1
|
Housman G, Arner A, Longtin A, Gagnon C, Durvasula A, Lea A. Addressing missing context in regulatory variation across primate evolution. ARXIV 2025:arXiv:2504.02081v1. [PMID: 40236837 PMCID: PMC11998855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
In primates, loci associated with adaptive trait variation often fall in non-coding regions. Understanding the mechanisms linking these regulatory variants to fitness-relevant phenotypes remains challenging, but can be addressed using functional genomic data. However, such data are rarely generated at scale in non-human primates. When they are, only select tissues, cell types, developmental stages, and cellular environments are typically considered, despite appreciation that adaptive variants often exhibit context-dependent effects. In this review, we 1) discuss why context-dependent regulatory loci might be especially evolutionarily relevant in primates, 2) explore challenges and emerging solutions for mapping such context-dependent variation, and 3) discuss the scientific questions these data could address. We argue that filling this gap will provide critical insights into evolutionary processes, human disease, and regulatory adaptation.
Collapse
Affiliation(s)
- Genevieve Housman
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Audrey Arner
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Amy Longtin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Christian Gagnon
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Arun Durvasula
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Center for Genetic Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amanda Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
2
|
Schmid S, Hartasánchez DA, Huang WT, Gainsford A, Jones GP, Salamin N. Genomic Architecture of the Clownfish Hybrid Amphiprion leucokranos. Genome Biol Evol 2025; 17:evaf031. [PMID: 40036403 PMCID: PMC11926594 DOI: 10.1093/gbe/evaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 03/06/2025] Open
Abstract
Natural hybridization is increasingly recognized as playing a significant role in species diversification and adaptive evolution. Amphiprion leucokranos, the naturally occurring clownfish hybrid between Amphiprion chrysopterus and Amphiprion sandaracinos, is found within the hybrid zone of the two parental species. Based on whole-genome sequencing of parental and hybrid individuals sampled in Kimbe Bay, Papua New Guinea, we found that most of the hybrids collected were first-generation hybrids, a few were first- and second-generation backcrosses with A. sandaracinos, and the first evidence, to our knowledge, of both an early backcross with A. chrysopterus and a second-generation hybrid in the wild, highlighting the richness and diversity of genomic architectures in this hybrid zone. The frequent backcrossing with A. sandaracinos has led to higher levels of introgression from A. chrysopterus into the A. sandaracinos genomic background, potentially allowing for adaptive introgression. We have additionally identified morphological features which could potentially allow differentiating between first-generation hybrids and backcrosses. By comparing population genetic statistics of first-generation hybrids, backcrosses, parental populations within the hybrid zone, and parental allopatric populations, we provide the context to evaluate population differentiation and the consequences of ongoing hybridization. This study is the first whole-genome analysis of a clownfish hybrid population and builds upon the growing body of literature relative to the evolutionary outcomes of hybridization in the wild and its importance in evolution.
Collapse
Affiliation(s)
- Sarah Schmid
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
- Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Diego A Hartasánchez
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - Wan-Ting Huang
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - Ashton Gainsford
- College of Science and Engineering, James Cook University, Townsville 4811, Australia
- ARC Center of Excellence for Coral Reef Studies, James Cook University, Townsville 4811, Australia
| | - Geoffrey P Jones
- College of Science and Engineering, James Cook University, Townsville 4811, Australia
- ARC Center of Excellence for Coral Reef Studies, James Cook University, Townsville 4811, Australia
| | - Nicolas Salamin
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
3
|
Dinh V, Baños H. Misspecification Strikes: ASTRAL can Mislead in the Presence of Hybridization, even for Nonanomalous Scenarios. Mol Biol Evol 2025; 42:msaf049. [PMID: 40052745 PMCID: PMC11934270 DOI: 10.1093/molbev/msaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/26/2025] Open
Abstract
ASTRAL is a powerful and widely used tool for species tree inference, known for its computational speed and robustness under incomplete lineage sorting. The method has often been used as an initial step in species network inference to provide a backbone tree structure upon which hybridization events are later added to such a tree via other methods. However, we show empirically and theoretically, that this methodology can yield flawed results. Specifically, we demonstrate that under the network multispecies coalescent model-including nonanomalous scenarios-ASTRAL can produce a tree that does not correspond to any topology displayed by the true underlying network. This finding highlights the need for caution when using ASTRAL-based inferences in suspected hybridization cases.
