1
|
Frazzette N, Jour G. Novel Molecular Methods in Soft Tissue Sarcomas: From Diagnostics to Theragnostics. Cancers (Basel) 2025; 17:1215. [PMID: 40227789 PMCID: PMC11987812 DOI: 10.3390/cancers17071215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025] Open
Abstract
Soft tissue sarcomas (STSs) are a diverse group of malignant tumors derived from mesenchymal tissues [...].
Collapse
Affiliation(s)
| | - George Jour
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA;
| |
Collapse
|
2
|
Pasquali S, Moura DS, Danks MR, Manasterski PJ, Zaffaroni N, Stacchiotti S, Mondaza-Hernandez JL, Kerrison WGJ, Martin-Broto J, Huang PH, Brunton VG. Preclinical models of soft tissue sarcomas - generation and applications to enhance translational research. Crit Rev Oncol Hematol 2025; 207:104621. [PMID: 39824369 DOI: 10.1016/j.critrevonc.2025.104621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025] Open
Abstract
Soft tissue sarcomas (STS) represent a large group of rare and ultra-rare tumors distinguished by unique morphological, molecular and clinical features. Patients with such rare cancers are generally underrepresented in clinical trials which has limited the introduction of new treatment options and subsequent improvement of patient outcomes. Preclinical models of STS that recapitulate the human disease can aid progress in identifying new effective treatments. However, due to the rarity of these tumors there are limited STS models available. Here we review the existing preclinical models of STS, including patient-derived cell lines and organoids, patient-derived xenografts and genetically engineered mouse models. We discuss the advantages and disadvantages of the different models and describe to what extent they have aided clinical translation. Finally, we consider what can be done in the future to enhance their predictivity in the preclinical setting.
Collapse
Affiliation(s)
- Sandro Pasquali
- Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Instituto Nazionale dei Tumori di Milano, via G. Amadeo 42, Milano 20133, Italy
| | - David S Moura
- Research Health Institute of Fundacion Jimenez Diaz (IIS/FJD; UAM), Madrid, Spain; Department of Medical Oncology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain; University Hospital General of Villalba, Madrid, Spain
| | - Molly R Danks
- Edinburgh Cancer Research, CRUK Scotland Centre, University of Edinburgh, Crewe Road South, Edinburgh EH4 2RX, UK
| | - Piotr J Manasterski
- Edinburgh Cancer Research, CRUK Scotland Centre, University of Edinburgh, Crewe Road South, Edinburgh EH4 2RX, UK
| | - Nadia Zaffaroni
- Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Instituto Nazionale dei Tumori di Milano, via G. Amadeo 42, Milano 20133, Italy
| | - Silvia Stacchiotti
- Molecular Pharmacology, Department of Experimental Oncology, Fondazione IRCCS Instituto Nazionale dei Tumori di Milano, via G. Amadeo 42, Milano 20133, Italy
| | - Jose L Mondaza-Hernandez
- Research Health Institute of Fundacion Jimenez Diaz (IIS/FJD; UAM), Madrid, Spain; Department of Medical Oncology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain; University Hospital General of Villalba, Madrid, Spain
| | - William G J Kerrison
- Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road Sutton, London, SM2 5NG, UK
| | - Javier Martin-Broto
- Research Health Institute of Fundacion Jimenez Diaz (IIS/FJD; UAM), Madrid, Spain; Department of Medical Oncology, Fundacion Jimenez Diaz University Hospital, Madrid, Spain; University Hospital General of Villalba, Madrid, Spain
| | - Paul H Huang
- Division of Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road Sutton, London, SM2 5NG, UK
| | - Valerie G Brunton
- Edinburgh Cancer Research, CRUK Scotland Centre, University of Edinburgh, Crewe Road South, Edinburgh EH4 2RX, UK.
