1
|
Seyednejad SR, Ravnik M. Nematic liquid crystal flow driven by time-varying active surface anchoring. SOFT MATTER 2025; 21:835-843. [PMID: 39790014 DOI: 10.1039/d4sm00924j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
We demonstrate the generation of diverse material flow regimes in nematic liquid cells as driven by time-variable active surface anchoring, including no-net flow, oscillatory flow, steady flow, and pulsating flow. Specifically, we numerically simulate a passive nematic fluid inside a cell bounded with two flat solid boundaries at which the time-dependent anchoring is applied with the dynamically variable surface anchoring easy axis. We show that different flow regimes emerge as the result of different anchoring driving directions (i.e. co-rotating or counter-rotating) and relative phase of anchoring driving. The flow magnitude is tunable by cell thickness and anchoring driving frequency. More generally, this work aims towards possible applications of responsive time-variable surfaces, including photonics or synthetic active matter.
Collapse
Affiliation(s)
- Seyed Reza Seyednejad
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia.
| | - Miha Ravnik
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia.
- Department of Condensed Matter Physics, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
2
|
Houston AJH, Mottram NJ. Spontaneous flows and quantum analogies in heterogeneous active nematic films. COMMUNICATIONS PHYSICS 2024; 7:375. [PMID: 39574428 PMCID: PMC11576538 DOI: 10.1038/s42005-024-01864-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/06/2024] [Indexed: 11/24/2024]
Abstract
Incorporating the inherent heterogeneity of living systems into models of active nematics is essential to provide a more realistic description of biological processes such as bacterial growth, cell dynamics and tissue development. Spontaneous flow of a confined active nematic is a fundamental feature of these systems, in which the role of heterogeneity has not yet been considered. We therefore determine the form of spontaneous flow transition for an active nematic film with heterogeneous activity, identifying a correspondence between the unstable director modes and solutions to Schrödinger's equation. We consider both activity gradients and steps between regions of distinct activity, finding that such variations can change the signature properties of the flow. The threshold activity required for the transition can be raised or lowered, the fluid flux can be reduced or reversed and interfaces in activity induce shear flows. In a biological context fluid flux influences the spread of nutrients while shear flows affect the behaviour of rheotactic microswimmers and can cause the deformation of biofilms. All the effects we identify are found to be strongly dependent on not simply the types of activity present in the film but also on how they are distributed.
Collapse
Affiliation(s)
| | - Nigel J. Mottram
- School of Mathematics and Statistics, University Place, Glasgow, G12 8QQ United Kingdom
| |
Collapse
|
3
|
Neville L, Eggers J, Liverpool TB. Controlling wall-particle interactions with activity. SOFT MATTER 2024; 20:8395-8406. [PMID: 39390954 DOI: 10.1039/d4sm00634h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
We theoretically determine the effective forces on hard disks near walls embedded inside active nematic liquid crystals. When the disks are sufficiently close to the wall and the flows are sufficiently slow, we can obtain exact expressions for the effective forces. We find these forces and the dynamics of disks near the wall depend both on the properties of the active nematic and on the anchoring conditions on the disks and the wall. Our results show that the presence of active stresses attract planar anchored disks to walls if the activity is extensile, and repel them if contractile. For normal anchored disks the reverse is true; they are attracted in contractile systems, and repelled in extensile ones. By choosing the activity and anchoring, these effects may be helpful in controlling the self assembly of active nematic colloids.
Collapse
Affiliation(s)
- Luke Neville
- School of Mathematics, University of Bristol, Fry Building, Bristol BS8 1UG, UK.
- The Isaac Newton Institute for Mathematical Sciences, Cambridge CB3 0EH, UK
| | - Jens Eggers
- School of Mathematics, University of Bristol, Fry Building, Bristol BS8 1UG, UK.
| | - Tanniemola B Liverpool
- School of Mathematics, University of Bristol, Fry Building, Bristol BS8 1UG, UK.
