant breakthroughs in electrocatalyst development. This review explores the latest insights into the principles guiding the design of catalytic surfaces that enable favorable adsorbate dynamics within the contexts of hydrogen and oxygen electrochemistry. Innovative approaches for tailoring adsorbate-surface interactions are discussed, delving into underlying principles that govern these dynamics. Additionally, perspectives on the prevailing challenges are presented and future research directions are proposed. By evaluating the core principles and identifying critical research gaps, this review seeks to inspire rational electrocatalyst design, the discovery of novel reaction mechanisms and concepts, and ultimately, advance the large-scale implementation of electroconversion technologies.
Collapse
Affiliation(s)
- Viet-Hung Do
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Energy Research Institute @ NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| |
Collapse
|
21
|
Liu Y, Qing Y, Jiang W, Zhou L, Chen C, Shen L, Li B, Zhou M, Lin H. Strategies for Achieving Carbon Neutrality: Dual-Atom Catalysts in Focus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407313. [PMID: 39558720 DOI: 10.1002/smll.202407313] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/03/2024] [Indexed: 11/20/2024]
Abstract
Carbon neutrality is a fundamental strategy for achieving the sustainable development of human society. Catalyzing CO2 reduction into various high-value-added fuels serves as an effective pathway to achieve this strategic objective. Atom-dispersed catalysts have received extensive attention due to their maximum atomic utilization, high catalytic selectivity, and exceptional catalytic performance. Dual-atom catalysts (DACs), as an extension of single-atom catalysts (SACs), not only retain the advantages of SACs, but also produce many new properties. This review initiates its exploration by elucidating the mechanism of CO2 reduction reaction (CO2RR) from CO2 adsorption and CO2 activation. Then, a comprehensive summary of recently developed preparation methods of DACs is presented. Importantly, the mechanisms underlying the promoted catalytic performance of DACs in comparison to SACs are subjected to a comprehensive analysis from adjustable adsorption capacity, tunable electronic structure, strong synergistic effect, and enhanced spacing effect, elucidating their respective superiorities in CO2RR. Subsequently, the application of DACs in CO2RR is discussed in detail. Conclusively, the prospective trajectories and inherent challenges of CO2RR are expounded upon concerning the continued advancement of DACs. This thorough review not only enhances the comprehension of DACs within CO2RR but also accentuates the prospective developments in the design of sophisticated catalytic materials.
Collapse
Affiliation(s)
- Yuting Liu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yurui Qing
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Wenhai Jiang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Lili Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Mingzhu Zhou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
22
|
Wang Y, Xu C, Li B, Tian M, Liu M, Zhu D, Dou S, Zhang Q, Sun J. Tailoring a Transition Metal Dual-Atom Catalyst via a Screening Descriptor in Li-S Batteries. ACS NANO 2024; 18:34858-34869. [PMID: 39716922 DOI: 10.1021/acsnano.4c12536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The adsorption-conversion paradigm of polysulfides during the sulfur reduction reaction (SRR) is appealing to tackle the shuttle effect in Li-S batteries, especially based upon atomically dispersed electrocatalysts. However, mechanistic insights into such catalytic systems remain ambiguous, limiting the understanding of sulfur electrochemistry and retarding the rational design of available catalysts. Herein, we systematically explore the polysulfide adsorption-conversion essence via a geminal-atom model system to understand the catalyst roles toward an expedited SRR. A descriptor involving an electronic structure index (IES) and electron affinity index (IEA) is proposed, considering the geometric and electronic dictation within a Fe/M (M: 3d-block transition metal) atomic ensemble. With the aid of theoretical computation, we managed to identify the SRR thermodynamic/kinetic trends of Fe/M moieties. Guided by these findings, we in target design a Fe/V-NC dual-atom catalyst, which harvests a minimum IES and maximum IEA, accordingly demonstrating enhanced polysulfide adsorption-conversion and improved full-cell performances. Such a consistency between a computational descriptor and experimental evidence highlights the importance of an atomic catalyst screen and selection for Li-S batteries.
Collapse
Affiliation(s)
- Yifei Wang
- College of Environmental Science and Engineering, National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Conglei Xu
- College of Environmental Science and Engineering, National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| | - Beibei Li
- College of Environmental Science and Engineering, National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Meng Tian
- Interdisciplinary Center for Fundamental and Frontier Sciences, Nanjing University of Science and Technology, Jiangyin 214443, China
| | - Mu Liu
- GreenTech Environmental Co., Ltd., Beijing 100102, China
| | - Daming Zhu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Shixue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qiang Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China
| |
Collapse
|
23
|
Zhang L, Chen S, Du T, Zhao X, Dong A, Zhang L, Li T, Li L, Yan C, Qian T. Expediting the Volmer Step of Alkaline Hydrogen Oxidation with High-Efficiency and CO-Tolerance by Ru-O-Eu Bridge. ACS NANO 2024; 18:34195-34206. [PMID: 39628117 DOI: 10.1021/acsnano.4c11614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The quest for economical and highly efficient nanomaterials for the alkaline hydrogen oxidation reaction (HOR) is imperative in advancing the technology of anion exchange membrane fuel cells (AEMFCs). Efforts using Pt-based electrocatalysts for alkaline HOR are greatly plagued by their finitely intrinsic activities and significant CO poisoning, stemming from the difficulty of simultaneously optimizing surface adsorption toward different hydrogen-related adsorbates. Herein, Ru clusters coupled with Eu2O3 immobilized within N-doped carbon nanofibers (Ru/Eu2O3@N-CNFs) are developed toward drastically boosted electrocatalysis for HOR via a d-p-f gradient orbital coupling strategy. Theoretical calculations and in situ operando spectroscopy discover that the induction of Eu2O3 optimizes the Ru site electronic structure via constructing the gradient orbital coupling of Ru(3d)-O(2p)-Eu(4f), leading to optimal H intermediates, improved adsorption ability of OH and reduced energy barrier of water formation, and promoted CO oxidation, endowing the Ru/Eu2O3 as the promising catalyst alternative for fast alkaline hydrogen electrooxidation. As a result, the Ru/Eu2O3@N-CNFs reach an impressive kinetic current densities (jk) value of 156.3 mA cm-2 at 50 mV (38.4 times higher than Pt/C), and decent stability over 35000 s continuous operation. This comprehensive investigation featuring d-p-f gradient orbital coupling provides valuable insights for the strategic development of high-performance Ru-based materials for HOR and beyond.