| |
Collapse
|
3
|
Gracia F, Sanchez-Laorden B, Gomez-Sanchez JA. Schwann cells in regeneration and cancer: an epithelial-mesenchymal transition perspective. Open Biol 2025; 15:240337. [PMID: 40037534 DOI: 10.1098/rsob.240337] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/13/2025] [Accepted: 02/09/2025] [Indexed: 03/06/2025] Open
Abstract
In the peripheral nervous system, glial cells, known as Schwann cells (SCs), are responsible for supporting and maintaining nerves. One of the most important characteristics of SCs is their remarkable plasticity. In various injury contexts, SCs undergo a reprogramming process that generates specialized cells to promote tissue regeneration and repair. However, in pathological conditions, this same plasticity and regenerative potential can be hijacked. Different studies highlight the activation of the epithelial-mesenchymal transition (EMT) as a driver of SC phenotypic plasticity. Although SCs are not epithelial, their neural crest origin makes EMT activation crucial for their ability to adopt repair phenotypes, mirroring the plasticity observed during development. These adaptive processes are essential for regeneration. However, EMT activation in SCs-derived tumours enhances cancer progression and aggressiveness. Furthermore, in the tumour microenvironment (TME), SCs also acquire activated phenotypes that contribute to tumour migration and invasion by activating EMT in cancer cells. In this review, we will discuss how EMT impacts SC plasticity and function from development and tissue regeneration to pathological conditions, such as cancer.
Collapse
Affiliation(s)
- Francisco Gracia
- Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, 03550, Spain
| | | | - Jose A Gomez-Sanchez
- Instituto de Neurociencias CSIC-UMH, San Juan de Alicante, 03550, Spain
- Instituto de Investigacion Sanitaria y Biomedica de Alicante (ISABIAL), Alicante 03010, Spain
| |
Collapse
|
4
|
Wang X, Zhu R, Yu P, Qi S, Zhong Z, Jin R, Wang Y, Gu Y, Ye D, Chen K, Shu Y, Wang Y, Yu FX. WWC proteins-mediated compensatory mechanism restricts schwannomatosis driven by NF2 loss of function. SCIENCE ADVANCES 2025; 11:eadp4765. [PMID: 39841844 PMCID: PMC11753430 DOI: 10.1126/sciadv.adp4765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025]
Abstract
NF2-related schwannomatosis, previously known as neurofibromatosis type 2, is a genetic disorder characterized by nerve tumors due to NF2 gene mutations. Mice with Nf2 deletion develop schwannomas slowly with low penetrance, hence inconvenient for preclinical studies. Here, we show that NF2, by recruiting E3 ubiquitin ligases β-TrCP1/2, promotes WWC1-3 ubiquitination and degradation. In NF2 mutated cells, WWC1-3 accumulation is a compensatory mechanism to prevent YAP/TAZ hyperactivation and rapid tumorigenesis. Accordingly, we generate a synthetic mouse model with complete penetrance and short latency by concurrently deleting Nf2 and Wwc1/2 in Schwann cells. This model closely resembles NF2-related schwannomatosis in patients, as confirmed by histological and single-cell transcriptome analysis. Moreover, a cell line from mouse schwannomas and a syngeneic tumor model in immune-competent mice are established. Furthermore, a screen using established models has identified candidate drugs that effectively suppress schwannoma progression. Hence, this work has developed rapid and transplantable models that will facilitate both basic and translational research on NF2-related schwannomatosis.
Collapse
Affiliation(s)
- Xueying Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rui Zhu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pengcheng Yu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sixian Qi
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenxing Zhong
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruxin Jin
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yu Wang
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan Gu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dan Ye
- Huashan Hospital and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Kang Chen
- Department of Obstetrics and Gynecology and Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yi Wang
- Department of Neurology, Children’s Hospital of Fudan University, National Children’s Medical Center, Fudan University, Shanghai, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children’s Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Xiao K, Yang K, Hirbe AC. A Sequencing Overview of Malignant Peripheral Nerve Sheath Tumors: Findings and Implications for Treatment. Cancers (Basel) 2025; 17:180. [PMID: 39857962 PMCID: PMC11763529 DOI: 10.3390/cancers17020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are rare but aggressive malignancies with a low 5-year survival rate despite current treatments. MPNSTs frequently harbor mutations in key genes such as NF1, CDKN2A, TP53, and PRC2 components (EED or SUZ12) across different disease stages. With the rapid advancement of high-throughput sequencing technologies, the molecular characteristics driving MPNST development are becoming clearer. This review summarizes recent sequencing studies on peripheral nerve sheath tumors, including plexiform neurofibromas (PNs), atypical neurofibromatous neoplasm with uncertain biologic potential (ANNUBP), and MPNSTs, highlighting key mutation events in tumor progression from the perspectives of epigenetics, transcriptomics, genomics, proteomics, and metabolomics. We also discuss the therapeutic implications of these genomic findings, focusing on preclinical and clinical trials targeting these alterations. Finally, we conclude that overcoming tumor resistance through combined targeted therapies and personalized treatments based on the molecular characteristics of MPNSTs will be a key direction for future treatment strategies.
