1
|
Nasser J, Nam KM, Gunawardena J. A mathematical model clarifies the ABC Score formula used in enhancer-gene prediction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.29.626072. [PMID: 39677755 PMCID: PMC11642778 DOI: 10.1101/2024.11.29.626072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Enhancers are discrete DNA elements that regulate the expression of eukaryotic genes. They are important not only for their regulatory function, but also as loci that are frequently associated with disease traits. Despite their significance, our conceptual understanding of how enhancers work remains limited. CRISPR-interference methods have recently provided the means to systematically screen for enhancers in cell culture, from which a formula for predicting whether an enhancer regulates a gene, the Activity-by-Contact (ABC) Score, has emerged and has been widely adopted. While useful as a binary classifier, it is less effective at predicting the quantitative effect of an enhancer on gene expression. It is also unclear how the algebraic form of the ABC Score arises from the underlying molecular mechanisms and what assumptions are needed for it to hold. Here, we use the graph-theoretic linear framework, previously introduced to analyze gene regulation, to formulate the default model, a mathematical model of how multiple enhancers independently regulate a gene. We show that the algebraic form of the ABC Score arises from this model. However, the default model assumptions also imply that enhancers act additively on steady-state gene expression. This is known to be false for certain genes and we show how modifying the assumptions can accommodate this discrepancy. Overall, our approach lays a rigorous, biophysical foundation for future studies of enhancer-gene regulation.
Collapse
Affiliation(s)
- Joseph Nasser
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Current address: Department of Physics, Brandeis University, Waltham, MA, USA
| | - Kee-Myoung Nam
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Current address: Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | | |
Collapse
|
2
|
Wang B, Bian Q. SATB1 prevents immune cell infiltration by regulating chromatin organization and gene expression of a chemokine gene cluster in T cells. Commun Biol 2024; 7:1304. [PMID: 39394451 PMCID: PMC11470149 DOI: 10.1038/s42003-024-07021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024] Open
Abstract
SATB1, a key regulator of T cell development, governs lineage-specific transcriptional programs upon T cell activation. The absence of SATB1 has been linked to the initiation and progression of autoimmunity. However, its precise roles in this process remain incompletely understood. Here we show that conditional knockout of Satb1 in CD4+ T cells in mice led to T cell hyperactivation and inflammatory cell infiltration across multiple organs. Transcriptional profiling on activated T cells revealed that the loss of SATB1 led to aberrant upregulation of CC chemokines. Treating Satb1 conditional knockout mice with CC chemokine receptor inhibitor alleviated inflammatory cell infiltration. Intriguingly, SATB1's transcriptional regulation of chemokine genes could not be attributed to its direct binding to chemokine promoters. Instead, SATB1 exerted its regulatory effects by controlling higher-order chromatin organization at a CC chemokine locus. The loss of SATB1 led to the emergence of a new chromatin domain encompassing the Ccl3, Ccl4, Ccl5, Ccl6, and Ccl9 genes and a distal enhancer, resulting in increased contacts between the enhancer and all five chemokine genes, thus inducing their upregulation. Collectively, these results demonstrate that SATB1 protects organs from immune cell infiltration by regulating chemokine expression, providing valuable insights into the development of autoimmunity-related phenotypes.
Collapse
Affiliation(s)
- Bao Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Bian
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Du J, Liu Y, Sun J, Yao E, Xu J, Wu X, Xu L, Zhou M, Yang G, Jiang X. ARID1A safeguards the canalization of the cell fate decision during osteoclastogenesis. Nat Commun 2024; 15:5994. [PMID: 39013863 PMCID: PMC11252270 DOI: 10.1038/s41467-024-50225-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/02/2024] [Indexed: 07/18/2024] Open
Abstract
Chromatin remodeler ARID1A regulates gene transcription by modulating nucleosome positioning and chromatin accessibility. While ARID1A-mediated stage and lineage-restricted gene regulation during cell fate canalization remains unresolved. Using osteoclastogenesis as a model, we show that ARID1A transcriptionally safeguards the osteoclast (OC) fate canalization during proliferation-differentiation switching at single-cell resolution. Notably, ARID1A is indispensable for the transcriptional apparatus condensates formation with coactivator BRD4/lineage-specifying transcription factor (TF) PU.1 at Nfatc1 super-enhancer during safeguarding the OC fate canalization. Besides, the antagonist function between ARID1A-cBAF and BRD9-ncBAF complex during osteoclastogenesis has been validated with in vitro assay and compound mutant mouse model. Furthermore, the antagonistic function of ARID1A-"accelerator" and BRD9-"brake" both depend on coactivator BRD4-"clutch" during osteoclastogenesis. Overall, these results uncover sophisticated cooperation between chromatin remodeler ARID1A, coactivator, and lineage-specifying TF at super-enhancer of lineage master TF in a condensate manner, and antagonist between distinct BAF complexes in the proper and balanced cell fate canalization.