Collapse
Affiliation(s)
- Luping Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Sijie Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Tianheng Du
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xianzhe Zhao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Anqi Dong
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Lifang Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Tongfei Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Linbo Li
- Chongqing Technology and Business University, Nan'an District, Chongqing 400067, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences 518055, Shenzhen, China
| | - Chenglin Yan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Key Laboratory of Core Technology of High Specific Energy Battery and Key Materials for Petroleum and Chemical Industry, College of Energy, Soochow University, Suzhou 215006, China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
24
|
Jin Y, Fan X, Cheng W, Zhou Y, Xiao L, Luo W. The Role of Phosphorus on Alkaline Hydrogen Oxidation Electrocatalysis for Ruthenium Phosphides. Angew Chem Int Ed Engl 2024; 63:e202406888. [PMID: 39007540 DOI: 10.1002/anie.202406888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/16/2024]
Abstract
Transition metal/p-block compounds are regarded as the most essential materials for electrochemical energy converting systems involving various electrocatalysis. Understanding the role of p-block element on the interaction of key intermediates and interfacial water molecule orientation at the polarized catalyst-electrolyte interface during the electrocatalysis is important for rational designing advanced p-block modified metal electrocatalysts. Herein, taking a sequence of ruthenium phosphides (including Ru2P, RuP and RuP2) as model catalysts, we establish a volcanic-relation between P-proportion and alkaline hydrogen oxidation reaction (HOR) activity. The dominant role of P for regulating hydroxyl binding energy is validated by active sites poisoning experiments, pH-dependent infection-point behavior, in situ surface enhanced infrared absorption spectroscopy, and density functional theory calculations, in which P could tailor the d-band structure of Ru, optimize the hydroxyl adsorption sites across the Ru-P moieties, thereby leading to improved proportion of strongly hydrogen-bonded water and facilitated proton-coupled electron transfer process, which are responsible for the enhanced alkaline HOR performance.
Collapse
Affiliation(s)
- Yiming Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Xinran Fan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Wenjing Cheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Yuheng Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P.R. China
| |
Collapse
|
25
|
Wang X, Ge Y, Sun M, Xu Z, Huang B, Li L, Zhou X, Zhang S, Liu G, Shi Z, Zhang A, Chen B, Wa Q, Luo Q, Zhu Y, Huang B, Zhang H. Facet-Controlled Synthesis of Unconventional-Phase Metal Alloys for Highly Efficient Hydrogen Oxidation. J Am Chem Soc 2024; 146:24141-24149. [PMID: 39162360 DOI: 10.1021/jacs.4c08905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Facet control and phase engineering of metal nanomaterials are both important strategies to regulate their physicochemical properties and improve their applications. However, it is still a challenge to tune the exposed facets of metal nanomaterials with unconventional crystal phases, hindering the exploration of the facet effects on their properties and functions. In this work, by using Pd nanoparticles with unconventional hexagonal close-packed (hcp, 2H type) phase, referred to as 2H-Pd, as seeds, a selective epitaxial growth method is developed to tune the predominant growth directions of secondary materials on 2H-Pd, forming Pd@NiRh nanoplates (NPLs) and nanorods (NRs) with 2H phase, referred to as 2H-Pd@2H-NiRh NPLs and NRs, respectively. The 2H-Pd@2H-NiRh NRs expose more (100)h and (101)h facets on the 2H-NiRh shells compared to the 2H-Pd@2H-NiRh NPLs. Impressively, when used as electrocatalysts toward hydrogen oxidation reaction (HOR), the 2H-Pd@2H-NiRh NRs show superior activity compared to the NiRh alloy with conventional face-centered cubic (fcc) phase (fcc-NiRh) and the 2H-Pd@2H-NiRh NPLs, revealing the crucial role of facet control in enhancing the catalytic performance of unconventional-phase metal nanomaterials. Density functional theory (DFT) calculations further unravel that the excellent HOR activity of 2H-Pd@2H-NiRh NRs can be attributed to the more exposed (100)h and (101)h facets on the 2H-NiRh shells, which possess high electron transfer efficiency, optimized H* binding energy, enhanced OH* binding energy, and a low energy barrier for the rate-determining step during the HOR process.
Collapse
Affiliation(s)
- Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yiyao Ge
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Zhihang Xu
- Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujiang Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Shuai Zhang
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
| | - Guanghua Liu
- State Key Laboratory of New Ceramics & Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Ye Zhu
- Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
26
|
Wang X, Zhang N, Guo S, Shang H, Luo X, Sun Z, Wei Z, Lei Y, Zhang L, Wang D, Zhao Y, Zhang F, Zhang L, Xiang X, Chen W, Zhang B. p-d Orbital Hybridization Induced by Asymmetrical FeSn Dual Atom Sites Promotes the Oxygen Reduction Reaction. J Am Chem Soc 2024; 146:21357-21366. [PMID: 39051140 DOI: 10.1021/jacs.4c03576] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
With more flexible active sites and intermetal interaction, dual-atom catalysts (DACs) have emerged as a new frontier in various electrocatalytic reactions. Constructing a typical p-d orbital hybridization between p-block and d-block metal atoms may bring new avenues for manipulating the electronic properties and thus boosting the electrocatalytic activities. Herein, we report a distinctive heteronuclear dual-metal atom catalyst with asymmetrical FeSn dual atom sites embedded on a two-dimensional C2N nanosheet (FeSn-C2N), which displays excellent oxygen reduction reaction (ORR) performance with a half-wave potential of 0.914 V in an alkaline electrolyte. Theoretical calculations further unveil the powerful p-d orbital hybridization between p-block stannum and d-block ferrum in FeSn dual atom sites, which triggers electron delocalization and lowers the energy barrier of *OH protonation, consequently enhancing the ORR activity. In addition, the FeSn-C2N-based Zn-air battery provides a high maximum power density (265.5 mW cm-2) and a high specific capacity (754.6 mA h g-1). Consequently, this work validates the immense potential of p-d orbital hybridization along dual-metal atom catalysts and provides new perception into the logical design of heteronuclear DACs.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ning Zhang
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Shuohai Guo
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing 100084, P. R. China
| | - Huishan Shang
- School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xuan Luo
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing 100084, P. R. China
| | - Zhiyi Sun
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zihao Wei
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuanting Lei
- School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Lili Zhang
- School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dan Wang
- School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yafei Zhao
- School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Fang Zhang
- Analysis and Testing Center, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Liang Zhang
- Center for Combustion Energy, School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing 100084, P. R. China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bing Zhang
- School of Chemical Engineering, Zhengzhou Key Laboratory of Advanced Separation Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
27
|
Luo H, Li L, Lin F, Zhang Q, Wang K, Wang D, Gu L, Luo M, Lv F, Guo S. Sub-2 nm Microstrained High-Entropy-Alloy Nanoparticles Boost Hydrogen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403674. [PMID: 38794827 DOI: 10.1002/adma.202403674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/12/2024] [Indexed: 05/26/2024]
Abstract
High-entropy alloys (HEAs) confine multifarious elements into the same lattice, leading to intense lattice distortion effect. The lattice distortion tends to induce local microstrain at atomic level and thus affect surface adsorptions toward different adsorbates in various electrocatalytic reactions, yet remains unexplored. Herein, this work reports a class of sub-2 nm IrRuRhMoW HEA nanoparticles (NPs) with distinct local microstrain induced by lattice distortion for boosting alkaline hydrogen oxidation (HOR) and evolution reactions (HER). This work demonstrates that the distortion-rich HEA catalysts with optimized electronic structure can downshift the d-band center and generate uncoordinated oxygen sites to enhance the surface oxophilicity. As a result, the IrRuRhMoW HEA NPs show a remarkable HOR kinetic current density of 8.09 mA µg-1 PGM at 50 mV versus RHE, 8.89, 22.47 times higher than those of IrRuRh NPs without internal strain and commercial Pt/C, respectively, which is the best value among all the reported non-Pt based catalysts. IrRuRhMoW HEA NPs also display great HER performances with a turnover frequency (TOF) value of 5.93 H2 s-1 at 70 mV versus RHE, 4.6-fold higher than that of Pt/C catalyst, exceeding most noble metal-based catalysts. Experimental characterizations and theoretical studies collectively confirm that weakened hydrogen (Had) and enhanced hydroxyl (OHad) adsorption are achieved by simultaneously modulating the hydrogen adsorption binding energy and surface oxophilicity originated from intensified ligand effect and microstrain effect over IrRuRhMoW HEA NPs, which guarantees the remarkable performances toward HOR/HER.