- The Isaac Newton Institute for Mathematical Sciences, Cambridge CB3 0EH, UK
| |
Collapse
|
4
|
Senyuk B, Wu JS, Smalyukh II. Out-of-equilibrium interactions and collective locomotion of colloidal spheres with squirming of nematoelastic multipoles. Proc Natl Acad Sci U S A 2024; 121:e2322710121. [PMID: 38652740 PMCID: PMC11067049 DOI: 10.1073/pnas.2322710121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
Many living and artificial systems show similar emergent behavior and collective motions on different scales, starting from swarms of bacteria to synthetic active particles, herds of mammals, and crowds of people. What all these systems often have in common is that new collective properties like flocking emerge from interactions between individual self-propelled or driven units. Such systems are naturally out-of-equilibrium and propel at the expense of consumed energy. Mimicking nature by making self-propelled or externally driven particles and studying their individual and collective motility may allow for deeper understanding of physical underpinnings behind collective motion of large groups of interacting objects or beings. Here, using a soft matter system of colloids immersed into a liquid crystal, we show that resulting so-called nematoelastic multipoles can be set into a bidirectional locomotion by external oscillating electric fields. Out-of-equilibrium elastic interactions between such colloidal objects lead to collective flock-like behaviors emerging from time-varying elasticity-mediated interactions between externally driven propelling particles. Repulsive elastic interactions in the equilibrium state can be turned into attractive interactions in the out-of-equilibrium state under applied external electric fields. We probe this behavior at different number densities of colloidal particles and show that particles in dense dispersions collectively select the same direction of a coherent motion due to elastic interactions between near neighbors. In our experimentally implemented design, their motion is highly ordered and without clustering or jamming often present in other colloidal transport systems, which is promising for technological and fundamental-science applications, like nano-cargo transport, out-of-equilibrium assembly, and microrobotics.
Collapse
Affiliation(s)
- Bohdan Senyuk
- Department of Physics, University of Colorado, Boulder, CO80309
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM), Hiroshima University, Higashi-Hiroshima, Hiroshima739-0046, Japan
| | - Jin-Sheng Wu
- Department of Physics, University of Colorado, Boulder, CO80309
| | - Ivan I. Smalyukh
- Department of Physics, University of Colorado, Boulder, CO80309
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM), Hiroshima University, Higashi-Hiroshima, Hiroshima739-0046, Japan
- Materials Science and Engineering Program, University of Colorado, Boulder, CO80309
- Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado, Boulder, CO80309
| |
Collapse
|
5
|
Ali A, Kim H, Torati SR, Kang Y, Reddy V, Kim K, Yoon J, Lim B, Kim C. Magnetic Lateral Ladder for Unidirectional Transport of Microrobots: Design Principles and Potential Applications of Cells-on-Chip. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305528. [PMID: 37845030 DOI: 10.1002/smll.202305528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Indexed: 10/18/2023]
Abstract
Functionalized microrobots, which are directionally manipulated in a controlled and precise manner for specific tasks, face challenges. However, magnetic field-based controls constrain all microrobots to move in a coordinated manner, limiting their functions and independent behaviors. This article presents a design principle for achieving unidirectional microrobot transport using an asymmetric magnetic texture in the shape of a lateral ladder, which the authors call the "railway track." An asymmetric magnetic energy distribution along the axis allows for the continuous movement of microrobots in a fixed direction regardless of the direction of the magnetic field rotation. The authors demonstrated precise control and simple utilization of this method. Specifically, by placing magnetic textures with different directionalities, an integrated cell/particle collector can collect microrobots distributed in a large area and move them along a complex trajectory to a predetermined location. The authors can leverage the versatile capabilities offered by this texture concept, including hierarchical isolation, switchable collection, programmable pairing, selective drug-response test, and local fluid mixing for target objects. The results demonstrate the importance of microrobot directionality in achieving complex individual control. This novel concept represents significant advancement over conventional magnetic field-based control technology and paves the way for further research in biofunctionalized microrobotics.
Collapse
Affiliation(s)
- Abbas Ali
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Hyeonseol Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Sri Ramulu Torati
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
- Center for Bioelectronics, Old Dominion University, Norfolk, VA, 23508, USA
| | - Yumin Kang
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Venu Reddy
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
- Nanotechnology Research Center, SRKR Engineering College, Bhimavaram, Andhra Pradesh, 534204, India
| | - Keonmok Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Jonghwan Yoon
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - Byeonghwa Lim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| | - CheolGi Kim
- Department of Physics and Chemistry, DGIST, Daegu, 42988, Republic of Korea
| |
Collapse
|
6
|
Kim SJ, Kos Ž, Um E, Jeong J. Symmetrically pulsating bubbles swim in an anisotropic fluid by nematodynamics. Nat Commun 2024; 15:1220. [PMID: 38336842 PMCID: PMC10858235 DOI: 10.1038/s41467-024-45597-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Swimming in low-Reynolds-number fluids requires the breaking of time-reversal symmetry and centrosymmetry. Microswimmers, often with asymmetric shapes, exhibit nonreciprocal motions or exploit nonequilibrium processes to propel. The role of the surrounding fluid has also attracted attention because viscoelastic, non-Newtonian, and anisotropic properties of fluids matter in propulsion efficiency and navigation. Here, we experimentally demonstrate that anisotropic fluids, nematic liquid crystals (NLC), can make a pulsating spherical bubble swim despite its centrosymmetric shape and time-symmetric motion. The NLC breaks the centrosymmetry by a deformed nematic director field with a topological defect accompanying the bubble. The nematodynamics renders the nonreciprocity in the pulsation-induced fluid flow. We also report speed enhancement by confinement and the propulsion of another symmetry-broken bubble dressed by a bent disclination. Our experiments and theory propose another possible mechanism of moving bodies in complex fluids by spatiotemporal symmetry breaking.
