1
|
Cordoni G, Hecker M, Crippa V, Aldama BG, Santos SB, Norscia I. Rapid mimicry of trunk and head movements during play in African Savanna elephants (Loxodonta africana). Sci Rep 2025; 15:16263. [PMID: 40346099 PMCID: PMC12064687 DOI: 10.1038/s41598-025-01067-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 05/02/2025] [Indexed: 05/11/2025] Open
Abstract
The basic forms of motor and possibly emotion replication include behavioral contagion and rapid motor mimicry (RMM). RMM-mainly demonstrated during play-occurs when an individual perceives and rapidly (< 1 s) replicates the exact motor sequence of another individual. We collected data on an African Savanna Elephant (Loxodonta africana; N = 15) group housed at the Parque de la Naturaleza de Cabárceno (Spain) on play target movements of both trunk and head. We demonstrated the presence of RMM. Elephants that were more prone in mimicking others' target movements were also more prone to play after observing others playing. RMM-as behavioral contagion-can enhance action coordination between players. As RMM was associated with more offensive play patterns than unreplicated target movements, RMM may allow competitive play sessions to occur, possibly replacing agonistic interactions. Neither individual (age, sex) nor social (affiliation levels) factors modulated the RMM. These findings can be related to the elephant high tolerance levels and the wide presence of play across age (including adults) and sex. Concluding, African elephants have the potential to share their affective states (emotional contagion) via RMM which is relevant to the investigation of the evolution of empathy in mammals including humans.
Collapse
Affiliation(s)
- Giada Cordoni
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy.
| | - Martin Hecker
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Valentina Crippa
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | | | | | - Ivan Norscia
- Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy.
| |
Collapse
|
2
|
Zhang X, Aziz S, Salahuddin B, Zhu Z. Bioinspired Hydro- and Hydrothermally Responsive Tubular Soft Actuators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59202-59215. [PMID: 39435866 DOI: 10.1021/acsami.4c11779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Soft actuators made of thermoresponsive polymers have great potential for intelligent robotics and biomedical devices due to their reversible deformation capability in response to temperature fluctuations. However, they are constrained by a predefined phase transition temperature, limited directional deformation, and nonbiocompatible formulations, thereby restricting their practical utility. Herein a new biomimicry approach is presented to overcome these limitations by developing hydro- and hydrothermally responsive soft actuators made of biocompatible and pliable materials i.e. cotton yarn and polyurethane. We mimic the tubular shape of elephant trunks with their unique muscle orientation by embedding a helical cotton yarn within a hydrophilic polyurethane tube, followed by targeted surface patterning. Unlike the narrow-range shape morphing across the phase transition temperature boundary of typical thermoresponsive hydrogel actuators, we harness hydrothermal stiffness variations in polyurethane to obtain consistent morphing capabilities over a much wider temperature range. The developed actuators can perform versatile activities such as linear, bending, curvilinear, and rotating movements, overcoming the unidirectional motion limitations of conventional soft actuators. The cell viability assay on the building block materials also confirms the high biocompatibility of the actuators. The reported facile fabrication strategy provides new insights for designing complex yet free-standing soft actuators from readily available supple materials.
