1
|
Novak BJ, Brand S, Phelan R, Plichta S, Ryder OA, Wiese RJ. Towards Practical Conservation Cloning: Understanding the Dichotomy Between the Histories of Commercial and Conservation Cloning. Animals (Basel) 2025; 15:989. [PMID: 40218382 PMCID: PMC11988126 DOI: 10.3390/ani15070989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Over 40 years ago, scientists imagined ways cloning could aid conservation of threatened taxa. The cloning of Dolly the sheep from adult somatic cells in 1996 was the breakthrough that finally enabled the conservation potential of the technology. Until the 2020s, conservation cloning research efforts yielded no management applications, leading many to believe cloning is not yet an effective conservation tool. In strong contrast, domestic taxa are cloned routinely for scientific and commercial purposes. In this review, we sought to understand the reasons for these divergent trends. We scoured peer-reviewed and gray literature and sent direct inquiries to scientists to analyze a more comprehensive history of the field than was analyzed in previous reviews. While most previous reviewers concluded that a lack of reproductive knowledge of wildlife species has hindered advances for wider conservation applications, we found that resource limitations (e.g., numbers of surrogates, sustainable funding) and widely held misconceptions about cloning are significant contributors to the stagnation of the field. Recent successes in cloning programs for the endangered black-footed ferret (Mustela nigripes) and Przewalski's horse (Equus przewalskii), the world's first true applied-conservation cloning efforts, are demonstrating that cloning can be used for significant conservation impact in the present. When viewed alongside the long history of cloning achievements, these programs emphasize the value of investing in the science and resources needed to meaningfully integrate cloning into conservation management, especially for species with limited genetic diversity that rely on the maintenance of small populations for many generations while conservationists work to restore habitat and mitigate threats in the wild.
Collapse
Affiliation(s)
- Ben J. Novak
- Revive & Restore, 1505 Bridgeway #203, Sausalito, CA 94965, USA
| | - Stewart Brand
- Revive & Restore, 1505 Bridgeway #203, Sausalito, CA 94965, USA
| | - Ryan Phelan
- Revive & Restore, 1505 Bridgeway #203, Sausalito, CA 94965, USA
| | - Sasha Plichta
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Oliver A. Ryder
- Beckman Center for Conservation Research, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
| | - Robert J. Wiese
- North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA;
| |
Collapse
|
2
|
Wu J, Shao T, Tang Z, Liu G, Li Z, Shi Y, Kang Y, Zuo J, Zhao B, Hu G, Liu J, Ji W, Zhang L, Niu Y. Highly efficient construction of monkey blastoid capsules from aged somatic cells. Nat Commun 2025; 16:1130. [PMID: 39875393 PMCID: PMC11775175 DOI: 10.1038/s41467-025-56447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Blastoids-blastocyst-like structures created in vitro-emerge as a valuable model for early embryonic development research. Non-human primates stem cell-derived blastoids are an ethically viable alternative to human counterparts, yet the low formation efficiency of monkey blastoid cavities, typically below 30%, has limited their utility. Prior research has predominantly utilized embryonic stem cells. In this work, we demonstrate the efficient generation of blastoids from induced pluripotent stem cells and somatic cell nuclear transfer embryonic stem cells derived from aged monkeys, achieving an 80% formation efficiency. We also introduce a hydrogel-based microfluidics platform for the scalable and reproducible production of size-adjustable, biodegradable blastoid capsules, providing a stable 3D structure and mechanical protection. This advancement in the high-efficiency, scalable production of monkey blastoid capsules from reprogrammed aged somatic cells significantly enhances the study of embryonic development and holds promise for regenerative medicine.
Collapse
Affiliation(s)
- Junmo Wu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Tianao Shao
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Zengli Tang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Southwest United Graduate School, Kunming, Yunnan, China
| | - Gaojing Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhuoyao Li
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Yuxi Shi
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Yu Kang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Jiawei Zuo
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Southwest United Graduate School, Kunming, Yunnan, China
| | - Bo Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Guangyu Hu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Jiaqi Liu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
| | - Lei Zhang
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China.
