1
|
Walker SR, Peña-Garcia M, Devineni AV. Connectomic analysis of taste circuits in Drosophila. Sci Rep 2025; 15:5278. [PMID: 39939650 PMCID: PMC11821855 DOI: 10.1038/s41598-025-89088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
Our sense of taste is critical for regulating food consumption. The fruit fly Drosophila represents a highly tractable model to investigate mechanisms of taste processing, but taste circuits beyond sensory neurons are largely unidentified. Here, we use a whole-brain connectome to investigate the organization of Drosophila taste circuits. We trace pathways from four populations of sensory neurons that detect different taste modalities and project to the subesophageal zone (SEZ), the primary taste region of the fly brain. We find that second-order taste neurons are primarily located within the SEZ and largely segregated by taste modality, whereas third-order neurons have more projections outside the SEZ and more overlap between modalities. Taste projections out of the SEZ innervate regions implicated in feeding, olfactory processing, and learning. We analyze interconnections within and between taste pathways, characterize modality-dependent differences in taste neuron properties, identify other types of inputs onto taste pathways, and use computational simulations to relate neuronal connectivity to predicted activity. These studies provide insight into the architecture of Drosophila taste circuits.
Collapse
Affiliation(s)
- Sydney R Walker
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Marco Peña-Garcia
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA
| | - Anita V Devineni
- Department of Biology, Emory University, Atlanta, GA, 30322, USA.
- Neuroscience Graduate Program, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
2
|
Wang Y, Zheng P, Cheng YC, Wang Z, Aravkin A. WENDY: Covariance dynamics based gene regulatory network inference. Math Biosci 2024; 377:109284. [PMID: 39168402 DOI: 10.1016/j.mbs.2024.109284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/25/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Determining gene regulatory network (GRN) structure is a central problem in biology, with a variety of inference methods available for different types of data. For a widely prevalent and challenging use case, namely single-cell gene expression data measured after intervention at multiple time points with unknown joint distributions, there is only one known specifically developed method, which does not fully utilize the rich information contained in this data type. We develop an inference method for the GRN in this case, netWork infErence by covariaNce DYnamics, dubbed WENDY. The core idea of WENDY is to model the dynamics of the covariance matrix, and solve this dynamics as an optimization problem to determine the regulatory relationships. To evaluate its effectiveness, we compare WENDY with other inference methods using synthetic data and experimental data. Our results demonstrate that WENDY performs well across different data sets.
Collapse
Affiliation(s)
- Yue Wang
- Irving Institute for Cancer Dynamics and Department of Statistics, Columbia University, New York, 10027, NY, USA.
| | - Peng Zheng
- Institute for Health Metrics and Evaluation, Seattle, 98195, WA, USA; Department of Health Metrics Sciences, University of Washington, Seattle, 98195, WA, USA
| | - Yu-Chen Cheng
- Department of Data Science, Dana-Farber Cancer Institute, Boston, 02215, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, 02115, MA, USA; Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, 02215, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, 02138, MA, USA
| | - Zikun Wang
- Laboratory of Genetics, The Rockefeller University, New York, 10065, NY, USA
| | - Aleksandr Aravkin
- Department of Applied Mathematics, University of Washington, Seattle, 98195, WA, USA
| |
Collapse
|
3
|
Schlegel P, Yin Y, Bates AS, Dorkenwald S, Eichler K, Brooks P, Han DS, Gkantia M, Dos Santos M, Munnelly EJ, Badalamente G, Serratosa Capdevila L, Sane VA, Fragniere AMC, Kiassat L, Pleijzier MW, Stürner T, Tamimi IFM, Dunne CR, Salgarella I, Javier A, Fang S, Perlman E, Kazimiers T, Jagannathan SR, Matsliah A, Sterling AR, Yu SC, McKellar CE, Costa M, Seung HS, Murthy M, Hartenstein V, Bock DD, Jefferis GSXE. Whole-brain annotation and multi-connectome cell typing of Drosophila. Nature 2024; 634:139-152. [PMID: 39358521 PMCID: PMC11446831 DOI: 10.1038/s41586-024-07686-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 06/06/2024] [Indexed: 10/04/2024]
Abstract