Collapse
Affiliation(s)
- Xi Zhang
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Shazed Aziz
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bidita Salahuddin
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
3
|
Nabavizadeh A. Of tusks and trunks: A review of craniofacial evolutionary anatomy in elephants and extinct Proboscidea. Anat Rec (Hoboken) 2024. [PMID: 39380178 DOI: 10.1002/ar.25578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Abstract
While being the largest living terrestrial mammals, elephants are best known for their highly modified and uniquely elaborate craniofacial anatomy-most notably with respect to their often-massive tusks and intricately muscular, multifunctional proboscis (i.e., trunk). For over a century, studies of extinct proboscidean relatives of today's elephants have presented hypotheses regarding the evolutionary history of the crania and tusks of these animals and their bearing on the evolution of the proboscis. Herein, I explore major functional characteristics of the proboscidean head. I give a brief review of the anatomy of tusks and dentition, the feeding apparatus, and proboscis in extant elephants and explore their overall bearing in elephant feeding behavior as well as other aspects of their ecology. I also review the evolution of the proboscidean head, with a synthetic analysis of studies and further speculation exploring the interconnected evolutionary roles of tusk morphology and use, feeding anatomy and functional implications thereof, and proboscis anatomy and use in the ancestry of elephants. Notable emphasis is given to the evolutionary role of initial elongation of the mandibular symphysis in the development of the proboscis in many proboscideans. Subsequent secondary shortening of the symphysis and elevation of the temporal region and occiput allowed for a pendulous trunk and proal feeding in living elephants and other proboscidean groups with highly lophodont dentition.
Collapse
Affiliation(s)
- Ali Nabavizadeh
- Oregon Health & Science University, Anatomical Sciences Education Center, Portland, Oregon, USA
| |
Collapse
|
4
|
Schulz AK, Kaufmann LV, Reveyaz N, Ritter C, Hildebrandt T, Brecht M. Elephants develop wrinkles through both form and function. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240851. [PMID: 39386989 PMCID: PMC11461087 DOI: 10.1098/rsos.240851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 07/31/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024]
Abstract
The trunks of elephants have prominent wrinkles from their base to the very tip. But neither the obvious differences in wrinkles between elephant species nor their development have been studied before. In this work, we characterize the lifelong development of trunk wrinkles in Asian and African elephants. Asian elephants have more dorsal major, meaning deep and wide, trunk wrinkles (approx. 126 ± 25 s.d.) than African elephants (approx. 83 ± 13 s.d.). Both species have more dorsal than ventral major trunk wrinkles and a closer wrinkle spacing distally than proximally. In Asian elephants, wrinkle density is high in the 'trunk wrapping zone'. Wrinkle numbers on the left and right sides of the distal trunk differed as a function of trunk lateralization, with frequent bending in one direction causing wrinkle formation. Micro-computed tomography (microCT) imaging and microscopy of newborn elephants' trunks revealed a constant thickness of the putative epidermis, whereas the putative dermis shrinks in the wrinkle troughs. During fetal development, wrinkle numbers double every 20 days in an early exponential phase. Later wrinkles are added slowly, but at a faster rate in Asian than African elephants. We discuss the relationship of species differences in trunk wrinkle distribution and number with behavioural, environmental and biomechanical factors.
Collapse
Affiliation(s)
- Andrew K. Schulz
- Haptic Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Lena V. Kaufmann
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, Berlin10115, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Noemie Reveyaz
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, Berlin10115, Germany
| | - Cindy Ritter
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, Berlin10115, Germany
| | - Thomas Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, BerlinD-10315, Germany
- Faculty of Veterinary Medicine, Freie Universität Berlin, Kaiserwerther Str. 16-18, Berlin14195, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, Berlin10115, Germany
- NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
5
|
Kaczmarski B, Leanza S, Zhao R, Kuhl E, Moulton DE, Goriely A. Minimal Design of the Elephant Trunk as an Active Filament. PHYSICAL REVIEW LETTERS 2024; 132:248402. [PMID: 38949331 DOI: 10.1103/physrevlett.132.248402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/22/2024] [Indexed: 07/02/2024]
Abstract
One of the key problems in active materials is the control of shape through actuation. A fascinating example of such control is the elephant trunk, a long, muscular, and extremely dexterous organ with multiple vital functions. The elephant trunk is an object of fascination for biologists, physicists, and children alike. Its versatility relies on the intricate interplay of multiple unique physical mechanisms and biological design principles. Here, we explore these principles using the theory of active filaments and build, theoretically, computationally, and experimentally, a minimal model that explains and accomplishes some of the spectacular features of the elephant trunk.
