1
|
Emerson DM, Kelly MR, Torres-McGehee TM, Uriegas NA, Smith MO, Smith AB, Kloesel KA. Collegiate Marching Band Artists Self-Report Previous Exercise-Associated Hyponatremia: A Cross-Sectional Study. Nutrients 2024; 17:79. [PMID: 39796513 PMCID: PMC11723187 DOI: 10.3390/nu17010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Exercise-associated hyponatremia (EAH) is commonly observed in endurance athletes, where prolonged physical exertion combined with being unaware of personal hydration needs can lead to excessive water consumption or inadequate sodium intake. Marching band (MB) is an emerging setting for sports medicine professionals. However, there is little research on non-musculoskeletal illnesses among these performing artists. This study is part of a larger cross-sectional study and seeks to examine whether MB artists have previously experienced EAH and the presence of known EAH risk factors (e.g., pre-existing medical conditions, medication use, nutritional behaviors). Active collegiate MB members (n = 1207; mean age = 19.6 ± 1.3 years) completed an online survey that characterized demographics, medical history, and nutrition behaviors. Statistical analyses included descriptives (mean, standard deviation) and frequencies for all data. Binomial logistic regressions analyzed the relationship and determined the odds ratio (OR) between previous EAH and EAH risk factors. Participants were from 23 different states, predominately White (82.9%), female (56.7%), and at NCAA Division I institutions (92%). A total of 74 (6.1%) participants reported previously experiencing EAH, 32 (43.2%) within the past year. Previous EAH occurrence was greatest among individuals who had kidney conditions (χ2(1) = 5.920, R2 = 0.013, OR = 15.708, p = 0.015); mood/neurological conditions (χ2(1) = 7.508, R2 = 0.017, OR = 2.154, p = 0.006), particularly anxiety (χ2(1) = 7.651, R2 = 0.017, OR = 3.590, p = 0.006); used mental health medications (χ2(1) = 7.512, R2 = 0.017, OR = 2.220, p = 0.006), particularly selective serotonin reuptake inhibitors (χ2(1) = 13.502, R2 = 0.030, OR = 3.297, p < 0.001); and who dieted (χ2(1) = 6.121, R2 = 0.014, OR = 1.913, p = 0.013) or perceived they had an eating disorder (χ2(1) = 9.502, R2 = 0.021, OR = 2.729, p = 0.002). Healthcare providers should be aware that MB artists may have pre-existing medication conditions, use medication, and have inadequate nutrition. Targeted hydration and nutritional education for MB artists is essential for effective prevention and early EAH recognition, improving health and performance for MB artists within demanding environments.
Collapse
Affiliation(s)
- Dawn M. Emerson
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA;
| | - Melani R. Kelly
- Department of Exercise Science and Outdoor Recreation, College of Science, Utah Valley University, Orem, UT 84058, USA;
| | - Toni M. Torres-McGehee
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA;
| | - Nancy A. Uriegas
- Department of Health and Human Performance, College of Education, Texas State University, San Marcos, TX 78666, USA;
| | | | - Allison B. Smith
- Department of Health and Sport Sciences, Otterbein University, Westerville, OH 43081, USA;
| | | |
Collapse
|
2
|
Gasparini S, Almeida‐Pereira G, Munuzuri ASP, Resch JM, Geerling JC. Molecular Ontology of the Nucleus of Solitary Tract. J Comp Neurol 2024; 532:e70004. [PMID: 39629676 PMCID: PMC11615840 DOI: 10.1002/cne.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/03/2024] [Accepted: 11/15/2024] [Indexed: 12/08/2024]
Abstract
The nucleus of the solitary tract (NTS) receives visceral information and regulates appetitive, digestive, and cardiorespiratory systems. Within the NTS, diverse processes operate in parallel to sustain life, but our understanding of their cellular composition is incomplete. Here, we integrate histologic and transcriptomic analysis to identify and compare molecular features that distinguish neurons in this brain region. Most glutamatergic neurons in the NTS and area postrema co-express the transcription factors Lmx1b and Phox2b, except for a ventral band of neurons in the far-caudal NTS, which include the Gcg-expressing neurons that produce glucagon-like peptide 1 (GLP-1). GABAergic interneurons intermingle through the Lmx1b+Phox2b macropopulation, and dense clusters of GABAergic neurons surround the NTS. The Lmx1b+Phox2b macropopulation includes subpopulations with distinct distributions expressing Grp, Hsd11b2, Npff, Pdyn, Pou3f1, Sctr, Th, and other markers. These findings highlight Lmx1b-Phox2b co-expression as a common feature of glutamatergic neurons in the NTS and improve our understanding of the organization and distribution of neurons in this critical brain region.