The fruit fly Drosophila melanogaster has emerged as a key model organism in neuroscience, in large part due to the concentration of collaboratively generated molecular, genetic and digital resources available for it. Here we complement the approximately 140,000 neuron FlyWire whole-brain connectome1 with a systematic and hierarchical annotation of neuronal classes, cell types and developmental units (hemilineages). Of 8,453 annotated cell types, 3,643 were previously proposed in the partial hemibrain connectome2, and 4,581 are new types, mostly from brain regions outside the hemibrain subvolume. Although nearly all hemibrain neurons could be matched morphologically in FlyWire, about one-third of cell types proposed for the hemibrain could not be reliably reidentified. We therefore propose a new definition of cell type as groups of cells that are each quantitatively more similar to cells in a different brain than to any other cell in the same brain, and we validate this definition through joint analysis of FlyWire and hemibrain connectomes. Further analysis defined simple heuristics for the reliability of connections between brains, revealed broad stereotypy and occasional variability in neuron count and connectivity, and provided evidence for functional homeostasis in the mushroom body through adjustments of the absolute amount of excitatory input while maintaining the excitation/inhibition ratio. Our work defines a consensus cell type atlas for the fly brain and provides both an intellectual framework and open-source toolchain for brain-scale comparative connectomics.
Collapse
Affiliation(s)
- Philipp Schlegel
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Yijie Yin
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alexander S Bates
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Sven Dorkenwald
- Computer Science Department, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katharina Eichler
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Paul Brooks
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Daniel S Han
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia
| | - Marina Gkantia
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marcia Dos Santos
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Eva J Munnelly
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Griffin Badalamente
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | - Varun A Sane
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alexandra M C Fragniere
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Ladann Kiassat
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Markus W Pleijzier
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Tomke Stürner
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Imaan F M Tamimi
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Christopher R Dunne
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Irene Salgarella
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Alexandre Javier
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Siqi Fang
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | | | | | - Sridhar R Jagannathan
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Amy R Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Eyewire, Boston, MA, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Claire E McKellar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK
| | - H Sebastian Seung
- Computer Science Department, Princeton University, Princeton, NJ, USA
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Volker Hartenstein
- Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Davi D Bock
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, USA.
| | - Gregory S X E Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Gomez A, Gonzalez S, Oke A, Luo J, Duong JB, Esquerra RM, Zimmerman T, Capponi S, Fung JC, Nystul TG. A High-Throughput Method for Quantifying Drosophila Fecundity. TOXICS 2024; 12:658. [PMID: 39330586 PMCID: PMC11436201 DOI: 10.3390/toxics12090658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
The fruit fly, Drosophila melanogaster, is an experimentally tractable model system that has recently emerged as a powerful "new approach methodology" (NAM) for chemical safety testing. As oogenesis is well conserved at the molecular and cellular level, measurements of Drosophila fecundity can be useful for identifying chemicals that affect reproductive health across species. However, standard Drosophila fecundity assays have been difficult to perform in a high-throughput manner because experimental factors such as the physiological state of the flies and environmental cues must be carefully controlled to achieve consistent results. In addition, exposing flies to a large number of different experimental conditions (such as chemical additives in the diet) and manually counting the number of eggs laid to determine the impact on fecundity is time-consuming. We have overcome these challenges by combining a new multiwell fly culture strategy with a novel 3D-printed fly transfer device to rapidly and accurately transfer flies from one plate to another, the RoboCam, a low-cost, custom-built robotic camera to capture images of the wells automatically, and an image segmentation pipeline to automatically identify and quantify eggs. We show that this method is compatible with robust and consistent egg laying throughout the assay period and demonstrate that the automated pipeline for quantifying fecundity is very accurate (r2 = 0.98 for the correlation between the automated egg counts and the ground truth). In addition, we show that this method can be used to efficiently detect the effects on fecundity induced by dietary exposure to chemicals. Taken together, this strategy substantially increases the efficiency and reproducibility of high-throughput egg-laying assays that require exposing flies to multiple different media conditions.