Collapse
Affiliation(s)
- Bartosz Kaczmarski
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - Sophie Leanza
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - Renee Zhao
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - Ellen Kuhl
- Department of Mechanical Engineering, Stanford University, Stanford, California 94305, USA
| | - Derek E Moulton
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Costes P, Delapré A, Houssin C, Mulot B, Pouydebat E, Cornette R. Maximum trunk tip force assessment related to trunk position and prehensile 'fingers' implication in African savannah elephants. PLoS One 2024; 19:e0301529. [PMID: 38743734 PMCID: PMC11093316 DOI: 10.1371/journal.pone.0301529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/18/2024] [Indexed: 05/16/2024] Open
Abstract
African elephants have a wide range of abilities using their trunk. As a muscular hydrostat, and thanks to the two finger-like processes at its tip, this proboscis can both precisely grasp and exert considerable force by wrapping. Yet few studies have attempted to quantify its distal grasping force. Thus, using a device equipped with force sensors and an automatic reward system, the trunk tip pinch force has been quantified in five captive female African savanna elephants. Results showed that the maximum pinch force of the trunk was 86.4 N, which may suggest that this part of the trunk is mainly dedicated to precision grasping. We also highlighted for the first time a difference in force between the two fingers of the trunk, with the dorsal finger predominantly stronger than the ventral finger. Finally, we showed that the position of the trunk, particularly the torsion, influences its force and distribution between the two trunk fingers. All these results are discussed in the light of the trunk's anatomy, and open up new avenues for evolutionary reflection and soft robot grippers.
Collapse
Affiliation(s)
- Pauline Costes
- Adaptive Mechanisms and Evolution, UMR 7179 CNRS/MNHN, Paris, France
- Institut de Systématique, Evolution, Biodiversité, UMR 7205 CNRS/MNHN /SU/EPHE/UA, Paris, France
| | - Arnaud Delapré
- Institut de Systématique, Evolution, Biodiversité, UMR 7205 CNRS/MNHN /SU/EPHE/UA, Paris, France
| | - Céline Houssin
- Institut de Systématique, Evolution, Biodiversité, UMR 7205 CNRS/MNHN /SU/EPHE/UA, Paris, France
| | - Baptiste Mulot
- ZooParc de Beauval & Beauval Nature, Saint-Aignan, France
| | | | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité, UMR 7205 CNRS/MNHN /SU/EPHE/UA, Paris, France
| |
Collapse
|
7
|
Costes P, Soppelsa J, Houssin C, Boulinguez‐Ambroise G, Pacou C, Gouat P, Cornette R, Pouydebat E. Effect of the habitat and tusks on trunk grasping techniques in African savannah elephants. Ecol Evol 2024; 14:e11317. [PMID: 38646004 PMCID: PMC11027014 DOI: 10.1002/ece3.11317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
Among tetrapods, grasping is an essential function involved in many vital behaviours. The selective pressures that led to this function were widely investigated in species with prehensile hands and feet. Previous studies namely highlighted a strong effect of item properties but also of the species habitat on manual grasping behaviour. African savannah elephants (Loxodonta africana) are known to display various prehensile abilities and use their trunk in a large diversity of habitats. Composed of muscles and without a rigid structure, the trunk is a muscular hydrostat with great freedom of movement. This multitasking organ is particularly recruited for grasping food items while foraging. Yet, the diet of African savannah elephants varies widely between groups living in different habitats. Moreover, they have tusks alongside the trunk which can assist in grasping behaviours, and their tusk morphologies are known to vary considerably between groups. Therefore, in this study, we investigate the food grasping techniques used by the trunk of two elephant groups that live in different habitats: an arid study site in Etosha National Park in Namibia, and an area with consistent water presence in Kruger National Park in South Africa. We characterised the tusks profiles and compared the grasping techniques and their frequencies of use for different foods. Our results show differences in food-grasping techniques between the two groups. These differences are related to the food item property and tusk profile discrepancies highlighted between the two groups. We suggest that habitat heterogeneity, particularly aridity gaps, may induce these differences. This may reveal an optimisation of grasping types depending on habitat, food size and accessibility, as well as tusk profiles.