Collapse
Affiliation(s)
- Vu Dinh
- Department of Mathematical Sciences, University of Delaware, Newark, DE 197111, USA
| | - Hector Baños
- Department of Mathematics, California State University, San Bernardino, CA 92407, USA
| |
Collapse
|
4
|
Cui Z, Dong Y, Sholl J, Lu J, Raubenheimer D. The Rhesus Macaque as an Animal Model for Human Nutrition: An Ecological-Evolutionary Perspective. Annu Rev Anim Biosci 2025; 13:441-464. [PMID: 39556489 DOI: 10.1146/annurev-animal-111523-102354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Nutrition is a complex and contested area in biomedicine, which requires diverse evidence sources. Nonhuman primate models are considered an important biomedical research tool because of their biological similarities to humans, but they are typically used with little explicit consideration of their ecology and evolution. Using the rhesus macaque (RM), we consider the potential of nutritional ecology for enriching the use of primates as models for human nutrition. We introduce some relevant aspects of RM evolutionary and social ecology and discuss two examples where they have been used in biomedical research: obesity and aging. We next consider how insights from nutritional ecology can help inform and direct the use of RM as a biomedical model. We conclude by illustrating how conceptual tools might inform the use of RM as a model for human nutrition and extracting insights from RM that might be relevant to broader theoretical considerations around animal model systems.
Collapse
Affiliation(s)
- Zhenwei Cui
- Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, Henan, China
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| | - Yunlong Dong
- Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, Henan, China
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| | - Jonathan Sholl
- ImmunoConcept Lab, Université de Bordeaux, Collège Sciences de la Santé, CNRS UMR 5164, Bordeaux, France
| | - Jiqi Lu
- Institute of Biodiversity and Ecology, Zhengzhou University, Zhengzhou, Henan, China
| | - David Raubenheimer
- Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia;
- Centre for Nutritional Ecology, Centre for Sport Nutrition and Health, School of Physical Education (Main Campus), Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Higashino A, Nakamura K, Osada N. Population Genomics of Japanese Macaques (Macaca fuscata): Insights Into Deep Population Divergence and Multiple Merging Histories. Genome Biol Evol 2025; 17:evaf001. [PMID: 39763347 PMCID: PMC11735745 DOI: 10.1093/gbe/evaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025] Open
Abstract
The influence of long-term climatic changes such as glacial cycles on the history of living organisms has been a subject of research for decades, but the detailed population dynamics during the environmental fluctuations and their effects on genetic diversity and genetic load are not well understood on a genome-wide scale. The Japanese macaque (Macaca fuscata) is a unique primate adapted to the cold environments of the Japanese archipelago. Despite the past intensive research for the Japanese macaque population genetics, the genetic background of Japanese macaques at the whole-genome level has been limited to a few individuals, and the comprehensive demographic history and genetic differentiation of Japanese macaques have been underexplored. We conducted whole-genome sequencing of 64 Japanese macaque individuals from 5 different regions, revealing significant genetic differentiation and functional variant diversity across populations. In particular, Japanese macaques have low genetic diversity and harbor many shared and population-specific gene loss, which might contribute to population-specific phenotypes. Our estimation of population demography using phased haplotypes suggested that, after the strong population bottleneck shared among all populations around 400 to 500 kya, the divergence among populations initiated around 150 to 200 kya, but there has been the time with strong gene flow between some populations after the split, indicating multiple population split and merge events probably due to habitat fragmentation and fusion during glacial cycles. These findings not only present a complex population history of Japanese macaques but also enhance their value as research models, particularly in neuroscience and behavioral studies. This comprehensive genomic analysis sheds light on the adaptation and evolution of Japanese macaques, contributing valuable insights to both evolutionary biology and biomedical research.