Collapse
Affiliation(s)
- Heng Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lu Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Kai Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Dawei Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fan Lv
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
28
|
Wu CY, Hsiao YC, Chen Y, Lin KH, Lee TJ, Chi CC, Lin JT, Hsu LC, Tsai HJ, Gao JQ, Chang CW, Kao IT, Wu CY, Lu YR, Pao CW, Hung SF, Lu MY, Zhou S, Yang TH. A catalyst family of high-entropy alloy atomic layers with square atomic arrangements comprising iron- and platinum-group metals. SCIENCE ADVANCES 2024; 10:eadl3693. [PMID: 39058768 PMCID: PMC11277269 DOI: 10.1126/sciadv.adl3693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
We report a catalyst family of high-entropy alloy (HEA) atomic layers having three elements from iron-group metals (IGMs) and two elements from platinum-group metals (PGMs). Ten distinct quinary compositions of IGM-PGM-HEA with precisely controlled square atomic arrangements are used to explore their impact on hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR). The PtRuFeCoNi atomic layers perform enhanced catalytic activity and durability toward HER and HOR when benchmarked against the other IGM-PGM-HEA and commercial Pt/C catalysts. Operando synchrotron x-ray absorption spectroscopy and density functional theory simulations confirm the cocktail effect arising from the multielement composition. This effect optimizes hydrogen-adsorption free energy and contributes to the remarkable catalytic activity observed in PtRuFeCoNi. In situ electron microscopy captures the phase transformation of metastable PtRuFeCoNi during the annealing process. They transform from random atomic mixing (25°C), to ordered L10 (300°C) and L12 (400°C) intermetallic, and finally phase-separated states (500°C).
Collapse
Affiliation(s)
- Cheng-Yu Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yueh-Chun Hsiao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kun-Han Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tsung-Ju Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chong-Chi Chi
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jui-Tai Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Liang-Ching Hsu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hsin-Jung Tsai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jia-Qi Gao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - I-Ting Kao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chia-Ying Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Ming-Yen Lu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Tung-Han Yang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- High Entropy Materials Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
29
|
Wang R, Chen Q, Liu X, Hu Y, Cao L, Dong B. Synergistic Effects of Dual-Doping with Ni and Ru in Monolayer VS 2 Nanosheet: Unleashing Enhanced Performance for Acidic HER through Defects and Strain. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311217. [PMID: 38396321 DOI: 10.1002/smll.202311217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Amidst the escalating quest for clean energy, the hydrogen evolution reaction (HER) in acidic conditions has taken center stage, catalyzing the search for advanced electrocatalysts. The efficacy of these materials is predominantly dictated by the active site density on their surfaces. The propensity is leveraged for monolayer architectures to introduce defects, enhancing surface area, and increasing active sites. Doping enhances defects and fine-tunes catalyst activity. In this vein, defect-enriched monolayer nanosheets doped with nickel and a trace amount of ruthenium in VS2 (SL-Ni-Ru-VS2) are engineered and characterized. Evaluation in 0.5 m H2SO4 solution unveils that the catalyst achieves overpotentials as low as 20 and 41 mV at current densities of -10 and -100 mA cm⁻2. Impressively, the catalyst maintains a mass activity of 13.08 A mg⁻¹Ru, even with minimal Ru incorporation, indicating exceptional catalytic efficiency. This monolayer catalyst sustains its high activity at lower overpotentials, demonstrating its practical applicability. The comprehensive analysis, which combines experimental data and computational simulations, indicates that the co-doping of Ni and Ru enhances the electrocatalytic properties of VS2. This research offers a strategic framework for crafting cutting-edge electrocatalysts specifically designed for enhanced performance in the HER.
Collapse
Affiliation(s)
- Ruonan Wang
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266100, P. R. China
| | - Qian Chen
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266100, P. R. China
| | - Xinzheng Liu
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266100, P. R. China
| | - Yubin Hu
- Marine Science and Technology, Shandong University, 72 Coastal Highway, Qingdao, 266237, P. R. China
| | - Lixin Cao
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266100, P. R. China
| | - Bohua Dong
- School of Materials Science and Engineering, Ocean University of China, 1299 Sansha Road, Qingdao, Shandong Province, 266100, P. R. China
| |
Collapse
|
30
|
Cai L, Bai H, Kao CW, Jiang K, Pan H, Lu YR, Tan Y. Platinum-Ruthenium Dual-Atomic Sites Dispersed in Nanoporous Ni 0.85Se Enabling Ampere-Level Current Density Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311178. [PMID: 38224219 DOI: 10.1002/smll.202311178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/03/2024] [Indexed: 01/16/2024]
Abstract
Alkaline anion-exchange-membrane water electrolyzers (AEMWEs) using earth-abundant catalysts is a promising approach for the generation of green H2. However, the AEMWEs with alkaline electrolytes suffer from poor performance at high current density compared to proton exchange membrane electrolyzers. Here, atomically dispersed Pt-Ru dual sites co-embedded in nanoporous nickel selenides (np/Pt1Ru1-Ni0.85Se) are developed by a rapid melt-quenching approach to achieve highly-efficient alkaline hydrogen evolution reaction. The np/Pt1Ru1-Ni0.85Se catalyst shows ampere-level current density with a low overpotential (46 mV at 10 mA cm-2 and 225 mV at 1000 mA cm-2), low Tafel slope (32.4 mV dec-1), and excellent long-term durability, significantly outperforming the benchmark Pt/C catalyst and other advanced large-current catalysts. The remarkable HER performance of nanoporous Pt1Ru1-Ni0.85Se is attributed to the strong intracrystal electronic metal-support interaction (IEMSI) between Pt-Se-Ru sites and Ni0.85Se support which can greatly enlarge the charge redistribution density, reduce the energy barrier of water dissociation, and optimize the potential determining step. Furthermore, the assembled alkaline AEMWE with an ultralow Pt and Ru loading realizes an industrial-level current density of 1 A cm-2 at 1.84 volts with high durability.
Collapse
Affiliation(s)
- Lebin Cai
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Haoyun Bai
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao S. A. R., 999078, China
| | - Cheng-Wei Kao
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Kang Jiang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao S. A. R., 999078, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
| | - Yongwen Tan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
31
|
Zhou Y, Tao C, Ke J, Dai X, Guo J, Zhang L, Li T, Yan C, Qian T. Balancing the Binding of Intermediates Enhances Alkaline Hydrogen Oxidation on D-Band Center Modulated Pd Sites. Inorg Chem 2024; 63:10092-10098. [PMID: 38748447 DOI: 10.1021/acs.inorgchem.4c01575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
Exploring efficient alkaline hydrogen oxidation reaction (HOR) electrocatalysts is of great concern for constructing anion exchange membrane fuel cells (AEMFCs). Herein, d-band center modulated PdCo alloys with ultralow Pd content anchored onto the defective carbon support (abbreviated as PdCo/NC hereafter) are proposed as highly efficient HOR catalyst. The as-prepared catalyst exhibits exceptional HOR performance compared to the Pt/C catalyst, achieving thermodynamically spontaneous and kinetically preferential reactions. Specifically, the resultant PdCo/NC demonstrates a marked enhancement in alkaline HOR performance, with the highest mass and specific activities of 1919.6 mA mgPd-1 and 1.9 mA cm-2, 51.1 and 4.2 times higher than those of benchmark of Pt/C, along with an excellent stability in a chronoamperometry test. In the analysis of in situ Raman spectra, it was discovered that tetrahedrally coordinated H-bonded water molecules were formed during the HOR process. This indicates that the promotion of interfacial water molecule formation and enhancement of HOR activities in PdCo/NC are facilitated by defect engineering and the turning of d-band center in PdCo alloy. The essential knowledge obtained in this study could open up a new direction for modifying the electronic structure of cost-effective HOR catalysts through electronic structure engineering.