Collapse
Affiliation(s)
- Pauline Costes
- Adaptive Mechanisms and Evolution (MECADEV)UMR 7179 CNRS/MNHNParisFrance
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, CNRS, Muséum National d'Histoire Naturelle, SU, EPHE, UAParisFrance
| | - Julie Soppelsa
- Adaptive Mechanisms and Evolution (MECADEV)UMR 7179 CNRS/MNHNParisFrance
| | - Céline Houssin
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, CNRS, Muséum National d'Histoire Naturelle, SU, EPHE, UAParisFrance
| | - Grégoire Boulinguez‐Ambroise
- Adaptive Mechanisms and Evolution (MECADEV)UMR 7179 CNRS/MNHNParisFrance
- Department of Evolutionary AnthropologyDuke UniversityDurhamNorth CarolinaUSA
| | - Camille Pacou
- Adaptive Mechanisms and Evolution (MECADEV)UMR 7179 CNRS/MNHNParisFrance
| | - Patrick Gouat
- Laboratoire d'Éthologie Expérimentale et Comparée E.R. 4443Université Sorbonne Paris NordVilletaneuseFrance
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, CNRS, Muséum National d'Histoire Naturelle, SU, EPHE, UAParisFrance
| | | |
Collapse
|
8
|
Olson W, Zhang L, O'Connor DH, Kleinfeld D. Elephant trunks: Strength and dexterity from mini-fascicles. Curr Biol 2023; 33:R1203-R1205. [PMID: 37989101 PMCID: PMC11039408 DOI: 10.1016/j.cub.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Muscular hydrostats, such as the elephant trunk, can perform precise motor actions. A new study has revealed that the elephant trunk contains a dense network of tiny muscle fascicles, suggesting that muscle miniaturization may be a key toward understanding how soft organs achieve both strength and dexterity.
Collapse
Affiliation(s)
- William Olson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Linghua Zhang
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Daniel H O'Connor
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA; Department of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Longren LL, Eigen L, Shubitidze A, Lieschnegg O, Baum D, Nyakatura JA, Hildebrandt T, Brecht M. Dense reconstruction of elephant trunk musculature. Curr Biol 2023; 33:4713-4720.e3. [PMID: 37757829 DOI: 10.1016/j.cub.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/15/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
The elephant trunk operates as a muscular hydrostat1,2 and is actuated by the most complex musculature known in animals.3,4 Because the number of trunk muscles is unclear,5 we performed dense reconstructions of trunk muscle fascicles, elementary muscle units, from microCT scans of an Asian baby elephant trunk. Muscle architecture changes markedly across the trunk. Trunk tip and finger consist of about 8,000 extraordinarily filigree fascicles. The dexterous finger consists exclusively of microscopic radial fascicles pointing to a role of muscle miniaturization in elephant dexterity. Radial fascicles also predominate (at 82% volume) the remainder of the trunk tip, and we wonder if radial muscle fascicles are of particular significance for fine motor control of the dexterous trunk tip. By volume, trunk-shaft muscles6 comprise one-third of the numerous, small radial muscle fascicles; two-thirds of the three subtypes of large longitudinal fascicles (dorsal longitudinals, ventral outer obliques, and ventral inner obliques);7,8,9 and a small fraction of transversal fascicles. Shaft musculature is laterally, but not radially, symmetric. A predominance of dorsal over ventral radial muscles and of ventral over dorsal longitudinal muscles may result in a larger ability of the shaft to extend dorsally than ventrally10 and to bend inward rather than outward. There are around 90,000 trunk muscle fascicles. While primate hand control is based on fine control of contraction by the convergence of many motor neurons on a small set of relatively large muscles, evolution of elephant grasping has led to thousands of microscopic fascicles, which probably outnumber facial motor neurons.