Collapse
Affiliation(s)
- Atsunori Higashino
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Katsuki Nakamura
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Naoki Osada
- Faculty of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido 060-0814, Japan
| |
Collapse
|
6
|
Khanal L, Li X, Subba A, Ulak S, Kyes RC, Jiang XL. Phylogeography of the Sinica Group of Macaques in the Himalayas: Taxonomic and Evolutionary Implications. BIOLOGY 2024; 13:795. [PMID: 39452104 PMCID: PMC11504220 DOI: 10.3390/biology13100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024]
Abstract
Owing to the taxonomic incongruence between the morphological features and genetic relationships of the sinica group of macaques (genus Macaca), the taxonomy of this macaque group has remained inconclusive. We aimed to resolve the taxonomic quandary and improve our understanding of the historical biogeography of the group by including macaque DNA samples from previously unsampled areas in the Himalayas. We sequenced and analyzed three mitochondrial DNA loci [cytochrome b (CYTB), cytochrome oxidase subunit 1 (COI) and D-loop; 2898 bp] for sequence polymorphism, phylogenetics, species delimitation, and ancestral area reconstruction. We confirmed the occurrence of Arunachal macaque (Macaca munzala) on the southern slopes of the Eastern Himalayas in the Xizang Zizhiqu (Tibet Autonomous Region) of China. The results revealed that the sinica group of macaques is a parapatric species group composed of seven distinct species. Phylogenetic and species delimitation analyses revealed that the two previously considered subspecies of Assamese macaques (the eastern subspecies M. assamensis assamensis and the western subspecies M. a. pelops) are two distinct species. The eastern Assamese macaque is a sister species to the Tibetan macaque, whereas the western Assamese macaque and Arunachal macaque are the closest genetic sister species. The sinica group of macaques underwent five vicariance and seven dispersal radiations in the past, which mainly coincided with the Quaternary climatic oscillations between the late Pliocene and the late Pleistocene. By integrating our phylogenetic and ancestral area reconstruction results with findings from previous paleontological and molecular studies, we propose a robust hypothesis about the phylogeography of the sinica group of macaques.
Collapse
Affiliation(s)
- Laxman Khanal
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kathmandu 44618, Nepal; (A.S.); (S.U.)
| | - Xueyou Li
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China;
| | - Asmit Subba
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kathmandu 44618, Nepal; (A.S.); (S.U.)
| | - Sapana Ulak
- Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kathmandu 44618, Nepal; (A.S.); (S.U.)
| | - Randall C. Kyes
- Departments of Psychology, Global Health, and Anthropology, Center for Global Field Study, and Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA;
| | - Xue-Long Jiang
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, Yunnan, China;
| |
Collapse
|
7
|
Zhang Z, Liu G, Li M. Incomplete lineage sorting and gene flow within Allium (Amayllidaceae). Mol Phylogenet Evol 2024; 195:108054. [PMID: 38471599 DOI: 10.1016/j.ympev.2024.108054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
The phylogeny and systematics of the genus Allium have been studied with a variety of diverse data types, including an increasing amount of molecular data. However, strong phylogenetic discordance and high levels of uncertainty have prevented the identification of a consistent phylogeny. The difficulty in establishing phylogenetic consensus and evidence for genealogical discordance make Allium a compelling test case to assess the relative contribution of incomplete lineage sorting (ILS), gene flow and gene tree estimation error on phylogenetic reconstruction. In this study, we obtained 75 transcriptomes of 38 Allium species across 10 subgenera. Whole plastid genome, single copy genes and consensus CDS were generated to estimate phylogenetic trees both using coalescence and concatenation methods. Multiple approaches including coalescence simulation, quartet sampling, reticulate network inference, sequence simulation, theta of ILS and reticulation index were carried out across the CDS gene trees to investigate the degrees of ILS, gene flow and gene tree estimation error. Afterward, a regression analysis was used to test the relative contributions of each of these forms of uncertainty to the final phylogeny. Despite extensive topological discordance among gene trees, we found a fully supported species tree that agrees with the most of well-accepted relationships and establishes monophyly of the genus Allium. We presented clear evidence for substantial ILS across the phylogeny of Allium. Further, we identified two ancient hybridization events for the formation of the second evolutionary line and subg. Butomissa as well as several introgression events between recently diverged species. Our regression analysis revealed that gene tree inference error and gene flow were the two most dominant factors explaining for the overall gene tree variation, with the difficulty in disentangling the effects of ILS and gene tree estimation error due to a positive correlation between them. Based on our efforts to mitigate the methodological errors in reconstructing trees, we believed ILS and gene flow are two principal reasons for the oft-reported phylogenetic heterogeneity of Allium. This study presents a strongly-supported and well-resolved phylogenetic backbone for the sampled Allium species, and exemplifies how to untangle heterogeneity in phylogenetic signal and reconstruct the true evolutionary history of the target taxa.