Collapse
Affiliation(s)
| | | | - Angela C. Hirbe
- Division of Oncology, Department of Internal Medicine, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; (K.X.); (K.Y.)
| |
Collapse
|
6
|
Menyailo ME, Kopantseva EE, Khozyainova AA, Korobeynikova AA, Denisov EV. Soft tissue sarcomas at the single-cell and spatial resolution: new markers and targets. Cancer Gene Ther 2025; 32:11-21. [PMID: 39582085 DOI: 10.1038/s41417-024-00856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 11/26/2024]
Abstract
Soft tissue sarcomas (STS) are heterogeneous and aggressive tumors, originating in connective tissues embryologically derived from the mesenchyme. Due to their rarity, crucial information about their biology is still lacking. In recent years, single-cell and spatial analyses have opened up new horizons in oncology, leading to the possibility of characterizing the internal architecture of the tumor at the single-cell and spatial levels. This review summarizes the first results acquired through these revolutionary methods for different types of STS. We discuss tumor cell populations and their evolution, interactions between tumor cells and the microenvironment, new prognostic markers, and clinically important targets. Finally, we examine the challenges presented by the single-cell and spatial omics of STS and the future perspectives in this field.
Collapse
Affiliation(s)
- Maxim E Menyailo
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, 115093, Moscow, Russia
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Tomsk, Russia
| | - Elena E Kopantseva
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, 115093, Moscow, Russia
| | - Anna A Khozyainova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Tomsk, Russia
| | - Anastasia A Korobeynikova
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, 115093, Moscow, Russia
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Tomsk, Russia
| | - Evgeny V Denisov
- Single Cell Biology Laboratory, Research Institute of Molecular and Cellular Medicine, Peoples' Friendship University of Russia, 115093, Moscow, Russia.
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009, Tomsk, Russia.
| |
Collapse
|
7
|
Yu X, Gu Y, Liu J, Huang J, Li Q, Wang Z. Emerging mechanism and therapeutic potential of neurofibromatosis type 1-related nerve system tumor: Advancing insights into tumor development. Neurooncol Adv 2025; 7:vdaf040. [PMID: 40134850 PMCID: PMC11934560 DOI: 10.1093/noajnl/vdaf040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
Neurofibromatosis Type 1 (NF1) is a genetic disorder resulting from mutations in the NF1 gene, which increases susceptibility to various nervous system tumors, including plexiform neurofibromas, malignant peripheral nerve sheath tumors, and optic pathway gliomas. Recent research has shown that these tumors are intricately connected to the complex, dynamic interactions within neurons, culminating in neuronal signaling that fosters tumor growth. These interactions offer crucial insights into the molecular mechanisms underpinning tumor development, as well as broader implications for therapeutic strategies. This review summarizes the mechanisms through which mutations in the NF1 gene within neural tissues trigger tumorigenesis, while examining the role of the neuron-via factors such as visual experience, neurotransmitter, tumor microenvironment, and psychological influences-in both promoting tumor progression and being affected by the tumors themselves. By investigating the dynamic relationship between NF1-associated nervous system tumor cells and neurons, we aim to shed light on novel biological pathways and disease processes, emphasizing the potential of interdisciplinary approaches that combine neurobiology, oncology, and pharmacology to enhance treatment strategies and even inhibit the tumorigenesis.
Collapse
Affiliation(s)
- Xuan Yu
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yihui Gu
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Liu
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingxuan Huang
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhichao Wang
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Khan S, Alson D, Sun L, Maloney C, Sun D. Leveraging Neural Crest-Derived Tumors to Identify NF1 Cancer Stem Cell Signatures. Cancers (Basel) 2024; 16:3639. [PMID: 39518076 PMCID: PMC11545784 DOI: 10.3390/cancers16213639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a genetic disorder that predisposes individuals to develop benign and malignant tumors of the nerve sheath. Understanding the signatures of cancer stem cells (CSCs) for NF1-associated tumors may facilitate the early detection of tumor progression. Background: Neural crest cells, the cell of origin of NF1-associated tumors, can initiate multiple tumor types, including melanoma, neuroblastoma, and schwannoma. CSCs within these tumors have been reported; however, identifying and targeting CSC populations remains a challenge. Results: This study aims to leverage existing studies on neural crest-derived CSCs to explore markers pertinent to NF1 tumorigenesis. By focusing on the molecular and cellular dynamics within these tumors, we summarize CSC signatures in tumor maintenance, progression, and treatment resistance. Conclusion: A review of these signatures in the context of NF1 will provide insights into NF1 tumor biology and pave the way for developing targeted therapies and improving treatment outcomes for NF1 patients.