Collapse
Affiliation(s)
- Luke L Longren
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany; Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Lennart Eigen
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| | - Ani Shubitidze
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| | - Oliver Lieschnegg
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany
| | - Daniel Baum
- Zuse-Institut Berlin, Takustraße 7, 14195 Berlin, Germany
| | - John A Nyakatura
- Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Thomas Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany; NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| |
Collapse
|
10
|
Lo Preti M, Beccai L. Sensorized objects used to quantitatively study distal grasping in the African elephant. iScience 2023; 26:107657. [PMID: 37744412 PMCID: PMC10517398 DOI: 10.1016/j.isci.2023.107657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/23/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Nature evolved many ways to grasp objects without using hands: elephants, octopuses, and monkeys use highly dexterous appendices. From a roboticist's perspective, the elephant trunk is a fascinating manipulator, which strategies can empower robots' interaction capabilities. However, quantifying prehensile forces in such large animals in a safe, ethical, and reproducible manner is challenging. We developed two sensorized objects to investigate the grasping of an adult African elephant with deliberately occluded vision. A cylinder and a handle provided a distributed force (80 and 6 taxels) and inertial measurements in real-time, resisting dirt and shocks. The animal curled the distal portion of the trunk to grasp the tools. Using force and contact area data of the cylinder revealed the animal's ability to finely modulate pressure. The handle data provided insights into the energy-efficient behavior of the animal, with no significant grasping force changes despite variations imposed on both weight (5-15 kg) and initial position of the object.
Collapse
Affiliation(s)
- Matteo Lo Preti
- Soft BioRobotics Perception Lab, Istituto Italiano di Tecnologia, 16163 Genova, Italy
- The BioRobotics Institute, Scuola Superiore Sant’Anna, 56025 Pontedera, Italy
| | - Lucia Beccai
- Soft BioRobotics Perception Lab, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
11
|
Schulz AK, Schneider N, Zhang M, Singal K. A Year at the Forefront of Hydrostat Motion. Biol Open 2023; 12:bio059834. [PMID: 37566395 PMCID: PMC10434360 DOI: 10.1242/bio.059834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023] Open
Abstract
Currently, in the field of interdisciplinary work in biology, there has been a significant push by the soft robotic community to understand the motion and maneuverability of hydrostats. This Review seeks to expand the muscular hydrostat hypothesis toward new structures, including plants, and introduce innovative techniques to the hydrostat community on new modeling, simulating, mimicking, and observing hydrostat motion methods. These methods range from ideas of kirigami, origami, and knitting for mimic creation to utilizing reinforcement learning for control of bio-inspired soft robotic systems. It is now being understood through modeling that different mechanisms can inhibit traditional hydrostat motion, such as skin, nostrils, or sheathed layered muscle walls. The impact of this Review will highlight these mechanisms, including asymmetries, and discuss the critical next steps toward understanding their motion and how species with hydrostat structures control such complex motions, highlighting work from January 2022 to December 2022.
Collapse
Affiliation(s)
- Andrew K. Schulz
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Nikole Schneider
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Margaret Zhang
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Krishma Singal
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
12
|
Deiringer N, Schneeweiß U, Kaufmann LV, Eigen L, Speissegger C, Gerhardt B, Holtze S, Fritsch G, Göritz F, Becker R, Ochs A, Hildebrandt T, Brecht M. The functional anatomy of elephant trunk whiskers. Commun Biol 2023; 6:591. [PMID: 37291455 PMCID: PMC10250425 DOI: 10.1038/s42003-023-04945-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Behavior and innervation suggest a high tactile sensitivity of elephant trunks. To clarify the tactile trunk periphery we studied whiskers with the following findings. Whisker density is high at the trunk tip and African savanna elephants have more trunk tip whiskers than Asian elephants. Adult elephants show striking lateralized whisker abrasion caused by lateralized trunk behavior. Elephant whiskers are thick and show little tapering. Whisker follicles are large, lack a ring sinus and their organization varies across the trunk. Follicles are innervated by ~90 axons from multiple nerves. Because elephants don't whisk, trunk movements determine whisker contacts. Whisker-arrays on the ventral trunk-ridge contact objects balanced on the ventral trunk. Trunk whiskers differ from the mobile, thin and tapered facial whiskers that sample peri-rostrum space symmetrically in many mammals. We suggest their distinctive features-being thick, non-tapered, lateralized and arranged in specific high-density arrays-evolved along with the manipulative capacities of the trunk.