Collapse
Affiliation(s)
- Jiahui Du
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Yili Liu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Jinrui Sun
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Enhui Yao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Jingyi Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Xiaolin Wu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Ling Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Mingliang Zhou
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China
| | - Guangzheng Yang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, China.
| |
Collapse
|
4
|
Darbellay F, Ramisch A, Lopez-Delisle L, Kosicki M, Rauseo A, Jouini Z, Visel A, Andrey G. Pre-hypertrophic chondrogenic enhancer landscape of limb and axial skeleton development. Nat Commun 2024; 15:4820. [PMID: 38844479 PMCID: PMC11156918 DOI: 10.1038/s41467-024-49203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Chondrocyte differentiation controls skeleton development and stature. Here we provide a comprehensive map of chondrocyte-specific enhancers and show that they provide a mechanistic framework through which non-coding genetic variants can influence skeletal development and human stature. Working with fetal chondrocytes isolated from mice bearing a Col2a1 fluorescent regulatory sensor, we identify 780 genes and 2'704 putative enhancers specifically active in chondrocytes using a combination of RNA-seq, ATAC-seq and H3K27ac ChIP-seq. Most of these enhancers (74%) show pan-chondrogenic activity, with smaller populations being restricted to limb (18%) or trunk (8%) chondrocytes only. Notably, genetic variations overlapping these enhancers better explain height differences than those overlapping non-chondrogenic enhancers. Finally, targeted deletions of identified enhancers at the Fgfr3, Col2a1, Hhip and, Nkx3-2 loci confirm their role in regulating cognate genes. This enhancer map provides a framework for understanding how genes and non-coding variations influence bone development and diseases.
Collapse
Affiliation(s)
- Fabrice Darbellay
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211, Geneva, Switzerland
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley Laboratory, Berkeley, CA, 94720, USA
| | - Anna Ramisch
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - Lucille Lopez-Delisle
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley Laboratory, Berkeley, CA, 94720, USA
| | - Antonella Rauseo
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211, Geneva, Switzerland
| | - Zahra Jouini
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211, Geneva, Switzerland
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley Laboratory, Berkeley, CA, 94720, USA
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley Laboratory, Berkeley, CA, 94720, USA
- School of Natural Sciences, University of California, Merced, CA, 95343, USA
| | - Guillaume Andrey
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
5
|
Li M, Guo H, Wang B, Han Z, Wu S, Liu J, Huang H, Zhu J, An F, Lin Z, Mo K, Tan J, Liu C, Wang L, Deng X, Li G, Ji J, Ouyang H. The single-cell transcriptomic atlas and RORA-mediated 3D epigenomic remodeling in driving corneal epithelial differentiation. Nat Commun 2024; 15:256. [PMID: 38177186 PMCID: PMC10766623 DOI: 10.1038/s41467-023-44471-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
Proper differentiation of corneal epithelial cells (CECs) from limbal stem/progenitor cells (LSCs) is required for maintenance of ocular homeostasis and clear vision. Here, using a single-cell transcriptomic atlas, we delineate the comprehensive and refined molecular regulatory dynamics during human CEC development and differentiation. We find that RORA is a CEC-specific molecular switch that initiates and drives LSCs to differentiate into mature CECs by activating PITX1. RORA dictates CEC differentiation by establishing CEC-specific enhancers and chromatin interactions between CEC gene promoters and distal regulatory elements. Conversely, RORA silences LSC-specific promoters and disrupts promoter-anchored chromatin loops to turn off LSC genes. Collectively, our work provides detailed and comprehensive insights into the transcriptional dynamics and RORA-mediated epigenetic remodeling underlying human corneal epithelial differentiation.