Collapse
Affiliation(s)
| | | | | | - Jon M. Resch
- Department of Neuroscience and PharmacologyUniversity of IowaIowa CityIowaUSA
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIowaUSA
| | - Joel C. Geerling
- Department of NeurologyUniversity of IowaIowa CityIowaUSA
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
3
|
Shao L, Kong F, Tian X, Deng T, Wang Y, Ji Y, Wang X, Yu H, Yuan F, Fu C, Wang S. Whole-brain inputs and outputs of Phox2b and GABAergic neurons in the nucleus tractus solitarii. Front Neurosci 2024; 18:1427384. [PMID: 38948926 PMCID: PMC11211284 DOI: 10.3389/fnins.2024.1427384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
The nucleus tractus solitarii (NTS) plays a critical role in the homeostatic regulation of respiration, blood pressure, sodium consumption and metabolic processes. Despite their significance, the circuitry mechanisms facilitating these diverse physiological functions remain incompletely understood. In this study, we present a whole-brain mapping of both the afferent and efferent connections of Phox2b-expressing and GABAergic neurons within the NTS. Our findings reveal that these neuronal populations not only receive monosynaptic inputs primarily from the medulla oblongata, pons, midbrain, supra-midbrain and cortical areas, but also mutually project their axons to these same locales. Moreover, intense monosynaptic inputs are received from the central amygdala, the paraventricular nucleus of the hypothalamus, the parasubthalamic nucleus and the intermediate reticular nucleus, along with brainstem nuclei explicitly engaged in respiratory regulation. In contrast, both neuronal groups extensively innervate brainstem nuclei associated with respiratory functions, although their projections to regions above the midbrain are comparatively limited. These anatomical findings provide a foundational platform for delineating an anatomical framework essential for dissecting the specific functional mechanisms of these circuits.
Collapse
Affiliation(s)
- Liuqi Shao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fanrao Kong
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaochen Tian
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tianjiao Deng
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yakun Wang
- Department of Sleep Medicine, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yake Ji
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoyi Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongxiao Yu
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fang Yuan
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Congrui Fu
- Nursing School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sheng Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, Hebei, China
| |
Collapse
|
4
|
Chang HY, Chen SY, Lin JA, Chen YY, Chen YY, Liu YC, Yen GC. Phyllanthus emblica Fruit Improves Obesity by Reducing Appetite and Enhancing Mucosal Homeostasis via the Gut Microbiota-Brain-Liver Axis in HFD-Induced Leptin-Resistant Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10406-10419. [PMID: 38659208 PMCID: PMC11082930 DOI: 10.1021/acs.jafc.4c01226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
The impact of leptin resistance on intestinal mucosal barrier integrity, appetite regulation, and hepatic lipid metabolism through the microbiota-gut-brain-liver axis has yet to be determined. Water extract of Phyllanthus emblica L. fruit (WEPE) and its bioactive compound gallic acid (GA) effectively alleviated methylglyoxal (MG)-triggered leptin resistance in vitro. Therefore, this study investigated how WEPE and GA intervention relieve leptin resistance-associated dysfunction in the intestinal mucosa, appetite, and lipid accumulation through the microbiota-gut-brain-liver axis in high-fat diet (HFD)-fed rats. The results showed that WEPE and GA significantly reduced tissues (jejunum, brain, and liver) MG-evoked leptin resistance, malondialdehyde (MDA), proinflammatory cytokines, SOCS3, orexigenic neuropeptides, and lipid accumulation through increasing leptin receptor, tight junction proteins, antimicrobial peptides, anorexigenic neuropeptides, excretion of fecal triglyceride (TG), and short-chain fatty acids (SCFAs) via a positive correlation with the Allobaculum and Bifidobacterium microbiota. These novel findings suggest that WEPE holds the potential as a functional food ingredient for alleviating obesity and its complications.