Collapse
Affiliation(s)
- Andreana Gomez
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
| | - Sergio Gonzalez
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
- Center for Cellular Construction, San Francisco, CA 94158, USA
| | - Ashwini Oke
- OB/GYN Department, University of California, San Francisco, CA 94143, USA
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Jiayu Luo
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
- Center for Cellular Construction, San Francisco, CA 94158, USA
| | - Johnny B. Duong
- Center for Cellular Construction, San Francisco, CA 94158, USA
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132, USA
| | - Raymond M. Esquerra
- Center for Cellular Construction, San Francisco, CA 94158, USA
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132, USA
| | - Thomas Zimmerman
- Center for Cellular Construction, San Francisco, CA 94158, USA
- Department of Chemistry and Biochemistry, San Francisco State University, San Francisco, CA 94132, USA
- IBM Almaden Research Center, San Jose, CA 95120, USA
| | - Sara Capponi
- Center for Cellular Construction, San Francisco, CA 94158, USA
- IBM Almaden Research Center, San Jose, CA 95120, USA
| | - Jennifer C. Fung
- OB/GYN Department, University of California, San Francisco, CA 94143, USA
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- San Francisco EaRTH Center, University of California, San Francisco, CA 94143, USA
| | - Todd G. Nystul
- Department of Anatomy, University of California, San Francisco, CA 94143, USA
- OB/GYN Department, University of California, San Francisco, CA 94143, USA
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- San Francisco EaRTH Center, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
5
|
He N, Zhou S, Zhou C, Yang W, Zhang S, Yan D, Ji X, Liu W. Entomopathogenic Bacillus cereus impairs the fitness of the spotted-wing drosophila, Drosophila suzukii. INSECT SCIENCE 2024. [PMID: 39169715 DOI: 10.1111/1744-7917.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Drosophila suzukii is a notorious pest which causes devastating damage to thin-skinned fruits, and the larvae feed on the fruit, causing extensive agricultural economic loss. The current application of insecticides to manage this pest results in serious resistance and environmental hazards, so an alternative strategy for D. suzukii biocontrol is urgently needed. Here, we reported that entomopathogenic Bacillus cereus has the potential to biocontrol D. suzukii. We isolated and identified the bacterial strain, B. cereus H1, that was detrimental to the fitness of both D. suzukii progenies and parents. D. suzukii was robustly repelled to depositing eggs on the halves with metabolites of B. cereus H1. Both males and females of D. suzukii were susceptible to B. cereus H1. B. cereus H1 significantly arrested larval development with at least 40% lethal larvae. The median lethal time (LT50) of males and females of D. suzukii challenged with B. cereus H1 was 3 and 2 d, respectively. Moreover, B. cereus H1 disrupted the intestinal integrity and pH value of D. suzukii and resulted in an increase in bacterial load of guts and hemolymph. Mechanistically, infection of B. cereus H1 led to the activation of the dual oxidase (DUOX)-ROS-Jun N-terminal kinase (JNK) pathway. The findings showed that the entomopathogen B. cereus H1 could potentially act as a biological control agent against D. suzukii, advancing fundamental concepts of integrated pest management programs against D. suzukii.
