1
|
Li C, Ma L, Xue Z, Li X, Zhu S, Wang T. Pushing the Frontiers: Artificial Intelligence (AI)-Guided Programmable Concepts in Binary Self-Assembly of Colloidal Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501000. [PMID: 40285639 DOI: 10.1002/advs.202501000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Colloidal nanoparticle self-assembly is a key area in nanomaterials science, renowned for its ability to design metamaterials with tailored functionalities through a bottom-up approach. Over the past three decades, advancements in nanoparticle synthesis and assembly control methods have propelled the transition from single-component to binary assemblies. While binary assembly has been recognized as a significant concept in materials design, its potential for intelligent and customized assembly has often been overlooked. It is argued that the future trend in the assembly of binary nanocrystalline superlattices (BNLSs) can be analogous to the '0s' and '1s' in computer programming, and customizing their assembly through precise control of these basic units could significantly expand their application scope. This review briefly recaps the developmental trajectory of nanoparticle assembly, tracing its evolution from simple single-component assemblies to complex binary co-assemblies and the unique property changes they induce. Of particular significance, this review explores the future prospects of binary co-assembly, viewed through the lens of 'AI-guided programmable assembly'. Such an approach has the potential to shift the paradigm from passive assembly to active, intelligent design, leading to the creation of new materials with disruptive properties and functionalities and driving profound changes across multiple high-tech fields.
Collapse
Affiliation(s)
- Cancan Li
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| | - Lindong Ma
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhenjie Xue
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| | - Xiao Li
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| | - Shan Zhu
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| | - Tie Wang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
2
|
Li C, Li X, Liu X, Ma L, Yan H, Tong L, Yang Z, Liu J, Bao D, Yin J, Li X, Wang P, Li R, Huang L, Yu M, Jia S, Wang T. On-Substrate Fabrication of CsPbBr 3 Single-Crystal Microstructures via Nanoparticle Self-Assembly-Assisted Low-Temperature Sintering. ACS NANO 2024; 18:9128-9136. [PMID: 38492230 DOI: 10.1021/acsnano.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The growth of all-inorganic perovskite single-crystal microstructures on substrates is a promising approach for constructing photonic and electronic microdevices. However, current preparation methods typically involve direct control of ions or atoms, which often depends on specific lattice-matched substrates for epitaxial growth and other stringent conditions that limit the mild preparation and flexibility of device integration. Herein, we present the on-substrate fabrication of CsPbBr3 single-crystal microstructures obtained via a nanoparticle self-assembly assisted low-temperature sintering (NSALS) method. Sintering guided by self-assembled atomically oriented superlattice embryos facilitated the formation of single-crystal microstructures under mild conditions without substrate dependence. The as-prepared on-substrate microstructures exhibited a consistent out-of-plane orientation with a carrier lifetime of up to 82.7 ns. Photodetectors fabricated by using these microstructures exhibited an excellent photoresponse of 9.15 A/W, and the dynamic optical response had a relative standard deviation as low as 0.1831%. The discrete photosensor microarray chip with 174000 pixels in a 100 mm2 area showed a response difference of less than 6%. This method of nanoscale particle-controlled single crystal growth on a substrate offers a perspective for mild-condition preparation and in situ repair of crystals of various types. This advancement can propel the flexible integration and widespread application of perovskite devices.
Collapse
Affiliation(s)
- Cancan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao Li
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Xiang Liu
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Lindong Ma
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Hui Yan
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Lei Tong
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Zhibo Yang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jiaxing Liu
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Deyu Bao
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jikun Yin
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Xiujun Li
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Peng Wang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Rong Li
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Lei Huang
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Miao Yu
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Sitong Jia
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100049, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Tianjin Key Laboratory of Life and Health Detection, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
3
|
Nguyen TPT, Tan LZ, Baranov D. Tuning perovskite nanocrystal superlattices for superradiance in the presence of disorder. J Chem Phys 2023; 159:204703. [PMID: 37991161 DOI: 10.1063/5.0167542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/15/2023] [Indexed: 11/23/2023] Open
Abstract
The cooperative emission of interacting nanocrystals is an exciting topic fueled by recent reports of superfluorescence and superradiance in assemblies of perovskite nanocubes. Several studies estimated that coherent coupling is localized to a small fraction of nanocrystals (10-7-10-3) within the assembly, raising questions about the origins of localization and ways to overcome it. In this work, we examine single-excitation superradiance by calculating radiative decays and the distribution of superradiant wave function in two-dimensional CsPbBr3 nanocube superlattices. The calculations reveal that the energy disorder caused by size distribution and large interparticle separations reduces radiative coupling and leads to the excitation localization, with the energy disorder being the dominant factor. The single-excitation model clearly predicts that, in the pursuit of cooperative effects, having identical nanocubes in the superlattice is more important than achieving a perfect spatial order. The monolayers of large CsPbBr3 nanocubes (LNC = 10-20 nm) are proposed as model systems for experimental tests of superradiance under conditions of non-negligible size dispersion, while small nanocubes (LNC = 5-10 nm) are preferred for realizing the Dicke state under ideal conditions.