Collapse
Affiliation(s)
- Sajjad Khan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Donia Alson
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Li Sun
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Caroline Maloney
- Department of Pediatric Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Daochun Sun
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatric, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Children Research Institute, Milwaukee, WI 53226, USA
| |
Collapse
|
9
|
Somaiah N, Paudyal B, Winkler RE, Van Tine BA, Hirbe AC. Malignant Peripheral Nerve Sheath Tumor, a Heterogeneous, Aggressive Cancer with Diverse Biomarkers and No Targeted Standard of Care: Review of the Literature and Ongoing Investigational Agents. Target Oncol 2024; 19:665-678. [PMID: 38954182 PMCID: PMC11392982 DOI: 10.1007/s11523-024-01078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Malignant peripheral sheath tumor (MPNST) is a rare, aggressive form of soft-tissue sarcoma that presents a unique set of diagnostic and treatment challenges and is associated with major unmet treatment medical needs. OBJECTIVE The chief aim of this review is to consider the epidemiology, histology, anatomic distribution, pathologic signaling pathways, diagnosis, and management of MPNST, with a focus on potential targeted therapies. A subordinate objective was to establish benchmarks for the antitumor activity of such treatments. RESULTS MPNST has an incidence of 1:100,000 in the general population and 1:3500 among patients with the inherited condition of neurofibromatosis-1. Spindle-cell sarcomas of neural-crest origin, MPNSTs are frequently situated in the extremities and pelvis/trunk, often at the confluence of large nerve roots and bundles. Highly copy-number aberrant and enriched in chromosome 8, MPNSTs have a complex molecular pathogenesis that likely involves the interplay of multiple signaling pathways, including Ras/AKT/mTOR/MAPK, EGFR, p53, PTEN, and PRC2, as well as factors in the tumor microenvironment. A combination of magnetic resonance imaging (MRI) and positron emission tomography with 18F-fluorodeoxyglucose (FDG-PET) enables comprehensive assessment of both morphology and metabolism, while MRI- and ultrasound-guided core needle biopsy can confirm histopathology. Although surgery with wide excisional margins is now the chief curative approach to localized disease, MPNST-specific survival has not improved in decades. For advanced and metastatic MPNST, radiation and chemotherapy (chiefly with anthracyclines plus ifosfamide) have somewhat promising but still largely uncertain treatment roles, chiefly in local control, downstaging, and palliation. No single druggable target has emerged, no objective responses have been observed with a number of targeted therapies (cumulative disease control rate in our review = 22.9-34.8%), and combinatorial approaches directed toward multiple signal transduction mechanisms are hallmarks of ongoing clinical trials. CONCLUSIONS Despite advances in our understanding of the genetics and molecular biology of MPNST, further research is warranted to: (1) unravel the complex pathogenesis of this condition; (2) improve diagnostic yield; (3) delineate the appropriate roles of chemotherapy and radiation; and (4) develop a targeted therapy (or combination of such treatments) that is well tolerated and prolongs survival.
Collapse
Affiliation(s)
- Neeta Somaiah
- Chair of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Brian A Van Tine
- Medicine and of Pediatrics, Developmental Therapeutics (Phase 1) Program, Sarcoma Program, Washington University School of Medicine, Barnes and Jewish Hospital, Siteman Cancer Center, St. Louis, MO, USA
| | - Angela C Hirbe
- Medicine and Pediatrics, Adult Neurofibromatosis Clinical Program, Division of Oncology, Sarcoma Section, Couch Building, Room 3304, Washington University School of Medicine, Barnes Jewish Hospital, Siteman Cancer Center, 660 S. Euclid Avenue, Campus, Box 8076, St. Louis, MO, 63110-1010, USA.
