1
|
Xiao T, Ünal E. Remodeling, compartmentalization, and degradation: a trifecta for organelle quality control during gametogenesis. Curr Opin Genet Dev 2025; 92:102347. [PMID: 40233504 DOI: 10.1016/j.gde.2025.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/17/2025]
Abstract
The key to healthy offspring production lies in the accurate inheritance of components from progenitor germ cells during gametogenesis. Along with genetic material, precise regulation of organelle inheritance is vital for gamete health and embryonic development, especially in aged organisms, where organelle function declines and damage accumulates. In these cases, removing age-related organellar defects in precursor cells is crucial for successful reproduction. The single-celled organism Saccharomyces cerevisiae shares striking similarities with more complex organisms: like metazoan cells, yeast accumulate organelle damage with age, yet can still produce damage-free gametes with a reset lifespan. Recent studies show that organelles undergo significant reorganization during yeast gametogenesis, and similar remodeling occurs in metazoans, suggesting common strategies for maintaining gamete quality. This review summarizes organellar reorganization during gametogenesis in yeast and how it aids in clearing age-related cellular damage. We also explore organellar remodeling in multicellular organisms and discuss the potential mechanisms and biological benefits of meiotic organellar reshaping.
Collapse
Affiliation(s)
- Tianyao Xiao
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley 94720, USA. https://twitter.com/@XiaoTianyao
| | - Elçin Ünal
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley 94720, USA.
| |
Collapse
|
2
|
Scholl A, Liu Y, Seydoux G. Caenorhabditis elegans germ granules accumulate hundreds of low translation mRNAs with no systematic preference for germ cell fate regulators. Development 2024; 151:dev202575. [PMID: 38984542 PMCID: PMC11266749 DOI: 10.1242/dev.202575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024]
Abstract
In animals with germ plasm, embryonic germline precursors inherit germ granules, condensates proposed to regulate mRNAs coding for germ cell fate determinants. In Caenorhabditis elegans, mRNAs are recruited to germ granules by MEG-3, a sequence non-specific RNA-binding protein that forms stabilizing interfacial clusters on germ granules. Using fluorescence in situ hybridization, we confirmed that 441 MEG-3-bound transcripts are distributed in a pattern consistent with enrichment in germ granules. Thirteen are related to transcripts reported in germ granules in Drosophila or Nasonia. The majority, however, are low-translation maternal transcripts required for embryogenesis that are not maintained preferentially in the nascent germline. Granule enrichment raises the concentration of certain transcripts in germ plasm but is not essential to regulate mRNA translation or stability. Our findings suggest that only a minority of germ granule-associated transcripts contribute to germ cell fate in C. elegans and that the vast majority function as non-specific scaffolds for MEG-3.
Collapse
Affiliation(s)
- Alyshia Scholl
- HHMI and Dept. of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yihong Liu
- HHMI and Dept. of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Geraldine Seydoux
- HHMI and Dept. of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Peng D, Jackson D, Palicha B, Kernfeld E, Laughner N, Shoemaker A, Celniker SE, Loganathan R, Cahan P, Andrew DJ. Organogenetic transcriptomes of the Drosophila embryo at single cell resolution. Development 2024; 151:dev202097. [PMID: 38174902 PMCID: PMC10820837 DOI: 10.1242/dev.202097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
To gain insight into the transcription programs activated during the formation of Drosophila larval structures, we carried out single cell RNA sequencing during two periods of Drosophila embryogenesis: stages 10-12, when most organs are first specified and initiate morphological and physiological specialization; and stages 13-16, when organs achieve their final mature architectures and begin to function. Our data confirm previous findings with regards to functional specialization of some organs - the salivary gland and trachea - and clarify the embryonic functions of another - the plasmatocytes. We also identify two early developmental trajectories in germ cells and uncover a potential role for proteolysis during germline stem cell specialization. We identify the likely cell type of origin for key components of the Drosophila matrisome and several commonly used Drosophila embryonic cell culture lines. Finally, we compare our findings with other recent related studies and with other modalities for identifying tissue-specific gene expression patterns. These data provide a useful community resource for identifying many new players in tissue-specific morphogenesis and functional specialization of developing organs.