Collapse
Affiliation(s)
- ZengZhu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Gang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Minjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
8
|
Long Z, Rieseberg LH. Documenting homoploid hybrid speciation. Mol Ecol 2024:e17412. [PMID: 38780141 DOI: 10.1111/mec.17412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Homoploid hybrid speciation is challenging to document because hybridization can lead to outcomes other than speciation. Thus, some authors have argued that establishment of homoploid hybrid speciation should include evidence that reproductive barriers isolating the hybrid neo-species from its parental species were derived from hybridization. While this criterion is difficult to satisfy, several recent papers have successfully employed a common pipeline to identify candidate genes underlying such barriers and (in one case) to validate their function. We describe this pipeline, its application to several plant and animal species and what we have learned about homoploid hybrid speciation as a consequence. We argue that - given the ubiquity of admixture and the polygenic basis of reproductive isolation - homoploid hybrid speciation could be much more common and more protracted than suggested by earlier conceptual arguments and theoretical studies.
Collapse
Affiliation(s)
- Zhiqin Long
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Zhou Y, Tian J, Han M, Lu J. The phylogenetic relationship and demographic history of rhesus macaques ( Macaca mulatta) in subtropical and temperate regions, China. Ecol Evol 2024; 14:e11429. [PMID: 38770128 PMCID: PMC11103769 DOI: 10.1002/ece3.11429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
Pleistocene climatic oscillations exerted significant influences on the genetic structure and demography of rhesus macaque (Macaca mulatta) in eastern China. However, the evolutionary history of rhesus macaques in subtropical and temperate China remained unclear and/or controversial. Herein, we analyzed the autosomes, mitochondrial genomes, and Y-chromosomes from 84 individuals of Chinese rhesus macaque. The results revealed that (1) all individuals were clustered into pan-west and pan-east genetic groups, which exhibited Shaanxi Province as the northernmost region of western dispersal route of rhesus macaques in China; (2) in subtropical and temperate China, rhesus macaques were divided into four lineages (TH, DB, HS, and QL), and their divergence times corresponded to the Penultimate Glaciation (300-130 kya) and Last Glaciation (70-10 kya), respectively; (3) the individuals from Mt. Taihangshan (TH) are closely related to individuals from Mt. Dabashan (DB) in the autosomal tree, rather than individuals from Mt. Huangshan (HS) as indicated by the mitogenome tree, which supports the hypothesis that the ancestral rhesus macaques radiated into Mt. Taihangshan from Mt. Huangshan via Mt. Dabashan; and (4) the demographic scenario of the four lineages showed the ancestral rhesus macaques bottleneck and expansion corresponding to the suitable habitat reduction and expansion, which confirmed they had experienced northward recolonization and southward retreat events from Mt. Huangshan area via Northern China Plain to Northernmost China along with Pleistocene glacial cycles. This study provides a new insight into understanding how Pleistocene glaciation has influenced faunal diversity in subtropical and temperate China, especially for those exhibiting differential patterns of sex dispersal.