Collapse
Affiliation(s)
- Nana He
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei, China
| | - Shaojie Zhou
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei, China
| | - Chuanming Zhou
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei, China
| | - Weikang Yang
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei, China
| | - Sheng Zhang
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei, China
| | - Deqiang Yan
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei, China
| | - Xiaowen Ji
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei, China
| | - Wei Liu
- School of Plant Protection, Anhui Agricultural University; Anhui Province Key Laboratory of Crop Integrated Pest Management, Hefei, China
| |
Collapse
|
6
|
Otárola-Jiménez J, Nataraj N, Bisch-Knaden S, Hansson BS, Knaden M. Oviposition experience affects oviposition preference in Drosophila melanogaster. iScience 2024; 27:110472. [PMID: 39129830 PMCID: PMC11315110 DOI: 10.1016/j.isci.2024.110472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/02/2024] [Accepted: 07/04/2024] [Indexed: 08/13/2024] Open
Abstract
Learning, memorizing, and recalling of potential ovipositing sites can influence oviposition preference. Classical conditioning experiments have shown that vinegar flies can learn the association of olfactory, gustatory, or visual stimuli with either positive or negative unconditioned stimuli. However, less is known about whether similar associations are formed in an ecologically more relevant context like during oviposition. Our experiments reveal that Drosophila melanogaster females increase their preference for substrates they have already experienced. However, this change of preference requires that the flies not only smelled or touched the substrates but also oviposited on them. We furthermore show that such an experience results in long-term memory lasting for at least 4 days, i.e., a duration that so far was shown only for aversive conditioning. Our study thus reveals a different form of associative learning in D. melanogaster that might be highly relevant for settling novel ecological niches.
Collapse
Affiliation(s)
- Julio Otárola-Jiménez
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, 07745 Jena, Germany
- Chemistry School, University of Costa Rica, San Pedro, San José 11501-2060, Costa Rica
| | - Nandita Nataraj
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Sonja Bisch-Knaden
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Bill S. Hansson
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max-Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
7
|
Gomez A, Gonzalez S, Oke A, Luo J, Duong JB, Esquerra RM, Zimmerman T, Capponi S, Fung JC, Nystul TG. A high-throughput method for quantifying Drosophila fecundity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587093. [PMID: 38585877 PMCID: PMC10996622 DOI: 10.1101/2024.03.27.587093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Measurements of Drosophila fecundity are used in a wide variety of studies, such as investigations of stem cell biology, nutrition, behavior, and toxicology. In addition, because fecundity assays are performed on live flies, they are suitable for longitudinal studies such as investigations of aging or prolonged chemical exposure. However, standard Drosophila fecundity assays have been difficult to perform in a high-throughput manner because experimental factors such as the physiological state of the flies and environmental cues must be carefully controlled to achieve consistent results. In addition, exposing flies to a large number of different experimental conditions (such as chemical additives in the diet) and manually counting the number of eggs laid to determine the impact on fecundity is time-consuming. We have overcome these challenges by combining a new multiwell fly culture strategy with a novel 3D-printed fly transfer device to rapidly and accurately transfer flies from one plate to another; the RoboCam, a low-cost, custom built robotic camera to capture images of the wells automatically; and an image segmentation pipeline to automatically identify and quantify eggs. We show that this method is compatible with robust and consistent egg laying throughout the assay period; and demonstrate that the automated pipeline for quantifying fecundity is very accurate (r2 = 0.98 for the correlation between the automated egg counts and the ground truth) In addition, we show that this method can be used to efficiently detect the effects on fecundity induced by dietary exposure to chemicals. Taken together, this strategy substantially increases the efficiency and reproducibility of high throughput egg laying assays that require exposing flies to multiple different media conditions.