Collapse
Affiliation(s)
- T P Tan Nguyen
- University Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226, Rennes, France
| | - Liang Z Tan
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Dmitry Baranov
- Division of Chemical Physics, Department of Chemistry, Lund University, P.O. Box, 124, SE-221 00 Lund, Sweden
| |
Collapse
|
4
|
Park Y, Han H, Lee H, Kim S, Park TH, Jang J, Kim G, Park Y, Lee J, Kim D, Kim J, Jung YS, Jeong B, Park C. Sub-30 nm 2D Perovskites Patterns via Block Copolymer Guided Self-Assembly for Color Conversion Optical Polarizer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300568. [PMID: 37518679 DOI: 10.1002/smll.202300568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/19/2023] [Indexed: 08/01/2023]
Abstract
Despite the remarkable advances made in the development of 2D perovskites suitable for various high-performance devices, the development of sub-30 nm nanopatterns of 2D perovskites with anisotropic photoelectronic properties remains challenging. Herein, a simple but robust route for fabricating sub-30 nm 1D nanopatterns of 2D perovskites over a large area is presented. This method is based on nanoimprinting a thin precursor film of a 2D perovskite with a topographically pre-patterned hard poly(dimethylsiloxane) mold replicated from a block copolymer nanopattern consisting of guided self-assembled monolayered in-plane cylinders. 1D nanopatterns of various 2D perovskites (A'2 MAn -1 Pbn X3 n +1 ,A' = BA, PEA, X = Br, I) are developed; their enhanced photoluminescence (PL) quantum yields are approximately four times greater than those of the corresponding control flat films. Anisotropic photocurrent is observed because 2D perovskite nanocrystals are embedded in a topological 1D nanopattern. Furthermore, this 1D metal-coated nanopattern of a 2D perovskite is employed as a color conversion optical polarizer, in which polarized PL is developed. This is due to its capability of polarization of an incident light arising from the sub-30 nm line pattern, as well as the PL of the confined 2D perovskite nanocrystals in the pattern.
Collapse
Affiliation(s)
- Youjin Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyowon Han
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyeokjung Lee
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sohee Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Tae Hyun Park
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, 601 74, Sweden
| | - Jihye Jang
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Gwanho Kim
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yemin Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jiyeon Lee
- Department of Integrated Science and Engineering, Yonsei International Campus, Songdogwahak-ro 85, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Dongjun Kim
- Department of Integrated Science and Engineering, Yonsei International Campus, Songdogwahak-ro 85, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Jiwon Kim
- Department of Integrated Science and Engineering, Yonsei International Campus, Songdogwahak-ro 85, Yeonsu-gu, Incheon, 21983, Republic of Korea
| | - Yeon Sik Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Beomjin Jeong
- Department of Organic Material Science and Engineering, Pusan National University, Busandaehak-ro 63 beongil 2, Geumjeong-gu, Busan, 46241, South Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Spin Convergence Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| |
Collapse
|
5
|
Yang J, Yan X, Xu X, Chen Y, Han W, Chai X, Liu X, Liu J, Liu C, Zhang H, Li X, Zhang Z, Wang T. Progress in the Foaming of Polymer-based Electromagnetic Interference Shielding Composites by Supercritical CO 2. Chem Asian J 2023; 18:e202201000. [PMID: 36411242 DOI: 10.1002/asia.202201000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Indexed: 11/23/2022]
Abstract
As a critical action plan formulated for peaking carbon dioxide emissions, polymeric electromagnetic interference (EMI) shielding materials based on CO2 foaming technology have recently been attracting widespread attention in both research and industry, attributable to their efficient use of CO2 , high specific strength, corrosion resistance and low-cost characteristics. In the past decade, the emergence of novel design concepts and preparation techniques for CO2 foaming technology has led to the development of new high-performance EMI shielding materials in this field. This review summarizes the research progress made to date on the fabrication of EMI shielding composite foams by supercritical carbon dioxide (scCO2 ) foaming. We also explore the structure-activity relationships between the component/distribution and EMI shielding properties. Additionally, the application prospects and development challenges of new EMI shielding composite foams are described.
Collapse
Affiliation(s)
- Jianming Yang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243032, P. R. China.,School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, P. R. China
| | - Xin Yan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243032, P. R. China
| | - Xinru Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yujian Chen
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243032, P. R. China
| | - Wei Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243032, P. R. China
| | - Xianzhi Chai
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, P. R. China
| | - Xiang Liu
- Life and Health Intelligent Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Jiaxing Liu
- Life and Health Intelligent Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Chen Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243032, P. R. China
| | - Hexin Zhang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243032, P. R. China
| | - Xiao Li
- Life and Health Intelligent Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Tie Wang
- Life and Health Intelligent Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| |
Collapse
|