Collapse
Affiliation(s)
- Yanyan Zhou
- School of Life SciencesZhengzhou UniversityZhengzhouChina
- Institute of Biodiversity and EcologyZhengzhou UniversityZhengzhouChina
| | - Jundong Tian
- School of Life SciencesZhengzhou UniversityZhengzhouChina
- Institute of Biodiversity and EcologyZhengzhou UniversityZhengzhouChina
| | - Mengya Han
- School of Life SciencesZhengzhou UniversityZhengzhouChina
- Institute of Biodiversity and EcologyZhengzhou UniversityZhengzhouChina
| | - Jiqi Lu
- School of Life SciencesZhengzhou UniversityZhengzhouChina
- Institute of Biodiversity and EcologyZhengzhou UniversityZhengzhouChina
| |
Collapse
|
10
|
Das S, Greenbaum E, Brecko J, Pauwels OSG, Ruane S, Pirro S, Merilä J. Phylogenomics of Psammodynastes and Buhoma (Elapoidea: Serpentes), with the description of a new Asian snake family. Sci Rep 2024; 14:9489. [PMID: 38664489 PMCID: PMC11045840 DOI: 10.1038/s41598-024-60215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Asian mock vipers of the genus Psammodynastes and African forest snakes of the genus Buhoma are two genera belonging to the snake superfamily Elapoidea. The phylogenetic placements of Psammodynastes and Buhoma within Elapoidea has been extremely unstable which has resulted in their uncertain and debated taxonomy. We used ultraconserved elements and traditional nuclear and mitochondrial markers to infer the phylogenetic relationships of these two genera with other elapoids. Psammodynastes, for which a reference genome has been sequenced, were found, with strong branch support, to be a relatively early diverging split within Elapoidea that is sister to a clade consisting of Elapidae, Micrelapidae and Lamprophiidae. Hence, we allocate Psammodynastes to its own family, Psammodynastidae new family. However, the phylogenetic position of Buhoma could not be resolved with a high degree of confidence. Attempts to identify the possible sources of conflict in the rapid radiation of elapoid snakes suggest that both hybridisation/introgression during the rapid diversification, including possible ghost introgression, as well as incomplete lineage sorting likely have had a confounding role. The usual practice of combining mitochondrial loci with nuclear genomic data appears to mislead phylogeny reconstructions in rapid radiation scenarios, especially in the absence of genome scale data.
Collapse
Affiliation(s)
- Sunandan Das
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland.
| | - Eli Greenbaum
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA
| | - Jonathan Brecko
- Royal Belgian Institute of Natural Sciences, Rue Vautier 29, 1000, Brussels, Belgium
- Royal Museum for Central Africa, Tervuren, Belgium
| | - Olivier S G Pauwels
- Royal Belgian Institute of Natural Sciences, Rue Vautier 29, 1000, Brussels, Belgium
| | - Sara Ruane
- Life Sciences Section, Negaunee Integrative Research Center, Field Museum, Chicago, IL, USA
| | - Stacy Pirro
- Iridian Genomes Inc., Bethesda, MD, 20817, USA
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
- Area of Ecology and Biodiversity, School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China
| |
Collapse
|
11
|
Mao YX, Li Y, Yang Z, Xu N, Zhang S, Wang X, Yang X, Sun Q, Mao Y. Comparative transcriptome analysis between rhesus macaques ( Macaca mulatta) and crab-eating macaques ( M. fascicularis). Zool Res 2024; 45:299-310. [PMID: 38485500 PMCID: PMC11017088 DOI: 10.24272/j.issn.2095-8137.2023.322] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/28/2023] [Indexed: 03/19/2024] Open
Abstract
Understanding gene expression variations between species is pivotal for deciphering the evolutionary diversity in phenotypes. Rhesus macaques ( Macaca mulatta, MMU) and crab-eating macaques ( M. fascicularis, MFA) serve as crucial nonhuman primate biomedical models with different phenotypes. To date, however, large-scale comparative transcriptome research between these two species has not yet been fully explored. Here, we conducted systematic comparisons utilizing newly sequenced RNA-seq data from 84 samples (41 MFA samples and 43 MMU samples) encompassing 14 common tissues. Our findings revealed a small fraction of genes (3.7%) with differential expression between the two species, as well as 36.5% of genes with tissue-specific expression in both macaques. Comparison of gene expression between macaques and humans indicated that 22.6% of orthologous genes displayed differential expression in at least two tissues. Moreover, 19.41% of genes that overlapped with macaque-specific structural variants showed differential expression between humans and macaques. Of these, the FAM220A gene exhibited elevated expression in humans compared to macaques due to lineage-specific duplication. In summary, this study presents a large-scale transcriptomic comparison between MMU and MFA and between macaques and humans. The discovery of gene expression variations not only enhances the biomedical utility of macaque models but also contributes to the wider field of primate genomics.