Collapse
Affiliation(s)
- Yang Zhou
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Chen Tao
- School of Electrical Engineering, Nantong University, Nantong 226019, China
| | - Jiawei Ke
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Xinyi Dai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jiayao Guo
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Lifang Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Tongfei Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Chenglin Yan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- Collaborative Innovation Center of Suzhou Nano Science and Technology, College of Energy, Soochow University, Suzhou 215006, China
| | - Tao Qian
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| |
Collapse
|
32
|
Fang J, Wang H, Dang Q, Wang H, Wang X, Pei J, Xu Z, Chen C, Zhu W, Li H, Yan Y, Zhuang Z. Atomically dispersed Iridium on Mo 2C as an efficient and stable alkaline hydrogen oxidation reaction catalyst. Nat Commun 2024; 15:4236. [PMID: 38762595 PMCID: PMC11102501 DOI: 10.1038/s41467-024-48672-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Hydroxide exchange membrane fuel cells (HEMFCs) have the advantages of using cost-effective materials, but hindered by the sluggish anodic hydrogen oxidation reaction (HOR) kinetics. Here, we report an atomically dispersed Ir on Mo2C nanoparticles supported on carbon (IrSA-Mo2C/C) as highly active and stable HOR catalysts. The specific exchange current density of IrSA-Mo2C/C is 4.1 mA cm-2ECSA, which is 10 times that of Ir/C. Negligible decay is observed after 30,000-cycle accelerated stability test. Theoretical calculations suggest the high HOR activity is attributed to the unique Mo2C substrate, which makes the Ir sites with optimized H binding and also provides enhanced OH binding sites. By using a low loading (0.05 mgIr cm-2) of IrSA-Mo2C/C as anode, the fabricated HEMFC can deliver a high peak power density of 1.64 W cm-2. This work illustrates that atomically dispersed precious metal on carbides may be a promising strategy for high performance HEMFCs.
Collapse
Affiliation(s)
- Jinjie Fang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Haiyong Wang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Qian Dang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Hao Wang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Xingdong Wang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jiajing Pei
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Zhiyuan Xu
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Chengjin Chen
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Hui Li
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA.
| | - Zhongbin Zhuang
- State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.
- Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
33
|
Fu X, Chen Z, Zhang S, Wang J, Ding J, Han X. High-Stability RuNi/C Electrocatalyst for Efficient Hydrogen Oxidation Reaction in Alkaline Condition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307725. [PMID: 38057130 DOI: 10.1002/smll.202307725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/07/2023] [Indexed: 12/08/2023]
Abstract
The Ru-based catalyst for hydrogen oxidation reaction (HOR) with remarkable activity and reliability at high potential range remains a formidable challenge. Herein, the RuNi/C nanoparticles are customized, in which NiRu alloy is tightly wrapped with a carbon layer, delivering 2.2-fold and 8.3-fold enhancement in kinetic current density than that of commercial Pt/C and Ru/C, respectively. Notably, the current density maintains 2.93 mA cm-2 disk at 0.6 V vs RHE, which effectively improves the stability of Ru-based catalysts at high voltage. The NiRu alloy triggers electron redistribution between two metal elements and regulates the surface adsorption performance, coupled with a tightly wrapped outer carbon layer which is in situ formed with alloy as a good conductor of electronic and protection from the electrolyte. This work not only provides a novel electrocatalyst for efficient HOR with its potential for industrial application but also opens up a new avenue for designing highly active catalytic systems.
Collapse
Affiliation(s)
- Xiaorui Fu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Zanyu Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Shiyu Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Jiajun Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Jia Ding
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
34
|
Wu J, Zhong H, Huang ZF, Zou JJ, Zhang X, Zhang YC, Pan L. Research progress of dual-atom site catalysts for photocatalysis. NANOSCALE 2024. [PMID: 38639199 DOI: 10.1039/d3nr06386k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Dual-atom site catalysts (DASCs) have sparked considerable interest in heterogeneous photocatalysis as they possess the advantages of excellent photoelectronic activity, photostability, and high carrier separation efficiency and mobility. The DASCs involved in these important photocatalytic processes, especially in the photocatalytic hydrogen evolution reaction (HER), CO2 reduction reaction (CO2RR), N2/nitrate reduction, etc., have been extensively investigated in the past few years. In this review, we highlight the recent progress in DASCs that provides fundamental insights into the photocatalytic conversion of small molecules. The controllable preparation and characterization methods of various DASCs are discussed. Subsequently, the reaction mechanisms of the formation of several important molecules (hydrogen, hydrocarbons and ammonia) on DASCs are introduced in detail, in order to probe the relationship between DASCs's structure and photocatalytic activity. Finally, some challenges and outlooks of DASCs in the photocatalytic conversion of small molecules are summarized and prospected. We hope that this review can provide guidance for in-depth understanding and aid in the design of efficient DASCs for photocatalysis.
Collapse
Affiliation(s)
- Jinting Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Haoming Zhong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Zhen-Feng Huang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Yong-Chao Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
35
|
Han P, Yang X, Wu L, Jia H, Luo W. Revealing the role of a bridging oxygen in a carbon shell coated Ni interface for enhanced alkaline hydrogen oxidation reaction. Chem Sci 2024; 15:5633-5641. [PMID: 38638231 PMCID: PMC11023030 DOI: 10.1039/d4sc00043a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/06/2024] [Indexed: 04/20/2024] Open
Abstract
Encapsulating metal nanoparticles inside carbon layers is a promising approach to simultaneously improving the activity and stability of electrocatalysts. The role of carbon layer shells, however, is not fully understood. Herein, we report a study of boron doped carbon layers coated on nickel nanoparticles (Ni@BC), which were used as a model catalyst to understand the role of a bridging oxygen in a carbon shell coated Ni interface for the improvement of the hydrogen oxidation reaction (HOR) activity using an alkaline electrolyte. Combining experimental results and density functional theory (DFT) calculations, we find that the electronic structure of Ni can be precisely tailored by Ni-O-C and Ni-O-B coordinated environments, leading to a volcano type correlation between the binding ability of the OH* adsorbate and HOR activity. The obtained Ni@BC with a optimized d-band center displays a remarkable HOR performance with a mass activity of 34.91 mA mgNi-1, as well as superior stability and CO tolerance. The findings reported in this work not only highlight the role of the OH* binding strength in alkaline HOR but also provide guidelines for the rational design of advanced carbon layers used to coat metal electrocatalysts.