Collapse
Affiliation(s)
- Nora Deiringer
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115, Berlin, Germany
| | - Undine Schneeweiß
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115, Berlin, Germany
| | - Lena V Kaufmann
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lennart Eigen
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115, Berlin, Germany
| | - Celina Speissegger
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115, Berlin, Germany
| | - Ben Gerhardt
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115, Berlin, Germany
| | - Susanne Holtze
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315, Berlin, Germany
| | - Guido Fritsch
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315, Berlin, Germany
| | - Frank Göritz
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315, Berlin, Germany
| | - Rolf Becker
- Berlin Zoological Garden, Hardenbergplatz 9, 10623, Berlin, Germany
| | - Andreas Ochs
- Berlin Zoological Garden, Hardenbergplatz 9, 10623, Berlin, Germany
| | - Thomas Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, D-10315, Berlin, Germany
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115, Berlin, Germany.
- NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
13
|
Kaufmann LV, Becker R, Ochs A, Brecht M. Elephant banana peeling. Curr Biol 2023; 33:R257-R258. [PMID: 37040704 DOI: 10.1016/j.cub.2023.02.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 04/13/2023]
Abstract
VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Lena V Kaufmann
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Rolf Becker
- Berlin Zoological Garden, Hardenbergplatz 9, 10623 Berlin, Germany
| | - Andreas Ochs
- Berlin Zoological Garden, Hardenbergplatz 9, 10623 Berlin, Germany.
| | - Michael Brecht
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 6, 10115 Berlin, Germany; NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
14
|
Schulz AK, Reidenberg JS, Ning Wu J, Ying Tang C, Seleb B, Mancebo J, Elgart N, Hu DL. Elephant trunks use an adaptable prehensile grip. BIOINSPIRATION & BIOMIMETICS 2023; 18:026008. [PMID: 36652720 DOI: 10.1088/1748-3190/acb477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Elephants have long been observed to grip objects with their trunk, but little is known about how they adjust their strategy for different weights. In this study, we challenge a female African elephant at Zoo Atlanta to lift 20-60 kg barbell weights with only its trunk. We measure the trunk's shape and wrinkle geometry from a frozen elephant trunk at the Smithsonian. We observe several strategies employed to accommodate heavier weights, including accelerating less, orienting the trunk vertically, and wrapping the barbell with a greater trunk length. Mathematical models show that increasing barbell weights are associated with constant trunk tensile force and an increasing barbell-wrapping surface area due to the trunk's wrinkles. Our findings may inspire the design of more adaptable soft robotic grippers that can improve grip using surface morphology such as wrinkles.
Collapse
Affiliation(s)
- Andrew K Schulz
- Schools of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Joy S Reidenberg
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Jia Ning Wu
- School of Additive Manufacturing, Sun Yat-Sen University, Shenzhen, People's Republic of China
| | - Cheuk Ying Tang
- Radiology, Neuroscience, & Psychiatry Translation and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Benjamin Seleb
- Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Josh Mancebo
- Zoo Atlanta, Atlanta, GA 30315, United States of America
| | - Nathan Elgart
- Zoo Atlanta, Atlanta, GA 30315, United States of America
| | - David L Hu
- Schools of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
- Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| |
Collapse
|