Collapse
Affiliation(s)
- Andreana Gomez
- University of California, San Francisco, Department of Anatomy
| | - Sergio Gonzalez
- San Francisco State University, Department of Biology
- Center for Cellular Construction, San Francisco, CA
| | - Ashwini Oke
- San Francisco State University, Department of Chemistry and Biochemistry; University of California, San Francisco, OB/GYN Department
- IBM Almaden Research Center, San Jose, CA; University of California, San Francisco, Center for Reproductive Sciences
| | - Jiayu Luo
- San Francisco State University, Department of Biology
- Center for Cellular Construction, San Francisco, CA
| | - Johnny B Duong
- Center for Cellular Construction, San Francisco, CA
- San Francisco State University, Department of Chemistry and Biochemistry; University of California, San Francisco, OB/GYN Department
| | - Raymond M Esquerra
- Center for Cellular Construction, San Francisco, CA
- San Francisco State University, Department of Chemistry and Biochemistry; University of California, San Francisco, OB/GYN Department
| | - Thomas Zimmerman
- Center for Cellular Construction, San Francisco, CA
- IBM Almaden Research Center, San Jose, CA; University of California, San Francisco, Center for Reproductive Sciences
| | - Sara Capponi
- Center for Cellular Construction, San Francisco, CA
- IBM Almaden Research Center, San Jose, CA; University of California, San Francisco, Center for Reproductive Sciences
| | - Jennifer C Fung
- San Francisco State University, Department of Chemistry and Biochemistry; University of California, San Francisco, OB/GYN Department
- IBM Almaden Research Center, San Jose, CA; University of California, San Francisco, Center for Reproductive Sciences
- University of California, San Francisco EaRTH Center
| | - Todd G Nystul
- University of California, San Francisco, Department of Anatomy
- San Francisco State University, Department of Chemistry and Biochemistry; University of California, San Francisco, OB/GYN Department
- IBM Almaden Research Center, San Jose, CA; University of California, San Francisco, Center for Reproductive Sciences
- University of California, San Francisco EaRTH Center
| |
Collapse
|
8
|
Oliveira-Ferreira C, Gaspar M, Vasconcelos ML. Neuronal substrates of egg-laying behaviour at the abdominal ganglion of Drosophila melanogaster. Sci Rep 2023; 13:21941. [PMID: 38081887 PMCID: PMC10713638 DOI: 10.1038/s41598-023-48109-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Egg-laying in Drosophila is the product of post-mating physiological and behavioural changes that culminate in a stereotyped sequence of actions. Egg-laying harbours a great potential as a paradigm to uncover how the appropriate motor circuits are organized and activated to generate behaviour. To study this programme, we first describe the different phases of the egg-laying programme and the specific actions associated with each phase. Using a combination of neuronal activation and silencing experiments, we identify neurons (OvAbg) in the abdominal ganglion as key players in egg-laying. To generate and functionally characterise subsets of OvAbg, we used an intersectional approach with neurotransmitter specific lines-VGlut, Cha and Gad1. We show that OvAbg/VGlut neurons promote initiation of egg deposition in a mating status dependent way. OvAbg/Cha neurons are required in exploration and egg deposition phases, though activation leads specifically to egg expulsion. Experiments with the OvAbg/Gad1 neurons show they participate in egg deposition. We further show a functional connection of OvAbg neurons with brain neurons. This study provides insight into the organization of neuronal circuits underlying complex motor behaviour.
Collapse
Affiliation(s)
| | - Miguel Gaspar
- Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
| | | |
Collapse
|
9
|
Cavey M, Charroux B, Travaillard S, Manière G, Berthelot-Grosjean M, Quitard S, Minervino C, Detailleur B, Grosjean Y, Prud’homme B. Increased sugar valuation contributes to the evolutionary shift in egg-laying behavior of the fruit pest Drosophila suzukii. PLoS Biol 2023; 21:e3002432. [PMID: 38079457 PMCID: PMC10735178 DOI: 10.1371/journal.pbio.3002432] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/21/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Behavior evolution can promote the emergence of agricultural pests by changing their ecological niche. For example, the insect pest Drosophila suzukii has shifted its oviposition (egg-laying) niche from fermented fruits to ripe, non-fermented fruits, causing significant damage to a wide range of fruit crops worldwide. We investigate the chemosensory changes underlying this evolutionary shift and ask whether fruit sugars, which are depleted during fermentation, are important gustatory cues that direct D. suzukii oviposition to sweet, ripe fruits. We show that D. suzukii has expanded its range of oviposition responses to lower sugar concentrations than the model D. melanogaster, which prefers to lay eggs on fermented fruit. The increased response of D. suzukii to sugar correlates with an increase in the value of sugar relative to a fermented strawberry substrate in oviposition decisions. In addition, we show by genetic manipulation of sugar-gustatory receptor neurons (GRNs) that sugar perception is required for D. suzukii to prefer a ripe substrate over a fermented substrate, but not for D. melanogaster to prefer the fermented substrate. Thus, sugar is a major determinant of D. suzukii's choice of complex substrates. Calcium imaging experiments in the brain's primary gustatory center (suboesophageal zone) show that D. suzukii GRNs are not more sensitive to sugar than their D. melanogaster counterparts, suggesting that increased sugar valuation is encoded in downstream circuits of the central nervous system (CNS). Taken together, our data suggest that evolutionary changes in central brain sugar valuation computations are involved in driving D. suzukii's oviposition preference for sweet, ripe fruit.