Collapse
Affiliation(s)
- Pengyu Han
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xinyi Yang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Liqing Wu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Hongnan Jia
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| |
Collapse
|
36
|
Pan HR, Tang T, Jiang Z, Ding L, Xu C, Hu JS. CO-Tolerant Hydrogen Oxidation Electrocatalysts for Low-Temperature Hydrogen Fuel Cells. J Phys Chem Lett 2024; 15:3011-3022. [PMID: 38465884 DOI: 10.1021/acs.jpclett.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The severe performance degradation of low-temperature hydrogen fuel cells upon exposure to trace amounts of carbon monoxide (CO) impurities in reformate hydrogen fuels is one of the challenges that hinders their commercialization. Despite significant efforts that have been made, the CO-tolerance performance of electrocatalysts for the hydrogen oxidation reaction (HOR) is still unsatisfactory. This Perspective discusses the path forward for the rational design of CO-tolerant HOR electrocatalysts. The fundamentals of the CO-tolerant mechanisms on commercialized platinum group metal (PGM) electrocatalysts via either promoting CO electrooxidation or weakening CO adsorption are provided, and comprehensive discussions based on these strategies are presented with typical examples. Given the recent progress, some emerging strategies, including blocking CO diffusion with a barrier layer and developing non-PGM HOR catalysts, are also discussed. We conclude with a discussion of the strengths and limitations of these strategies along with the perspectives of the major challenges and opportunities for future research on CO-tolerant HOR electrocatalysts.
Collapse
Affiliation(s)
- Hai-Rui Pan
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Tang Tang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cailing Xu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Li Y, Li Y, Sun H, Gao L, Jin X, Li Y, Lv Z, Xu L, Liu W, Sun X. Current Status and Perspectives of Dual-Atom Catalysts Towards Sustainable Energy Utilization. NANO-MICRO LETTERS 2024; 16:139. [PMID: 38421549 PMCID: PMC10904713 DOI: 10.1007/s40820-024-01347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
The exploration of sustainable energy utilization requires the implementation of advanced electrochemical devices for efficient energy conversion and storage, which are enabled by the usage of cost-effective, high-performance electrocatalysts. Currently, heterogeneous atomically dispersed catalysts are considered as potential candidates for a wide range of applications. Compared to conventional catalysts, atomically dispersed metal atoms in carbon-based catalysts have more unsaturated coordination sites, quantum size effect, and strong metal-support interactions, resulting in exceptional catalytic activity. Of these, dual-atomic catalysts (DACs) have attracted extensive attention due to the additional synergistic effect between two adjacent metal atoms. DACs have the advantages of full active site exposure, high selectivity, theoretical 100% atom utilization, and the ability to break the scaling relationship of adsorption free energy on active sites. In this review, we summarize recent research advancement of DACs, which includes (1) the comprehensive understanding of the synergy between atomic pairs; (2) the synthesis of DACs; (3) characterization methods, especially aberration-corrected scanning transmission electron microscopy and synchrotron spectroscopy; and (4) electrochemical energy-related applications. The last part focuses on great potential for the electrochemical catalysis of energy-related small molecules, such as oxygen reduction reaction, CO2 reduction reaction, hydrogen evolution reaction, and N2 reduction reaction. The future research challenges and opportunities are also raised in prospective section.
Collapse
Affiliation(s)
- Yizhe Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yajie Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Hao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Liyao Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xiangrong Jin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yaping Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zhi Lv
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Lijun Xu
- Xinjiang Coal Mine Mechanical and Electrical Engineering Technology Research Center, Xinjiang Institute of Engineering, Ürümqi, 830023, Xinjiang Uygur Autonomous Region, People's Republic of China.
| | - Wen Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Xiaoming Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
38
|
Zhang K, Liu Z, Khan NA, Ma Y, Xie Z, Xu J, Jiang T, Liu H, Zhu Z, Liu S, Wang W, Meng Y, Peng Q, Zheng X, Wang M, Chen W. An All-Climate Nonaqueous Hydrogen Gas-Proton Battery. NANO LETTERS 2024; 24:1729-1737. [PMID: 38289279 DOI: 10.1021/acs.nanolett.3c04566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Rechargeable hydrogen gas batteries, driven by hydrogen evolution and oxidation reactions (HER/HOR), are emerging grid-scale energy storage technologies owing to their low cost and superb cycle life. However, compared with aqueous electrolytes, the HER/HOR activities in nonaqueous electrolytes have rarely been studied. Here, for the first time, we develop a nonaqueous proton electrolyte (NAPE) for a high-performance hydrogen gas-proton battery for all-climate energy storage applications. The advanced nonaqueous hydrogen gas-proton battery (NAHPB) assembled with a representative V2(PO4)3 cathode and H2 anode in a NAPE exhibits a high discharge capacity of 165 mAh g-1 at 1 C at room temperature. It also efficiently operates under all-climate conditions (from -30 to +70 °C) with an excellent electrochemical performance. Our findings offer a new direction for designing nonaqueous proton batteries in a wide temperature range.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zaichun Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, People's Republic of China
| | - Nawab Ali Khan
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yirui Ma
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zehui Xie
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Jingwen Xu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Taoli Jiang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hongxu Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhengxin Zhu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Shuang Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Weiping Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yahan Meng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Qia Peng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xinhua Zheng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Mingming Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
39
|
Huang Z, Hu S, Sun M, Xu Y, Liu S, Ren R, Zhuang L, Chan TS, Hu Z, Ding T, Zhou J, Liu L, Wang M, Huang YC, Tian N, Bu L, Huang B, Huang X. Implanting oxophilic metal in PtRu nanowires for hydrogen oxidation catalysis. Nat Commun 2024; 15:1097. [PMID: 38321034 PMCID: PMC10847104 DOI: 10.1038/s41467-024-45369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
Bimetallic PtRu are promising electrocatalysts for hydrogen oxidation reaction in anion exchange membrane fuel cell, where the activity and stability are still unsatisfying. Here, PtRu nanowires were implanted with a series of oxophilic metal atoms (named as i-M-PR), significantly enhancing alkaline hydrogen oxidation reaction (HOR) activity and stability. With the dual doping of In and Zn atoms, the i-ZnIn-PR/C shows mass activity of 10.2 A mgPt+Ru-1 at 50 mV, largely surpassing that of commercial Pt/C (0.27 A mgPt-1) and PtRu/C (1.24 A mgPt+Ru-1). More importantly, the peak power density and specific power density are as high as 1.84 W cm-2 and 18.4 W mgPt+Ru-1 with a low loading (0.1 mg cm-2) anion exchange membrane fuel cell. Advanced experimental characterizations and theoretical calculations collectively suggest that dual doping with In and Zn atoms optimizes the binding strengths of intermediates and promotes CO oxidation, enhancing the HOR performances. This work deepens the understanding of developing novel alloy catalysts, which will attract immediate interest in materials, chemistry, energy and beyond.
Collapse
Affiliation(s)
- Zhongliang Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shengnan Hu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Yong Xu
- Nano-X Vacuum Interconnected Nano-X Vacuum Interconnected Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, Jiangsu, 215123, China.
| | - Shangheng Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Renjie Ren
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu, 30076, Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden, 01187, Germany
| | - Tianyi Ding
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jing Zhou
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Liangbin Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Mingmin Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yu-Cheng Huang
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Na Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Lingzheng Bu
- College of Energy, Xiamen University, Xiamen, 361102, China.