| |
Collapse
|
10
|
Bhandarkar AR, Bhandarkar S, Babovic-Vuksanovic D, Raghunathan A, Schwartz J, Spinner RJ. Precision oncology in neurofibromatosis type 1: quantification of differential sensitivity to selumetinib in plexiform neurofibromas using single-cell RNA sequencing. J Neurooncol 2024; 169:147-153. [PMID: 38739187 DOI: 10.1007/s11060-024-04711-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE Selumetinib is an FDA-approved targeted therapy for plexiform neurofibromas in neurofibromatosis type 1(NF1) with durable response rates seen in most, but not all patients. In this proof-of-concept study, we demonstrate single-cell RNA sequencing(scRNAseq) as a technique for quantifying drug response to selumetinib at the single cell level. METHODS scRNAseq data from neurofibroma biopsies was obtained from a public genomics repository. Schwann cell populations were identified through standard clustering techniques and single-cell selumetinib sensitivity was quantified on a scale of 0(resistant) to 1(sensitive) based on the expression pattern of a 500 gene selumetinib sensitivity signature from the BeyondCell sensitivity library. RESULTS A total of seven plexiform neurofibromas were included in our final analysis. The median absolute number of Schwann cells across samples was 658 cells (IQR: 1,029 cells, Q1-Q3: 135 cells to 1,163 cells). There was a statistically significant difference in selumetinib sensitivity profiles across samples (p < 0.001). The tumor with the highest median selumetinib sensitivity score had a median selumetinib sensitivity score of 0.64(IQR: 0.14, Q1-Q3: 0.59-0.70, n = 112 cells) and the tumor with the lowest median selumetinib sensitivity score had a median score of 0.37 (IQR: 0.21, Q1-Q3: 0.27-0.48, n = 1,034 cells). CONCLUSIONS scRNAseq of plexiform neurofibroma biopsies reveals differential susceptibilities to selumetinib on a single cell level. These findings may explain the partial responses seen in clinical trials of selumetinib for NF1 and demonstrate the value of collecting scRNAseq data for future NF1 trials.
Collapse
Affiliation(s)
| | - Shaan Bhandarkar
- Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dusica Babovic-Vuksanovic
- Division of Pediatric Genetics, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Aditya Raghunathan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jonathan Schwartz
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, USA
| | - Robert J Spinner
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
11
|
Ciscato F, Masgras I, Gori A, Fantuz M, Bergamaschi G, Komarov D, La Spina M, Ghasemi-Firouzabadi S, Pizzi M, Dei Tos AP, Chiara F, Carrer A, Rasola A. The Use of Hexokinase 2-Displacing Peptides as an Anti-Neoplastic Approach for Malignant Peripheral Nerve Sheath Tumors. Cells 2024; 13:1162. [PMID: 38995012 PMCID: PMC11240344 DOI: 10.3390/cells13131162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024] Open
Abstract
Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are aggressive sarcomas that can arise both sporadically and in patients with the genetic syndrome Neurofibromatosis type 1 (NF1). Prognosis is dismal, as large dimensions, risk of relapse, and anatomical localization make surgery poorly effective, and no therapy is known. Hence, the identification of MPNST molecular features that could be hit in an efficient and selective way is mandatory to envision treatment options. Here, we find that MPNSTs express high levels of the glycolytic enzyme Hexokinase 2 (HK2), which is known to shield cancer cells from noxious stimuli when it localizes at MAMs (mitochondria-associated membranes), contact sites between mitochondria and endoplasmic reticulum. A HK2-targeting peptide that dislodges HK2 from MAMs rapidly induces a massive death of MPNST cells. After identifying different matrix metalloproteases (MMPs) expressed in the MPNST microenvironment, we have designed HK2-targeting peptide variants that harbor cleavage sites for these MMPs, making such peptides activatable in the proximity of cancer cells. We find that the peptide carrying the MMP2/9 cleavage site is the most effective, both in inhibiting the in vitro tumorigenicity of MPNST cells and in hampering their growth in mice. Our data indicate that detaching HK2 from MAMs could pave the way for a novel anti-MPNST therapeutic strategy, which could be flexibly adapted to the protease expression features of the tumor microenvironment.