Collapse
Affiliation(s)
- Matthieu Cavey
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Campus de Luminy Case 907, Marseille, France
| | - Bernard Charroux
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Campus de Luminy Case 907, Marseille, France
| | - Solène Travaillard
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Campus de Luminy Case 907, Marseille, France
| | - Gérard Manière
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, Dijon, France
| | - Martine Berthelot-Grosjean
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, Dijon, France
| | - Sabine Quitard
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Campus de Luminy Case 907, Marseille, France
| | - Caroline Minervino
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Campus de Luminy Case 907, Marseille, France
| | - Brice Detailleur
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Campus de Luminy Case 907, Marseille, France
| | - Yaël Grosjean
- Centre des Sciences du Goût et de l’Alimentation, CNRS, INRAe, Institut Agro, Université de Bourgogne, Dijon, France
| | - Benjamin Prud’homme
- Aix-Marseille Université, CNRS, IBDM, Institut de Biologie du Développement de Marseille, Campus de Luminy Case 907, Marseille, France
| |
Collapse
|
10
|
Abstract
Information coding is generally thought to emerge from fast activity across thousands of neurons. A recent study shows that many features of a sophisticated decision-action sequence are encoded by the slow activity of individual command neurons.
Collapse
Affiliation(s)
- Charlotte S Auth
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Michael A Crickmore
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Schlegel P, Yin Y, Bates AS, Dorkenwald S, Eichler K, Brooks P, Han DS, Gkantia M, Dos Santos M, Munnelly EJ, Badalamente G, Capdevila LS, Sane VA, Pleijzier MW, Tamimi IFM, Dunne CR, Salgarella I, Javier A, Fang S, Perlman E, Kazimiers T, Jagannathan SR, Matsliah A, Sterling AR, Yu SC, McKellar CE, Costa M, Seung HS, Murthy M, Hartenstein V, Bock DD, Jefferis GSXE. Whole-brain annotation and multi-connectome cell typing quantifies circuit stereotypy in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546055. [PMID: 37425808 PMCID: PMC10327018 DOI: 10.1101/2023.06.27.546055] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The fruit fly Drosophila melanogaster combines surprisingly sophisticated behaviour with a highly tractable nervous system. A large part of the fly's success as a model organism in modern neuroscience stems from the concentration of collaboratively generated molecular genetic and digital resources. As presented in our FlyWire companion paper 1 , this now includes the first full brain connectome of an adult animal. Here we report the systematic and hierarchical annotation of this ~130,000-neuron connectome including neuronal classes, cell types and developmental units (hemilineages). This enables any researcher to navigate this huge dataset and find systems and neurons of interest, linked to the literature through the Virtual Fly Brain database 2 . Crucially, this resource includes 4,552 cell types. 3,094 are rigorous consensus validations of cell types previously proposed in the hemibrain connectome 3 . In addition, we propose 1,458 new cell types, arising mostly from the fact that the FlyWire connectome spans the whole brain, whereas the hemibrain derives from a subvolume. Comparison of FlyWire and the hemibrain showed that cell type counts and strong connections were largely stable, but connection weights were surprisingly variable within and across animals. Further analysis defined simple heuristics for connectome interpretation: connections stronger than 10 unitary synapses or providing >1% of the input to a target cell are highly conserved. Some cell types showed increased variability across connectomes: the most common cell type in the mushroom body, required for learning and memory, is almost twice as numerous in FlyWire as the hemibrain. We find evidence for functional homeostasis through adjustments of the absolute amount of excitatory input while maintaining the excitation-inhibition ratio. Finally, and surprisingly, about one third of the cell types proposed in the hemibrain connectome could not yet be reliably identified in the FlyWire connectome. We therefore suggest that cell types should be defined to be robust to inter-individual variation, namely as groups of cells that are quantitatively more similar to cells in a different brain than to any other cell in the same brain. Joint analysis of the FlyWire and hemibrain connectomes demonstrates the viability and utility of this new definition. Our work defines a consensus cell type atlas for the fly brain and provides both an intellectual framework and open source toolchain for brain-scale comparative connectomics.