Collapse
Affiliation(s)
- Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| | - Huizhen Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Bofeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Zhuo Han
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Siqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Jiafeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Jin Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Fengjiao An
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Zesong Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Jieying Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Chunqiao Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jianping Ji
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou, 510060, China.
| |
Collapse
|
6
|
Liu X, Chen M, Qu X, Liu W, Dou Y, Liu Q, Shi D, Jiang M, Li H. Cis-Regulatory Elements in Mammals. Int J Mol Sci 2023; 25:343. [PMID: 38203513 PMCID: PMC10779164 DOI: 10.3390/ijms25010343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
In cis-regulatory elements, enhancers and promoters with complex molecular interactions are used to coordinate gene transcription through physical proximity and chemical modifications. These processes subsequently influence the phenotypic characteristics of an organism. An in-depth exploration of enhancers and promoters can substantially enhance our understanding of gene regulatory networks, shedding new light on mammalian development, evolution and disease pathways. In this review, we provide a comprehensive overview of the intrinsic structural attributes, detection methodologies as well as the operational mechanisms of enhancers and promoters, coupled with the relevant novel and innovative investigative techniques used to explore their actions. We further elucidated the state-of-the-art research on the roles of enhancers and promoters in the realms of mammalian development, evolution and disease, and we conclude with forward-looking insights into prospective research avenues.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingsheng Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
7
|
Selleri L, Rijli FM. Shaping faces: genetic and epigenetic control of craniofacial morphogenesis. Nat Rev Genet 2023; 24:610-626. [PMID: 37095271 DOI: 10.1038/s41576-023-00594-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/26/2023]
Abstract
Major differences in facial morphology distinguish vertebrate species. Variation of facial traits underlies the uniqueness of human individuals, and abnormal craniofacial morphogenesis during development leads to birth defects that significantly affect quality of life. Studies during the past 40 years have advanced our understanding of the molecular mechanisms that establish facial form during development, highlighting the crucial roles in this process of a multipotent cell type known as the cranial neural crest cell. In this Review, we discuss recent advances in multi-omics and single-cell technologies that enable genes, transcriptional regulatory networks and epigenetic landscapes to be closely linked to the establishment of facial patterning and its variation, with an emphasis on normal and abnormal craniofacial morphogenesis. Advancing our knowledge of these processes will support important developments in tissue engineering, as well as the repair and reconstruction of the abnormal craniofacial complex.
Collapse
Affiliation(s)
- Licia Selleri
- Program in Craniofacial Biology, Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA.
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, USA.
| | - Filippo M Rijli
- Laboratory of Developmental Neuroepigenetics, Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
8
|
Wu S, Zhang H, Wang S, Sun J, Hu Y, Liu H, Liu J, Chen X, Zhou F, Bai L, Wang X, Su J. Ultrasound-triggered in situ gelation with ROS-controlled drug release for cartilage repair. MATERIALS HORIZONS 2023; 10:3507-3522. [PMID: 37255101 DOI: 10.1039/d3mh00042g] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Cartilage defects are usually caused by acute trauma and chronic degeneration. However, it is still a great challenge to improve the repair of articular cartilage defects due to the limited self-regeneration capacity of such defects. Herein, a novel ROS-responsive in situ nanocomposite hydrogel loaded with kartogenin (KGN) and bone marrow-derived stem cells (BMSCs) was designed and constructed via the enzymatic reaction of fibrinogen and thrombin. Meanwhile, a ROS-responsive thioketal (TK)-based liposome was synthesized to load the chondrogenesis-inducing factor KGN, the bioenzyme thrombin and an ultrasound-sensitive agent PpIX. Under ultrasound stimulation, the TK-based liposome was destroyed, followed by in situ gelation of fibrinogen and thrombin. Moreover, sustained release of KGN was realized by regulating the ultrasound conditions. Importantly, ROS generation and KGN release within the microenvironment of the in situ fibrin hydrogel significantly promoted chondrogenic differentiation of BMSCs via the Smad5/mTOR signalling pathway and effectively improved cartilage regeneration in a rat articular cartilage defect model. Overall, the novel in situ nanocomposite hydrogel with ROS-controlled drug release has great potential for efficient cartilage repair.
Collapse
Affiliation(s)
- Shunli Wu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai 200444, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Sicheng Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- School of Medicine, Shanghai University, Shanghai 200444, China
- Department of Orthopedics, Shanghai Zhongye Hospital, Shanghai, China
| | - Jinru Sun
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yan Hu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Shaoxing Institute of Technology at Shanghai University, Shaoxing, 312000, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jinlong Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Xiao Chen
- Department of Orthopedics Trauma, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an 710000, China.
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Xiuhui Wang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China.
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|