Collapse
Affiliation(s)
- Francesco Ciscato
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Institute of Neuroscience, National Research Council (CNR), 35131 Padova, Italy
| | - Ionica Masgras
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Institute of Neuroscience, National Research Council (CNR), 35131 Padova, Italy
| | - Alessandro Gori
- SCITEC Institute of Chemical Science and Technology “Giulio Natta”, National Research Council (CNR), 20133 Milano, Italy
| | - Marco Fantuz
- Veneto Institute for Molecular Medicine (VIMM), 35129 Padova, Italy
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Greta Bergamaschi
- SCITEC Institute of Chemical Science and Technology “Giulio Natta”, National Research Council (CNR), 20133 Milano, Italy
| | - Denis Komarov
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Martina La Spina
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | | | - Marco Pizzi
- General Pathology and Cytopathology Unit, Department of Medicine (DMED), University of Padova, 35128 Padova, Italy
| | - Angelo Paolo Dei Tos
- General Pathology and Cytopathology Unit, Department of Medicine (DMED), University of Padova, 35128 Padova, Italy
| | - Federica Chiara
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Alessandro Carrer
- Veneto Institute for Molecular Medicine (VIMM), 35129 Padova, Italy
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
12
|
Paudel SN, Hutzen BJ, Miller KE, Garfinkle EAR, Chen CY, Wang PY, Glaspell AM, Currier MA, Ringwalt EM, Boon L, Mardis ER, Cairo MS, Ratner N, Dodd RD, Cassady KA, Cripe TP. Myelomodulatory treatments augment the therapeutic benefit of oncolytic viroimmunotherapy in murine models of malignant peripheral nerve sheath tumors. Front Immunol 2024; 15:1384623. [PMID: 39044819 PMCID: PMC11263800 DOI: 10.3389/fimmu.2024.1384623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/10/2024] [Indexed: 07/25/2024] Open
Abstract
Introduction Malignant peripheral nerve sheath tumors (MPNST) pose a significant therapeutic challenge due to high recurrence rates after surgical resection and a largely ineffective response to traditional chemotherapy. An alternative treatment strategy is oncolytic viroimmunotherapy, which can elicit a durable and systemic antitumor immune response and is Food and Drug Administration (FDA)-approved for the treatment of melanoma. Unfortunately, only a subset of patients responds completely, underscoring the need to address barriers hindering viroimmunotherapy effectiveness. Methods Here we investigated the therapeutic utility of targeting key components of the MPNST immunosuppressive microenvironment to enhance viroimmunotherapy's antitumor efficacy in three murine models, one of which showed more immunogenic characteristics than the others. Results Myelomodulatory therapy with pexidartinib, a small molecule inhibitor of CSF1R tyrosine kinase, and the oncolytic herpes simplex virus T-VEC exhibited the most significant increase in median survival time in the highly immunogenic model. Additionally, targeting myeloid cells with the myelomodulatory therapy trabectedin, a small molecule activator of caspase-8 dependent apoptosis, augmented the survival benefit of T-VEC in a less immunogenic MPNST model. However, tumor regressions or shrinkages were not observed. Depletion experiments confirmed that the enhanced survival benefit relied on a T cell response. Furthermore, flow cytometry analysis following combination viroimmunotherapy revealed decreased M2 macrophages and myeloid-derived suppressor cells and increased tumor-specific gp70+ CD8 T cells within the tumor microenvironment. Discussion In summary, our findings provide compelling evidence for the potential to leverage viroimmunotherapy with myeloid cell targeting against MPNST and warrant further investigation.
Collapse
Affiliation(s)
- Siddhi N. Paudel
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Brian J. Hutzen
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Katherine E. Miller
- Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University Wexner College of Medicine, Columbus, OH, United States
| | - Elizabeth A. R. Garfinkle
- Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Chun-Yu Chen
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Pin-Yi Wang
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Andrea M. Glaspell
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Mark A. Currier
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Emily M. Ringwalt
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | | | - Elaine R. Mardis
- Institute for Genomic Medicine, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University Wexner College of Medicine, Columbus, OH, United States
| | - Mitchell S. Cairo
- Department of Pediatrics, Medicine, Pathology, Microbiology and Immunology, and Cell Biology, New York Medical College, Valhalla, NY, United States
| | - Nancy Ratner
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Rebecca D. Dodd
- Department of Internal Medicine, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, United States
| | - Kevin A. Cassady
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University Wexner College of Medicine, Columbus, OH, United States
| | - Timothy P. Cripe
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University Wexner College of Medicine, Columbus, OH, United States
- Division of Pediatric Hematology/Oncology/BMT, Nationwide Children’s Hospital, Columbus, OH, United States
| |
Collapse
|
13
|
Brockman QR, Rytlewski JD, Milhem M, Monga V, Dodd RD. Integrated Epigenetic and Transcriptomic Analysis Identifies Interleukin 17 DNA Methylation Signature of Malignant Peripheral Nerve Sheath Tumor Progression and Metastasis. JCO Precis Oncol 2024; 8:e2300325. [PMID: 38820476 PMCID: PMC11552688 DOI: 10.1200/po.23.00325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 06/02/2024] Open
Abstract
PURPOSE Sarcomas are a complex group of highly aggressive and metastatic tumors with over 100 distinct subtypes. Because of their diversity and rarity, it is challenging to generate multisarcoma signatures that are predictive of patient outcomes. MATERIALS AND METHODS Here, we identify a DNA methylation signature for progression and metastasis of numerous sarcoma subtypes using multiple epigenetic and genomic patient data sets. Malignant Peripheral Nerve Sheath Tumors (MPNSTs) are highly metastatic sarcomas with frequent loss of the histone methyltransferase, PRC2. Loss of PRC2 is associated with MPNST metastasis and plays a critical noncanonical role in DNA methylation. RESULTS We found that over 900 5'-C-phosphate-G-3' (CpGs) were hypermethylated in MPNSTs with PRC2 loss. Furthermore, we identified eight differentially methylated CpGs in the IL17D/RD family that correlate with the progression and metastasis of MPNSTs in two independent patient data sets. Similar trends were identified in other sarcoma subtypes, including osteosarcoma, rhabdomyosarcoma, and synovial sarcoma. Analysis of scRNAseq data sets determined that IL17D/RD expression occurs in both the tumor cells and the surrounding stromal populations. CONCLUSION These results might have broad implications for the clinical management and surveillance of sarcoma.