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China.
| | - Xiaoqing Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China.
| |
Collapse
|
40
|
Han P, Yang X, Wu L, Jia H, Chen J, Shi W, Cheng G, Luo W. A Highly-Efficient Boron Interstitially Inserted Ru Anode Catalyst for Anion Exchange Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304496. [PMID: 37934652 DOI: 10.1002/adma.202304496] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/08/2023] [Indexed: 11/09/2023]
Abstract
Developing high-performance electrocatalysts for alkaline hydrogen oxidation reaction (HOR) is crucial for the commercialization of anion exchange membrane fuel cells (AEMFCs). Here, boron interstitially inserted ruthenium (B-Ru/C) is synthesized and used as an anode catalyst for AEMFC, achieving a peak power density of 1.37 W cm-2 , close to the state-of-the-art commercial PtRu catalyst. Unexpectedly, instead of the monotonous decline of HOR kinetics with pH as generally believed, an inflection point behavior in the pH-dependent HOR kinetics on B-Ru/C is observed, showing an anomalous behavior that the HOR activity under alkaline electrolyte surpasses acidic electrolyte. Experimental results and density functional theory calculations reveal that the upshifted d-band center of Ru after the intervention of interstitial boron can lead to enhanced adsorption ability of OH and H2 O, which together with the reduced energy barrier of water formation, contributes to the outstanding alkaline HOR performance with a mass activity of 1.716 mA µgPGM -1 , which is 13.4-fold and 5.2-fold higher than that of Ru/C and commercial Pt/C, respectively.
Collapse
Affiliation(s)
- Pengyu Han
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Xinyi Yang
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Liqing Wu
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Hongnan Jia
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Jingchao Chen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - Wenwen Shi
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
| | - Gongzhen Cheng
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences Wuhan University, Wuhan, Hubei, 430072, P. R. China
| |
Collapse
|
41
|
Li W, Liu K, Feng S, Xiao Y, Zhang L, Mao J, Liu Q, Liu X, Luo J, Han L. Well-defined Ni 3N nanoparticles armored in hollow carbon nanotube shell for high-efficiency bifunctional hydrogen electrocatalysis. J Colloid Interface Sci 2024; 655:726-735. [PMID: 37976746 DOI: 10.1016/j.jcis.2023.11.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Alkaline H2-O2 fuel cells and water electrolysis are crucial for hydrogen energy recycling. However, the sluggish kinetics of the hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) in an alkaline medium pose significant obstacles. Thus, it is imperative but challenging to develop highly efficient and stable non-precious metal electrocatalysts for alkaline HOR and HER. Here, we present the intriguing synthesis of well-defined Ni3N nanoparticles armored within an N-doped hollow carbon nanotube shell (Ni3N@NC) via the conversion of a hydrogen-bonded organic framework (HOF) to metal-organic framework (MOF), followed by high-temperature pyrolysis. As-developed Ni3N@NC demonstrates exceptional bifunctionality in alkaline HOR/HER electrocatalysis, with a high HOR limiting current density of 2.67 mA cm-2 comparable to the benchmark 20 wt% Pt/C, while achieving a lead in overpotential of 145 mV and stronger CO-tolerance. Additionally, it achieves a low overpotential of 21 mV to attain a HER current density of 10 mA cm-2 with long-term stability up to 340 h, both exceeding those of Pt/C. Structural analyses and electrochemical studies reveal that the remarkable bifunctional hydrogen electrocatalytic performance of Ni3N@NC can be ascribed to the synergistic coupling among the well-dispersed small-sized Ni3N nanoparticles, chain-mail structure, and optimized electronic structure enabled by strong metal-support interaction. Furthermore, theoretical calculations indicate that the high-efficiency HOR/HER observed in Ni3N@NC is attributed to the strong OH- affinity, moderate H adsorption, and enhanced water formation/dissociation ability of the Ni3N active sites. This work underscores the significance of rational structural design in enhancing performance and inspires further development of advanced nanostructures for efficient hydrogen electrocatalysis.
Collapse
Affiliation(s)
- Wenbo Li
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004 Guangxi, China
| | - Kuo Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Shiqiang Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yi Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Linjie Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Jing Mao
- National Experimental Teaching Demonstration Center of Material Science and Engineering, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004 Guangxi, China.
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen 518110, China
| | - Lili Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| |
Collapse
|
42
|
Cheng Z, Yang Y, Wang P, Wang P, Yang J, Wang D, Chen Q. Optimizing Hydrogen and Hydroxyl Adsorption over Ru/WO 2.9 Metal/Metalloid Heterostructure Electrocatalysts for Highly Efficient and Stable Hydrogen Oxidation Reactions in Alkaline Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2307780. [PMID: 38168535 DOI: 10.1002/smll.202307780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/06/2023] [Indexed: 01/05/2024]
Abstract
The development of high-performance, stable and platinum-free electrocatalysts for the hydrogen oxidation reaction (HOR) in alkaline media is crucial for the commercial application of anion exchange membrane fuel cells (AEMFCs). Ruthenium, as an emerging HOR electrocatalyst with a price advantage over platinum, still needs to solve the problems of low intrinsic activity and easy oxidation. Herein, Ru nanoparticles are anchored on the oxygen-vacancy-rich metalloid WO2.9 by interfacial engineering to create abundant and efficient Ru and WO2.9 interfacial active sites for accelerated HOR in alkaline media. Ru/WO2.9 /C displays excellent catalytic activity with mass activity (8.29 A mgNM -1 ) and specific activity (1.32 mA cmNM -2 ), which are 2.5/3.3 and 21.8/8.3 times that of PtRu/C and Pt/C, respectively. Moreover, Ru/WO2.9 /C exhibits excellent CO tolerance and operational stability. Experimental and theoretical studies reveal that the improved charge transfer from Ru to WO2.9 in the metal/metalloid heterostructure significantly tune the electronic structure of Ru sites and optimize the hydrogen binding energy (HBE) of Ru. While, WO2.9 provides abundant hydroxyl adsorption sites. Therefore, the equilibrium adsorption of hydrogen and hydroxyl at the interface of Ru/WO2.9 will be realized, and the oxidation of metal Ru would be avoided, thereby achieving excellent HOR activity and durability.
Collapse
Affiliation(s)
- Zhiyu Cheng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yang Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Peichen Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Pengcheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jiahe Yang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Dongdong Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qianwang Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- The High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
43
|
Xue F, Zhang C, Peng H, Liu F, Yan X, Yao Q, Hu Z, Chan TS, Liu M, Zhang J, Xu Y, Huang X. Nanotip-Induced Electric Field for Hydrogen Catalysis. NANO LETTERS 2023; 23:11827-11834. [PMID: 38079388 DOI: 10.1021/acs.nanolett.3c03845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Local electric field induced by the lightning-rod effect attracts great attention for regulating the local microenvironment and electronic properties of active sites. Nevertheless, local electric-field-assisted applications are mainly limited to metals with strong surface plasmonic resonance properties (e.g., Au, Ag, and Cu). Herein, we fabricate RuCu snow-like nanosheets (SNSs) with high-curvature nanotips for enhancing the hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER). Theoretical simulations show that RuCu SNSs can induce a strong local electric field around the sharp nanotips, which favors the accumulation of OH- for HOR and H+ for HER. Cu incorporation can modulate the binding strength of OH* and H*, leading to significantly enhanced HOR and HER performance. Impressively, the mass activity of RuCu SNSs for alkaline HOR is 31.3 times higher than that of RuCu nanocrystals without sharp tips. Besides, the required overpotential for reaching 10 mA cm-2 during HER over RuCu SNSs is 14.0 mV.