- Southwest United Graduate School, Kunming, Yunnan, China.
| |
Collapse
|
3
|
Moura MT. Genome-Scale Analyses Reveal Roadblocks to Monkey Cloning. Cell Reprogram 2024; 26:120-123. [PMID: 39088354 DOI: 10.1089/cell.2024.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024] Open
Abstract
Cloning by somatic cell nuclear transfer (SCNT) remained challenging for Rhesus monkeys, mostly due to its low efficiency and neonatal death. Genome-scale analyses revealed that monkey SCNT embryos displayed widespread DNA methylation and transcriptional alterations, thus including loss of genomic imprinting that correlated with placental dysfunction. The transfer of inner cell masses (ICM) from cloned blastocysts into ICM-depleted fertilized embryos rescued placental insufficiency and gave rise to a cloned Rhesus monkey that reached adulthood without noticeable abnormalities.
Collapse
Affiliation(s)
- Marcelo Tigre Moura
- Departamento de Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal da Paraíba-UFPB, João Pessoa, Brazil
| |
Collapse
|
4
|
Luo X, Jia H, Wang F, Mo H, Kang Y, Zhang N, Zhao L, Xu L, Yang Z, Yang Q, Chang Y, Li S, Bian N, Hua X, Cui H, Cao Y, Chu C, Zeng Y, Chen X, Chen Z, Ji W, Long C, Song J, Niu Y. Primate Model Carrying LMNA Mutation Develops Dilated Cardiomyopathy. JACC Basic Transl Sci 2024; 9:380-395. [PMID: 38559624 PMCID: PMC10978409 DOI: 10.1016/j.jacbts.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 04/04/2024]
Abstract
To solve the clinical transformation dilemma of lamin A/C (LMNA)-mutated dilated cardiomyopathy (LMD), we developed an LMNA-mutated primate model based on the similarity between the phenotype of primates and humans. We screened out patients with LMD and compared the clinical data of LMD with TTN-mutated and mutation-free dilated cardiomyopathy to obtain the unique phenotype. After establishment of the LMNA c.357-2A>G primate model, primates were continuously observed for 48 months, and echocardiographic, electrophysiological, histologic, and transcriptional data were recorded. The LMD primate model was found to highly simulate the phenotype of clinical LMD. In addition, the LMD primate model shared a similar natural history with humans.
Collapse
Affiliation(s)
- Xiang Luo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Han Mo
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Yu Kang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Ningning Zhang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Zhao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Lizhu Xu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhengsheng Yang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qiaoyan Yang
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | - Yuan Chang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shulin Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Ning Bian
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Xiumeng Hua
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Cui
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Cao
- Department of Cardiovascular Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Chu Chu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Yuqiang Zeng
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Xinglong Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Zhigang Chen
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Weizhi Ji
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Chengzu Long
- NYU Cardiovascular Research Center, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York, USA
- Department of Neurology, New York University School of Medicine, New York, New York, USA
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Yuyu Niu
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
5
|
Liao Z, Zhang J, Sun S, Li Y, Xu Y, Li C, Cao J, Nie Y, Niu Z, Liu J, Lu F, Liu Z, Sun Q. Reprogramming mechanism dissection and trophoblast replacement application in monkey somatic cell nuclear transfer. Nat Commun 2024; 15:5. [PMID: 38228612 PMCID: PMC10791636 DOI: 10.1038/s41467-023-43985-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/27/2023] [Indexed: 01/18/2024] Open
Abstract
Somatic cell nuclear transfer (SCNT) successfully clones cynomolgus monkeys, but the efficiency remains low due to a limited understanding of the reprogramming mechanism. Notably, no rhesus monkey has been cloned through SCNT so far. Our study conducts a comparative analysis of multi-omics datasets, comparing embryos resulting from intracytoplasmic sperm injection (ICSI) with those from SCNT. Our findings reveal a widespread decrease in DNA methylation and the loss of imprinting in maternally imprinted genes within SCNT monkey blastocysts. This loss of imprinting persists in SCNT embryos cultured in-vitro until E17 and in full-term SCNT placentas. Additionally, histological examination of SCNT placentas shows noticeable hyperplasia and calcification. To address these defects, we develop a trophoblast replacement method, ultimately leading to the successful cloning of a healthy male rhesus monkey. These discoveries provide valuable insights into the reprogramming mechanism of monkey SCNT and introduce a promising strategy for primate cloning.