Collapse
Affiliation(s)
- Qierra R. Brockman
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Jeffrey D. Rytlewski
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Mohammed Milhem
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Varun Monga
- Division of Hematology/Oncology, University of California, San Francisco, California
| | - Rebecca D. Dodd
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| |
Collapse
|
14
|
Mitchell DK, Burgess B, White EE, Smith AE, Potchanant EAS, Mang H, Hickey BE, Lu Q, Qian S, Bessler W, Li X, Jiang L, Brewster K, Temm C, Horvai A, Albright EA, Fishel ML, Pratilas CA, Angus SP, Clapp DW, Rhodes SD. Spatial Gene-Expression Profiling Unveils Immuno-oncogenic Programs of NF1-Associated Peripheral Nerve Sheath Tumor Progression. Clin Cancer Res 2024; 30:1038-1053. [PMID: 38127282 PMCID: PMC11095977 DOI: 10.1158/1078-0432.ccr-23-2548] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/25/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Plexiform neurofibromas (PNF) are benign peripheral nerve sheath tumors (PNST) associated with neurofibromatosis type 1 (NF1). Despite similar histologic appearance, these neoplasms exhibit diverse evolutionary trajectories, with a subset progressing to malignant peripheral nerve sheath tumor (MPNST), the leading cause of premature death in individuals with NF1. Malignant transformation of PNF often occurs through the development of atypical neurofibroma (ANF) precursor lesions characterized by distinct histopathologic features and CDKN2A copy-number loss. Although genomic studies have uncovered key driver events promoting tumor progression, the transcriptional changes preceding malignant transformation remain poorly defined. EXPERIMENTAL DESIGN Here we resolve gene-expression profiles in PNST across the neurofibroma-to-MPNST continuum in NF1 patients and mouse models, revealing early molecular features associated with neurofibroma evolution and transformation. RESULTS Our findings demonstrate that ANF exhibit enhanced signatures of antigen presentation and immune response, which are suppressed as malignant transformation ensues. MPNST further displayed deregulated survival and mitotic fidelity pathways, and targeting key mediators of these pathways, CENPF and BIRC5, disrupted the growth and viability of human MPNST cell lines and primary murine Nf1-Cdkn2a-mutant Schwann cell precursors. Finally, neurofibromas contiguous with MPNST manifested distinct alterations in core oncogenic and immune surveillance programs, suggesting that early molecular events driving disease progression may precede histopathologic evidence of malignancy. CONCLUSIONS If validated prospectively in future studies, these signatures may serve as molecular diagnostic tools to augment conventional histopathologic diagnosis by identifying neurofibromas at high risk of undergoing malignant transformation, facilitating risk-adapted care.