Collapse
Affiliation(s)
- Sung-Jo Kim
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science, Ulsan, Republic of Korea
| | - Žiga Kos
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
- Jožef Stefan Institute, Ljubljana, Slovenia
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashihiroshima, Japan
| | - Eujin Um
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Joonwoo Jeong
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
7
|
Ray S, Zhang J, Dogic Z. Rectified Rotational Dynamics of Mobile Inclusions in Two-Dimensional Active Nematics. PHYSICAL REVIEW LETTERS 2023; 130:238301. [PMID: 37354394 DOI: 10.1103/physrevlett.130.238301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/14/2023] [Indexed: 06/26/2023]
Abstract
We investigate the dynamics of mobile inclusions embedded in 2D active nematics. The interplay between the inclusion shape, boundary-induced nematic order, and autonomous flows powers the inclusion motion. Disks and achiral gears exhibit unbiased rotational motion, but with distinct dynamics. In comparison, chiral gear-shaped inclusions exhibit long-term rectified rotation, which is correlated with dynamics and polarization of nearby +1/2 topological defects. The chirality of defect polarities and the active nematic texture around the inclusion correlate with the inclusion's instantaneous rotation rate. Inclusions provide a promising tool for probing the rheological properties of active nematics and extracting ordered motion from their inherently chaotic motion.
Collapse
Affiliation(s)
- Sattvic Ray
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Jie Zhang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China (USTC), 230026 Hefei, China
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China (USTC), 230026 Hefei, China
| | - Zvonimir Dogic
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
8
|
Yun HS, Meijs ZC, Park G, Fu Y, Isa L, Yoon DK. Controlling liquid crystal boojum defects on fixed microparticle arrays via capillarity-assisted particles assembly. J Colloid Interface Sci 2023; 645:115-121. [PMID: 37146375 DOI: 10.1016/j.jcis.2023.04.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/12/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
HYPOTHESIS Colloidal particles in nematic liquid crystals (LCs) are of high interest for self-assembly of soft matter systems. When two free particles approach within a uniaxially-oriented nematic LC, an elastic force is generated due to the distorted nematic director configuration around them, allowing particles to self-assemble by an attractive force. We hypothesize that if particles are immobilized, repulsive forces emerge instead, causing the deflection of the interacting defects to compensate for the energy increase. EXPERIMENTS We fabricated tailored arrays of spherical silica microparticles via capillarity-assisted particle assembly (CAPA) to investigate the interactions of defects as a function of particle separation. By transferring the particle arrays from the CAPA templates to a glass substrate, we studied interacting boojum defect textures within thin LC films sandwiched between two substrates using polarized optical microscopy (POM). FINDINGS We observed deflected boojum defects on arrays of fixed silica particles, confirming our hypothesis that the elastic repulsive force between the particles affects the defect orientation. The nematic director configuration is reconstructed by Landau-de Gennes q-tensor modeling, and simulated POM images are obtained by the Jones-Matrix method. Our results provide a new platform for controlling defect interactions and pave the way for future work to study topology and implement new defect based applications in LC films.
Collapse
Affiliation(s)
- Hee Seong Yun
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Zazo Cazimir Meijs
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland
| | - Geonhyeong Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yutong Fu
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland.
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Graduate School of Nanoscience and Technology and KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
9
|
Katuri J, Snezhko A, Sokolov A. Motility of acoustically powered micro-swimmers in a liquid crystalline environment. SOFT MATTER 2022; 18:8641-8646. [PMID: 36342339 DOI: 10.1039/d2sm01171a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Suspensions of microswimmers in liquid crystals demonstrate remarkably complex dynamics and serve as a model system for studying active nematics. So far, experimental realization of microswimmers suspended in liquid crystalline media has relied on biological microorganisms that impose strict limitations on the compatible media and makes it difficult to regulate activity. Here, we demonstrate that acoustically powered bubble microswimmers can efficiently self-propel in a lyotropic liquid crystal. The velocity of the swimmers is controlled by the amplitude of the acoustic field. Histograms of swimming directions with respect to the local nematic field reveal a bimodal distribution: the swimmers tend to either fully align with or swim perpendicular to the director field of the liquid crystal, occasionally switching between these two states. The bubble-induced streaming from a swimmer locally melts the liquid crystal and produces topological defects at the tail of the swimmer. We show that the defect proliferation rate increases with the angle between the swimmer's velocity and the local orientation of the director field.
Collapse
Affiliation(s)
- Jaideep Katuri
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA.
| | - Alexey Snezhko
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA.
| | - Andrey Sokolov
- Materials Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60439, USA.
| |
Collapse
|