Collapse
Affiliation(s)
- Fei Xue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chunyang Zhang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao Peng
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Feng Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xueli Yan
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qing Yao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden 01187, Germany
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Maochang Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Juntao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Yong Xu
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
44
|
Yang F, Wang Y, Cui Y, Yang X, Zhu Y, Weiss CM, Li M, Chen G, Yan Y, Gu MD, Shao M. Sub-3 nm Pt@Ru toward Outstanding Hydrogen Oxidation Reaction Performance in Alkaline Media. J Am Chem Soc 2023; 145:27500-27511. [PMID: 38056604 DOI: 10.1021/jacs.3c08908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Anion-exchange membrane fuel cells (AEMFCs) are promising alternative hydrogen conversion devices. However, the sluggish kinetics of the hydrogen oxidation reaction in alkaline media hinders further development of AEMFCs. As a synthesis method commonly used to prepare disordered PtRu alloys, the impregnation process is ingeniously designed herein to synthesize sub-3 nm Pt@Ru core-shell nanoparticles by sequentially reducing Pt and Ru at different annealing temperatures. This method avoids complex procedures and synthesis conditions for organic synthesis systems, and the atomic structure evolution of the synthesized core-shell nanoparticles can be tracked. The synthesized Pt@Ru electrocatalyst shows an ultrasmall average size of ∼2.5 nm and thereby a large electrochemical surface area (ECSA) of 166.66 m2 gPt+Ru-1. Exchange current densities (j0) normalized to the mass (Pt + Ru) and ECSA of this electrocatalyst are 8.0 and 5.8 times as high as those of commercial Pt/C, respectively. To the best of our knowledge, the achieved mass-normalized j0 measured by rotating disk electrodes is the highest reported so far. The membrane electrode assembly test of the Pt@Ru electrocatalyst shows a peak power density of 1.78 W cm-2 (0.152 mgPt+Ru cmanode-2), which is higher than that of commercial PtRu/C (1.62 W cm-2, 0.211 mgPt+Ru cmanode-2). The improvement of the intrinsic activity can be attributed to the electron transfer from the Ru shell to the Pt core, and the ultrafine particles further enhance the mass activity. This work reveals the feasibility of using simple impregnation to synthesize fine core-shell nanocatalysts and the importance of investigating the atomic structure of PtRu nanoparticles and other disordered alloys.
Collapse
Affiliation(s)
- Fei Yang
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315200, Zhejiang, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yian Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Yingdan Cui
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Xuming Yang
- Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuanmin Zhu
- Research Institute of Interdisciplinary Science & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Catherine M Weiss
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Menghao Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guangyu Chen
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou 511458, China
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - M Danny Gu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo 315200, Zhejiang, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou 511458, China
- Energy Institute, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| |
Collapse
|
45
|
Yang C, Gao Y, Ma T, Bai M, He C, Ren X, Luo X, Wu C, Li S, Cheng C. Metal Alloys-Structured Electrocatalysts: Metal-Metal Interactions, Coordination Microenvironments, and Structural Property-Reactivity Relationships. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301836. [PMID: 37089082 DOI: 10.1002/adma.202301836] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Metal alloys-structured electrocatalysts (MAECs) have made essential contributions to accelerating the practical applications of electrocatalytic devices in renewable energy systems. However, due to the complex atomic structures, varied electronic states, and abundant supports, precisely decoding the metal-metal interactions and structure-activity relationships of MAECs still confronts great challenges, which is critical to direct the future engineering and optimization of MAECs. Here, this timely review comprehensively summarizes the latest advances in creating the MAECs, including the metal-metal interactions, coordination microenvironments, and structure-activity relationships. First, the fundamental classification, design, characterization, and structural reconstruction of MAECs are outlined. Then, the electrocatalytic merits and modulation strategies of recent breakthroughs for noble and non-noble metal-structured MAECs are thoroughly discussed, such as solid solution alloys, intermetallic alloys, and single-atom alloys. Particularly, unique insights into the bond interactions, theoretical understanding, and operando techniques for mechanism disclosure are given. Thereafter, the current states of diverse MAECs with a unique focus on structural property-reactivity relationships, reaction pathways, and performance comparisons are discussed. Finally, the future challenges and perspectives for MAECs are systematically discussed. It is believed that this comprehensive review can offer a substantial impact on stimulating the widespread utilization of metal alloys-structured materials in electrocatalysis.
Collapse
Affiliation(s)
- Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yun Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingru Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Xiancheng Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Changzhu Wu
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemistry, Technical University of Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
46
|
Xie Z, Zhu Z, Liu Z, Sajid M, Chen N, Wang M, Meng Y, Peng Q, Liu S, Wang W, Jiang T, Zhang K, Chen W. Rechargeable Hydrogen-Chlorine Battery Operates in a Wide Temperature Range. J Am Chem Soc 2023; 145:25422-25430. [PMID: 37877747 DOI: 10.1021/jacs.3c09819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Hydrogen-chlorine (H2-Cl2) fuel cells have distinct merits due to fast electrochemical kinetics but are afflicted by high cost, low efficiency, and poor reversibility. The development of a rechargeable H2-Cl2 battery is highly desirable yet challenging. Here, we report a rechargeable H2-Cl2 battery operating statically in a wide temperature ranging from -70 to 40 °C, which is enabled by a reversible Cl2/Cl- redox cathode and an electrocatalytic H2 anode. A hierarchically porous carbon cathode is designed to achieve effective Cl2 gas confinement and activate the discharge plateau of Cl2/Cl- redox at room temperature, with a discharge plateau at ∼1.15 V and steady cycling for over 500 cycles without capacity decay. Furthermore, the battery operation at an ultralow temperature is successfully achieved in a phosphoric acid-based antifreezing electrolyte, with a reversible discharge capacity of 282 mAh g-1 provided by the highly porous carbon at -70 °C and an average Coulombic efficiency of 91% for more than 300 cycles at -40 °C. This work offers a new strategy to enhance the reversibility of aqueous chlorine batteries for energy storage applications in a wide temperature range.
Collapse
Affiliation(s)
- Zehui Xie
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhengxin Zhu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zaichun Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Muhammad Sajid
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Na Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mingming Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yahan Meng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qia Peng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuang Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weiping Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Taoli Jiang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kai Zhang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
47
|
Sun H, Li C, Yang L, Han Y, Yu X, Li CP, Zhang Z, Yan Z, Cheng F, Du M. Directional electronic tuning of Ni nanoparticles by interfacial oxygen bridging of support for catalyzing alkaline hydrogen oxidation. Proc Natl Acad Sci U S A 2023; 120:e2308035120. [PMID: 37883417 PMCID: PMC10636332 DOI: 10.1073/pnas.2308035120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Metallic nickel (Ni) is a promising candidate to substitute Pt-based catalysts for hydrogen oxidation reaction (HOR), but huge challenges still exist in precise modulation of the electronic structure to boost the electrocatalytic performances. Herein, we present the use of single-layer Ti3C2Tx MXene to deliberately tailor the electronic structure of Ni nanoparticles via interfacial oxygen bridges, which affords Ni/Ti3C2Tx electrocatalyst with exceptional performances for HOR in an alkaline medium. Remarkably, it shows a high kinetic current of 16.39 mA cmdisk-2 at the overpotential of 50 mV for HOR [78 and 2.7 times higher than that of metallic Ni and Pt/C (20%), respectively], also with good durability and CO antipoisoning ability (1,000 ppm) that are not available for conventional Pt/C (20%) catalyst. The ultrahigh conductivity of single-layer Ti3C2Tx provides fast transmission of electrons for Ni nanoparticles, of which the uniform and small sizes endow them with high-density active sites. Further, the terminated -O/-OH functional groups on Ti3C2Tx directionally capture electrons from Ni nanoparticles via interfacial Ni-O bridges, leading to obvious electronic polarization. This could enhance the Nids-O2p interaction and weaken Nids-H1s interaction of Ni sites in Ni/Ti3C2Txenabling a suitable H-/OH-binding energy and thus enhancing the HOR activity.