Collapse
Affiliation(s)
- Yu-Xiang Mao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yamei Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Zikun Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
- Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ning Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Shilong Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xuankai Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xiangyu Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Qiang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
- Key Laboratory of Genetic Evolution & Animal Models, Chinese Academy of Sciences, Kunming, Yunnan 650201, China. E-mail:
| | - Yafei Mao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, China
- Center for Genomic Research, International Institutes of Medicine, Fourth Affiliated Hospital, Zhejiang University, Yiwu, Zhejiang 322000, China. E-mail:
| |
Collapse
|
12
|
Wu H, Zhang Y, Yu L. Opportunities and challenges in studies of mammalian hybrid speciation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:614-617. [PMID: 37955779 DOI: 10.1007/s11427-023-2469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Affiliation(s)
- Hong Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Yuxing Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
13
|
Jensen A, Swift F, de Vries D, Beck RMD, Kuderna LFK, Knauf S, Chuma IS, Keyyu JD, Kitchener AC, Farh K, Rogers J, Marques-Bonet T, Detwiler KM, Roos C, Guschanski K. Complex Evolutionary History With Extensive Ancestral Gene Flow in an African Primate Radiation. Mol Biol Evol 2023; 40:msad247. [PMID: 37987553 PMCID: PMC10691879 DOI: 10.1093/molbev/msad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023] Open
Abstract
Understanding the drivers of speciation is fundamental in evolutionary biology, and recent studies highlight hybridization as an important evolutionary force. Using whole-genome sequencing data from 22 species of guenons (tribe Cercopithecini), one of the world's largest primate radiations, we show that rampant gene flow characterizes their evolutionary history and identify ancient hybridization across deeply divergent lineages that differ in ecology, morphology, and karyotypes. Some hybridization events resulted in mitochondrial introgression between distant lineages, likely facilitated by cointrogression of coadapted nuclear variants. Although the genomic landscapes of introgression were largely lineage specific, we found that genes with immune functions were overrepresented in introgressing regions, in line with adaptive introgression, whereas genes involved in pigmentation and morphology may contribute to reproductive isolation. In line with reports from other systems that hybridization might facilitate diversification, we find that some of the most species-rich guenon clades are of admixed origin. This study provides important insights into the prevalence, role, and outcomes of ancestral hybridization in a large mammalian radiation.
Collapse
Affiliation(s)
- Axel Jensen
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala SE-75236, Sweden
| | - Frances Swift
- School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Dorien de Vries
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Robin M D Beck
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Lukas F K Kuderna
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA 94404, USA
| | - Sascha Knauf
- Institute of International Animal Health/One Health, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald – Insel Riems 17493, Germany
| | | | - Julius D Keyyu
- Tanzania Wildlife Research Institute (TAWIRI), Arusha, Tanzania
| | - Andrew C Kitchener
- Department of Natural Sciences, National Museums Scotland, Edinburgh EH1 1JF, UK
- School of Geosciences, University of Edinburgh, Edinburgh EH8 9XP, UK
| | - Kyle Farh
- Illumina Artificial Intelligence Laboratory, Illumina Inc., Foster City, CA 94404, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Barcelona 08003, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) and Universitat Pompeu Fabra, Barcelona 08010, Spain
| | - Kate M Detwiler
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen 37077, Germany
| | - Katerina Guschanski
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala SE-75236, Sweden
- School of Biological Sciences, Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
14
|
Guo YT, Shao Y, Bi X, Zhang BL, Wu H, Zhou Y, Li ML, Yu L, Zhang G, Wu DD, Qi XG. Harvesting the fruits of the first stage of the Primate Genome Project. Zool Res 2023; 44:725-728. [PMID: 37313849 PMCID: PMC10415766 DOI: 10.24272/j.issn.2095-8137.2023.172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Affiliation(s)
- Yuan-Ting Guo
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yong Shao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xupeng Bi
- Centre for Evolutionary & Organismal Biology, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Bao-Lin Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Yang Zhou
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Ming-Li Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China. E-mail:
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Centre for Evolutionary & Organismal Biology, and Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang 311121, China
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen DK-2100, Denmark. E-mail:
| | - Dong-Dong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China. E-mail:
| | - Xiao-Guang Qi
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China. E-mail:
| |
Collapse
|