Collapse
Affiliation(s)
- Dana K. Mitchell
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Breanne Burgess
- Medical Scientist Training Program, Indiana University School of Medicine
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
| | - Emily E. White
- Medical Scientist Training Program, Indiana University School of Medicine
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
| | - Abbi E. Smith
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | | | - Henry Mang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Brooke E. Hickey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Qingbo Lu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Shaomin Qian
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Waylan Bessler
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Xiaohong Li
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Li Jiang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Kylee Brewster
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Constance Temm
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Andrew Horvai
- Department of Pathology and Laboratory Medicine, University of California San Francisco
| | - Eric A. Albright
- Department of Clinical Pathology and Laboratory Medicine, Indiana University School of Medicine
| | - Melissa L. Fishel
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
| | - Christine A. Pratilas
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine
| | - Steven P. Angus
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine
| | - D. Wade Clapp
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine
| | - Steven D. Rhodes
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Indiana University School of Medicine
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine
| |
Collapse
|
15
|
Paudel SN, Hutzen B, Cripe TP. The quest for effective immunotherapies against malignant peripheral nerve sheath tumors: Is there hope? Mol Ther Oncolytics 2023; 30:227-237. [PMID: 37680255 PMCID: PMC10480481 DOI: 10.1016/j.omto.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
Immune-based therapies represent a new paradigm in the treatment of multiple cancers, where they have helped achieve durable and safe clinical responses in a growing subset of patients. While a wealth of information is available concerning the use of these agents in treating the more common malignancies, little has been reported about the use of immunotherapies against malignant peripheral nerve sheath tumors (MPNSTs), a rare form of soft tissue sarcoma that arises from the myelin sheaths that protect peripheral nerves. Surgical resection has been the mainstay of therapy in MPNSTs, but the recurrence rate is as high as 65%, and chemotherapy is generally ineffective. The immune contexture of MPNSTs, replete with macrophages and a varying degree of T cell infiltration, presents multiple opportunities to design meaningful therapeutic interventions. While preliminary results with macrophage-targeting strategies and oncolytic viruses are promising, identifying the subset of patients that respond to immune-based strategies will be a milestone. As part of our effort to help advance the use of immunotherapy for MPNSTs, here we describe recent insights regarding the immune contexture of MPNSTs, discuss emerging immune-based strategies, and provide a brief overview of potential biomarkers of response.
Collapse
Affiliation(s)
- Siddhi N. Paudel
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Childhood Cancer Research, Columbus, OH, USA
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
| | - Brian Hutzen
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Childhood Cancer Research, Columbus, OH, USA
| | - Timothy P. Cripe
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Childhood Cancer Research, Columbus, OH, USA
- Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, USA
- Division of Hematology/Oncology/BMT, Department of Pediatrics, Nationwide Children’s Hospital, Columbus, OH, USA
- Ohio State University Wexner College of Medicine, Columbus, OH, USA
| |
Collapse
|
16
|
Bhandarkar AR, Bhandarkar S, Babovic-Vuksanovic D, Parney IF, Spinner RJ. Characterizing T-cell dysfunction and exclusion signatures in malignant peripheral nerve sheath tumors reveals susceptibilities to immunotherapy. J Neurooncol 2023; 164:693-699. [PMID: 37755632 DOI: 10.1007/s11060-023-04467-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE Malignant peripheral nerve sheath tumors (MPNSTs) are malignant tumors that arise from peripheral nerves and are the leading cause of mortality in Neurofibromatosis Type 1 (NF1). In this study, we characterized whether transcriptomic signatures of T-cell dysfunction (TCD) and exclusion (TCE) that inversely correlate with response to immune checkpoint blockade (ICB) immunotherapy exist in MPNSTs. METHODS MPNST transcriptomes were pooled from Gene Expression Omnibus (GEO). For each sample, a tumor immune dysfunction and exclusion (TIDE) score, TCD and TCE subscores, and cytotoxic T-cell(CTL) level were calculated. In the TIDE predictive algorithm, tumors are predicted to have an ICB response if they are either immunologically hot (CTL-high) without TCD or immunologically cold (CTL-low) without TCE. TIDE scores greater than zero correspond with ICB nonresponse. RESULTS 73 MPNST samples met inclusion criteria, including 50 NF1-associated MPNSTs (68.5%). The average TIDE score was + 0.41 (SD = 1.16) with 22 (30.1%) predicted ICB responders. 11 samples were CTL-high (15.1%) with an average TCD score of + 0.99 (SD = 0.63). Among 62 CTL-low tumors, 21 were predicted to have ICB response with an average TCE score of + 0.31(SD = 1.20). Age(p = 0.18), sex(p = 0.41), NF1 diagnosis (p = 0.17), and PRC2 loss(p = 0.29) were not associated with ICB responder status. CONCLUSIONS Transcriptomic analysis of TCD and TCE signatures in MPNST samples reveals that a select subset of patients with MPNSTs may benefit from ICB immunotherapy.
Collapse
Affiliation(s)
| | - Shaan Bhandarkar
- Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dusica Babovic-Vuksanovic
- Division of Pediatric Genetics, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Robert J Spinner
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|