Collapse
|
12
|
Vijayan V, Wang F, Wang K, Chakravorty A, Adachi A, Akhlaghpour H, Dickson BJ, Maimon G. A rise-to-threshold process for a relative-value decision. Nature 2023; 619:563-571. [PMID: 37407812 PMCID: PMC10356611 DOI: 10.1038/s41586-023-06271-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/26/2023] [Indexed: 07/07/2023]
Abstract
Whereas progress has been made in the identification of neural signals related to rapid, cued decisions1-3, less is known about how brains guide and terminate more ethologically relevant decisions in which an animal's own behaviour governs the options experienced over minutes4-6. Drosophila search for many seconds to minutes for egg-laying sites with high relative value7,8 and have neurons, called oviDNs, whose activity fulfills necessity and sufficiency criteria for initiating the egg-deposition motor programme9. Here we show that oviDNs express a calcium signal that (1) dips when an egg is internally prepared (ovulated), (2) drifts up and down over seconds to minutes-in a manner influenced by the relative value of substrates-as a fly determines whether to lay an egg and (3) reaches a consistent peak level just before the abdomen bend for egg deposition. This signal is apparent in the cell bodies of oviDNs in the brain and it probably reflects a behaviourally relevant rise-to-threshold process in the ventral nerve cord, where the synaptic terminals of oviDNs are located and where their output can influence behaviour. We provide perturbational evidence that the egg-deposition motor programme is initiated once this process hits a threshold and that subthreshold variation in this process regulates the time spent considering options and, ultimately, the choice taken. Finally, we identify a small recurrent circuit that feeds into oviDNs and show that activity in each of its constituent cell types is required for laying an egg. These results argue that a rise-to-threshold process regulates a relative-value, self-paced decision and provide initial insight into the underlying circuit mechanism for building this process.
Collapse
Affiliation(s)
- Vikram Vijayan
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| | - Fei Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Kaiyu Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Lingang Laboratory, Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Arun Chakravorty
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Atsuko Adachi
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Hessameddin Akhlaghpour
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Barry J Dickson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Queensland Brain Institute, University of Queensland, St Lucia, Queensland, Australia
| | - Gaby Maimon
- Laboratory of Integrative Brain Function and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
13
|
Álvarez-Ocaña R, Shahandeh MP, Ray V, Auer TO, Gompel N, Benton R. Odor-regulated oviposition behavior in an ecological specialist. Nat Commun 2023; 14:3041. [PMID: 37236992 DOI: 10.1038/s41467-023-38722-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Colonization of a novel ecological niche can require, or be driven by, evolution of an animal's behaviors promoting their reproductive success. We investigated the evolution and sensory basis of oviposition in Drosophila sechellia, a close relative of Drosophila melanogaster that exhibits extreme specialism for Morinda citrifolia noni fruit. D. sechellia produces fewer eggs than other drosophilids and lays these almost exclusively on noni substrates. We show that visual, textural and social cues do not explain this species-specific preference. By contrast, we find that loss of olfactory input in D. sechellia, but not D. melanogaster, essentially abolishes egg-laying, suggesting that olfaction gates gustatory-driven noni preference. Noni odors are detected by redundant olfactory pathways, but we discover a role for hexanoic acid and the cognate Ionotropic receptor 75b (Ir75b) in odor-evoked oviposition. Through receptor exchange in D. melanogaster, we provide evidence for a causal contribution of odor-tuning changes in Ir75b to the evolution of D. sechellia's oviposition behavior.
Collapse
Affiliation(s)
- Raquel Álvarez-Ocaña
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Michael P Shahandeh
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Vijayaditya Ray
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Thomas O Auer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Nicolas Gompel
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Grosshaderner Strasse 2, 82152, Planegg-Martinsried, Germany
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|