Collapse
Affiliation(s)
- Hongming Sun
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin300387, China
| | - Cha Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin300387, China
| | - Le Yang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin300387, China
| | - Yixuan Han
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin300387, China
| | - Xueying Yu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin300387, China
| | - Cheng-Peng Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin300387, China
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou450001, China
| | - Zhenhua Yan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin300071, China
| | - Fangyi Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin300071, China
| | - Miao Du
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou450001, China
| |
Collapse
|
48
|
Dong Y, Zhang Z, Yan W, Hu X, Zhan C, Xu Y, Huang X. Pb-Modified Ultrathin RuCu Nanoflowers for Active, Stable, and CO-resistant Alkaline Electrocatalytic Hydrogen Oxidation. Angew Chem Int Ed Engl 2023; 62:e202311722. [PMID: 37702370 DOI: 10.1002/anie.202311722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/14/2023]
Abstract
CO poisoning of Pt group metal (PGM) catalysts is a chronic problem for hydrogen oxidation reaction (HOR), the anodic reaction of hydroxide exchange membrane fuel cell (HEMFC) for converting H2 to electric energy in sustainable manner. We demonstrate here an ultrathin Ru-based nanoflower modified with Pb (PbRuCu NF) as an active, stable, and CO-resistant catalyst for alkaline HOR. Mechanism studies show that the presence of Pb can weaken the adsorption of *H, strengthen *OH adsorption to facilitate CO oxidation, as a result of significantly enhanced HOR activity and improved CO tolerance. Furthermore, in situ electrochemical attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) suggests that Pb acts as oxygen-rich site to regulate the behavior of the linear CO adsorption. The optimized Pb1.04 -Ru92 Cu8 /C displays a mass activity and specific activity of 1.10 A mgRu -1 and 5.55 mA cm-2 , which are ≈10 and ≈31 times higher than those of commercial Pt/C. This work provides a facile strategy for the design of Ru-based catalyst with high activity and strong CO-resistance for alkaline HOR, which may promote the fundamental researches on the rational design of functional catalysts.
Collapse
Affiliation(s)
- Yuanting Dong
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Zhiming Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Wei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Xinrui Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Changhong Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| | - Yong Xu
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, Guangdong, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
| |
Collapse
|
49
|
Shi Y, Luo B, Liu R, Sang R, Cui D, Junge H, Du Y, Zhu T, Beller M, Li X. Atomically Dispersed Cobalt/Copper Dual-Metal Catalysts for Synergistically Boosting Hydrogen Generation from Formic Acid. Angew Chem Int Ed Engl 2023; 62:e202313099. [PMID: 37694769 DOI: 10.1002/anie.202313099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
The development of practical materials for (de)hydrogenation reactions is a prerequisite for the launch of a sustainable hydrogen economy. Herein, we present the design and construction of an atomically dispersed dual-metal site Co/Cu-N-C catalyst allowing significantly improved dehydrogenation of formic acid, which is available from carbon dioxide and green hydrogen. The active catalyst centers consist of specific CoCuN6 moieties with double-N-bridged adjacent metal-N4 clusters decorated on a nitrogen-doped carbon support. At optimal conditions the dehydrogenation performance of the nanostructured material (mass activity 77.7 L ⋅ gmetal -1 ⋅ h-1 ) is up to 40 times higher compared to commercial 5 % Pd/C. In situ spectroscopic and kinetic isotope effect experiments indicate that Co/Cu-N-C promoted formic acid dehydrogenation follows the so-called formate pathway with the C-H dissociation of HCOO* as the rate-determining step. Theoretical calculations reveal that Cu in the CoCuN6 moiety synergistically contributes to the adsorption of intermediate HCOO* and raises the d-band center of Co to favor HCOO* activation and thereby lower the reaction energy barrier.
Collapse
Affiliation(s)
- Yanzhe Shi
- School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Bingcheng Luo
- College of Science, China Agricultural University, Beijing, 100083, P. R. China
| | - Runqi Liu
- School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Rui Sang
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Dandan Cui
- Centre of Quantum and Matter Sciences International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, P. R. China
- School of Physics, Beihang University, Beijing, 100191, P. R. China
| | - Henrik Junge
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Yi Du
- Centre of Quantum and Matter Sciences International Research Institute for Multidisciplinary Science, Beihang University, Beijing, 100191, P. R. China
- School of Physics, Beihang University, Beijing, 100191, P. R. China
| | - Tianle Zhu
- School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| | - Matthias Beller
- Leibniz-Institut für Katalyse, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Xiang Li
- School of Space and Environment, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
50
|
Wang L, Xu Z, Kuo CH, Peng J, Hu F, Li L, Chen HY, Wang J, Peng S. Stabilizing Low-Valence Single Atoms by Constructing Metalloid Tungsten Carbide Supports for Efficient Hydrogen Oxidation and Evolution. Angew Chem Int Ed Engl 2023; 62:e202311937. [PMID: 37658707 DOI: 10.1002/anie.202311937] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/03/2023]
Abstract
Designing novel single-atom catalysts (SACs) supports to modulate the electronic structure is crucial to optimize the catalytic activity, but rather challenging. Herein, a general strategy is proposed to utilize the metalloid properties of supports to trap and stabilize single-atoms with low-valence states. A series of single-atoms supported on the surface of tungsten carbide (M-WCx , M=Ru, Ir, Pd) are rationally developed through a facile pyrolysis method. Benefiting from the metalloid properties of WCx , the single-atoms exhibit weak coordination with surface W and C atoms, resulting in the formation of low-valence active centers similar to metals. The unique metal-metal interaction effectively stabilizes the low-valence single atoms on the WCx surface and improves the electronic orbital energy level distribution of the active sites. As expected, the representative Ru-WCx exhibits superior mass activities of 7.84 and 62.52 A mgRu -1 for the hydrogen oxidation and evolution reactions (HOR/HER), respectively. In-depth mechanistic analysis demonstrates that an ideal dual-sites cooperative mechanism achieves a suitable adsorption balance of Had and OHad , resulting in an energetically favorable Volmer step. This work offers new guidance for the precise construction of highly active SACs.
Collapse
Affiliation(s)
- Luqi Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Zipeng Xu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Chun-Han Kuo
- Department of Materials Science and Engineering, National Tsing Hua University Hsinchu 30013 (Taiwan)
| | - Jian Peng
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW2522, Australia
| | - Feng Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Linlin Li
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University Hsinchu 30013 (Taiwan)
| | - Jiazhao Wang
- Institute for Superconducting and Electronic Materials Australian Institute for Innovative Materials, University of Wollongong Innovation Campus, Squires Way, North Wollongong, NSW2522, Australia
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| |
Collapse
|