Collapse
Affiliation(s)
- Da Peng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dorian Jackson
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bianca Palicha
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Eric Kernfeld
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nathaniel Laughner
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ashleigh Shoemaker
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Susan E. Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Rajprasad Loganathan
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA
| | - Patrick Cahan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Deborah J. Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
4
|
Schwartz AZA, Abdu Y, Nance J. ZIF-1-mediated degradation of zinc finger proteins in the Caenorhabditis elegans germ line. Genetics 2023; 225:iyad160. [PMID: 37647858 PMCID: PMC10627257 DOI: 10.1093/genetics/iyad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Rapid and conditional protein depletion is the gold standard genetic tool for deciphering the molecular basis of developmental processes. Previously, we showed that by conditionally expressing the E3 ligase substrate adaptor ZIF-1 in Caenorhabditis elegans somatic cells, proteins tagged with the first CCCH Zn finger 1 (ZF1) domain from the germline regulator PIE-1 degrade rapidly, resulting in loss-of-function phenotypes. The described role of ZIF-1 is to clear PIE-1 and several other CCCH Zn finger proteins from early somatic cells, helping to enrich them in germline precursor cells. Here, we show that proteins tagged with the PIE-1 ZF1 domain are subsequently cleared from primordial germ cells (PGCs) in embryos and from undifferentiated germ cells in larvae and adults by ZIF-1. We harness germline ZIF-1 activity to degrade a ZF1-tagged fusion protein from PGCs and show that its depletion produces phenotypes equivalent to those of a null mutation. Our findings reveal that ZIF-1 transitions from degrading CCCH Zn finger proteins in somatic cells to clearing them from undifferentiated germ cells, and that ZIF-1 activity can be harnessed as a new genetic tool to study the early germline.
Collapse
Affiliation(s)
- Aaron Z A Schwartz
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Yusuff Abdu
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jeremy Nance
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
5
|
Schwartz AZ, Abdu Y, Nance J. ZIF-1-mediated degradation of endogenous and heterologous zinc finger proteins in the C. elegans germ line. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.10.548405. [PMID: 37502839 PMCID: PMC10369855 DOI: 10.1101/2023.07.10.548405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Rapid and conditional protein depletion is the gold standard genetic tool for deciphering the molecular basis of developmental processes. Previously, we showed that by conditionally expressing the E3 ligase substrate adaptor ZIF-1 in Caenorhabditis elegans somatic cells, proteins tagged with the first CCCH Zn finger (ZF1) domain from the germline regulator PIE-1 degrade rapidly, resulting in loss-of-function phenotypes. The described role of ZIF-1 is to clear PIE-1 and several other CCCH Zn finger proteins from early somatic cells, helping to enrich them in germline precursor cells. Here, we show that proteins tagged with the PIE-1 ZF1 domain are subsequently cleared from primordial germ cells in embryos and from undifferentiated germ cells in larvae and adults by ZIF-1. We harness germline ZIF-1 activity to degrade a ZF1-tagged heterologous protein from PGCs and show that its depletion produces phenotypes equivalent to those of a null mutation. Our findings reveal that ZIF-1 switches roles from degrading CCCH Zn finger proteins in somatic cells to clearing them from undifferentiated germ cells, and that ZIF-1 activity can be harnessed as a new genetic tool to study the early germ line.
Collapse
Affiliation(s)
- Aaron Z.A. Schwartz
- Department of Cell Biology, NYU Grossman School of Medicine, New York NY 10016
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York NY 10016
| | - Yusuff Abdu
- Department of Cell Biology, NYU Grossman School of Medicine, New York NY 10016
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York NY 10016
| | - Jeremy Nance
- Department of Cell Biology, NYU Grossman School of Medicine, New York NY 10016
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York NY 10016
| |
Collapse
|