Collapse
Affiliation(s)
- Zhaodi Liao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jixiang Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shiyu Sun
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuzhuo Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China
| | - Yuting Xu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China
| | - Chunyang Li
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China
| | - Jing Cao
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China
| | - Yanhong Nie
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China
| | - Zhuoyue Niu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jingwen Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Falong Lu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Zhen Liu
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China.
| | - Qiang Sun
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China.
| |
Collapse
|
6
|
Naddaf M. Cloned rhesus monkey lives to adulthood for first time. Nature 2024; 625:641-642. [PMID: 38228930 DOI: 10.1038/d41586-024-00136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
|
7
|
Li C, Liu Z, Anderson J, Liu Z, Tang L, Li Y, Peng N, Chen J, Liu X, Fu L, Townes TM, Rowe SM, Bedwell DM, Guimbellot J, Zhao R. Prime editing-mediated correction of the CFTR W1282X mutation in iPSCs and derived airway epithelial cells. PLoS One 2023; 18:e0295009. [PMID: 38019847 PMCID: PMC10686454 DOI: 10.1371/journal.pone.0295009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
A major unmet need in the cystic fibrosis (CF) therapeutic landscape is the lack of effective treatments for nonsense CFTR mutations, which affect approximately 10% of CF patients. Correction of nonsense CFTR mutations via genomic editing represents a promising therapeutic approach. In this study, we tested whether prime editing, a novel CRISPR-based genomic editing method, can be a potential therapeutic modality to correct nonsense CFTR mutations. We generated iPSCs from a CF patient homozygous for the CFTR W1282X mutation. We demonstrated that prime editing corrected one mutant allele in iPSCs, which effectively restored CFTR function in iPSC-derived airway epithelial cells and organoids. We further demonstrated that prime editing may directly repair mutations in iPSC-derived airway epithelial cells when the prime editing machinery is efficiently delivered by helper-dependent adenovirus (HDAd). Together, our data demonstrated that prime editing may potentially be applied to correct CFTR mutations such as W1282X.
Collapse
Affiliation(s)
- Chao Li
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Zhong Liu
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Justin Anderson
- Department of Pediatrics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Zhongyu Liu
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Liping Tang
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yao Li
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ning Peng
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jianguo Chen
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Xueming Liu
- Key Laboratory of Imaging Processing and Intelligent Control, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lianwu Fu
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Tim M. Townes
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Steven M. Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David M. Bedwell
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jennifer Guimbellot
- Department of Pediatrics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Gregory Fleming James Cystic Fibrosis Research Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
8
|
Wu J, Shi Y, Yang S, Tang Z, Li Z, Li Z, Zuo J, Ji W, Niu Y. Current state of stem cell research in non-human primates: an overview. MEDICAL REVIEW (2021) 2023; 3:277-304. [PMID: 38235400 PMCID: PMC10790211 DOI: 10.1515/mr-2023-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/04/2023] [Indexed: 01/19/2024]
Abstract
The remarkable similarity between non-human primates (NHPs) and humans establishes them as essential models for understanding human biology and diseases, as well as for developing novel therapeutic strategies, thereby providing more comprehensive reference data for clinical treatment. Pluripotent stem cells such as embryonic stem cells and induced pluripotent stem cells provide unprecedented opportunities for cell therapies against intractable diseases and injuries. As continue to harness the potential of these biotechnological therapies, NHPs are increasingly being employed in preclinical trials, serving as a pivotal tool to evaluate the safety and efficacy of these interventions. Here, we review the recent advancements in the fundamental research of stem cells and the progress made in studies involving NHPs.
Collapse
Affiliation(s)
- Junmo Wu
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Yuxi Shi
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Shanshan Yang
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zengli Tang
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zifan Li
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Zhuoyao Li
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Jiawei Zuo
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Weizhi Ji
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| | - Yuyu Niu
- Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan Province, China
| |
Collapse
|
9
|
Ledford H. Why CRISPR babies are still too risky - embryo studies highlight challenges. Nature 2023; 615:568-569. [PMID: 36914863 DOI: 10.1038/d41586-023-00756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|