Collapse
Affiliation(s)
- Hsin-Yu Chang
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Sheng-Yi Chen
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Jer-An Lin
- Graduate
Institute of Food Safety, National Chung
Hsing University, 145
Xingda Road, Taichung 40227, Taiwan
| | - Ying-Yin Chen
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Ying-Ying Chen
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Yu-Chen Liu
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Gow-Chin Yen
- Department
of Food Science and Biotechnology, National
Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| |
Collapse
|
5
|
Kim B, Hwang G, Yoon SE, Kuang MC, Wang JW, Kim YJ, Suh GSB. Postprandial sodium sensing by enteric neurons in Drosophila. Nat Metab 2024; 6:837-846. [PMID: 38570627 DOI: 10.1038/s42255-024-01020-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
Sodium is essential for all living organisms1. Animals including insects and mammals detect sodium primarily through peripheral taste cells2-7. It is not known, however, whether animals can detect this essential micronutrient independently of the taste system. Here, we report that Drosophila Ir76b mutants that were unable to detect sodium2 became capable of responding to sodium following a period of salt deprivation. From a screen for cells required for the deprivation-induced sodium preference, we identified a population of anterior enteric neurons, which we named internal sodium-sensing (INSO) neurons, that are essential for directing a behavioural preference for sodium. Enteric INSO neurons innervate the gut epithelia mainly through their dendritic processes and send their axonal projections along the oesophagus to the brain and to the crop duct. Through calcium imaging and CaLexA experiments, we found that INSO neurons respond immediately and specifically to sodium ions. Notably, the sodium-evoked responses were observed only after a period of sodium deprivation. Taken together, we have identified a taste-independent sodium sensor that is essential for the maintenance of sodium homeostasis.
Collapse
Affiliation(s)
- Byoungsoo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Gayoung Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sung-Eun Yoon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Korea Drosophila Resource Center (KDRC), Gwangju, Republic of Korea
| | - Meihua Christina Kuang
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jing W Wang
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Young-Joon Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
- Korea Drosophila Resource Center (KDRC), Gwangju, Republic of Korea
| | - Greg S B Suh
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
6
|
Wang JH, Wu C, Lian YN, Cao XW, Wang ZY, Dong JJ, Wu Q, Liu L, Sun L, Chen W, Chen WJ, Zhang Z, Zhuo M, Li XY. Single-cell RNA sequencing uncovers the cell type-dependent transcriptomic changes in the retrosplenial cortex after peripheral nerve injury. Cell Rep 2023; 42:113551. [PMID: 38048224 DOI: 10.1016/j.celrep.2023.113551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/14/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023] Open
Abstract
The retrosplenial cortex (RSC) is a vital area for storing remote memory and has recently been found to undergo broad changes after peripheral nerve injury. However, little is known about the role of RSC in pain regulation. Here, we examine the involvement of RSC in the pain of mice with nerve injury. Notably, reducing the activities of calcium-/calmodulin-dependent protein kinase type II-positive splenial neurons chemogenetically increases paw withdrawal threshold and extends thermal withdrawal latency in mice with nerve injury. The single-cell or single-nucleus RNA-sequencing results predict enhanced excitatory synaptic transmissions in RSC induced by nerve injury. Local infusion of 1-naphthyl acetyl spermine into RSC to decrease the excitatory synaptic transmissions relieves pain and induces conditioned place preference. Our data indicate that RSC is critical for regulating physiological and neuropathic pain. The cell type-dependent transcriptomic information would help understand the molecular basis of neuropathic pain.
Collapse
Affiliation(s)
- Jing-Hua Wang
- Department of Psychiatry of the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Cheng Wu
- Department of Psychiatry of the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China; Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9JU, UK
| | - Yan-Na Lian
- Department of Psychiatry of the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiao-Wen Cao
- Department of Psychiatry of the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zi-Yue Wang
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jia-Jun Dong
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Qin Wu
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Li Liu
- Core Facilities of the School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Li Sun
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Wen-Juan Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Zhi Zhang
- Key Laboratory of Brain Functions and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xiang-Yao Li
- Department of Psychiatry of the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain, Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China; Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh EH8 9JU, UK.
| |
Collapse
|
7
|
Zhang F, Tao Z, Chen C, Chow BKC. Effects of secretin gene knockout on the diversity, composition, and function of gut microbiota in adult male mice. Front Cell Infect Microbiol 2023; 13:1257857. [PMID: 38156312 PMCID: PMC10753818 DOI: 10.3389/fcimb.2023.1257857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/16/2023] [Indexed: 12/30/2023] Open
Abstract
The gut microbiota plays a vital role in maintaining gastrointestinal homeostasis, however, whether it is influenced by gut hormones remains unknown. Secretin is a well-known gastrointestinal hormone produced by enteroendocrine S cells. This study utilized 16S rRNA amplicon sequencing to characterize the effect of SCT deficiency on the gut microbiota. Our results show that systemic SCT knockout alters the composition and abundance of the mouse gut microbiota but does not affect fecal short-chain fatty acids and lipids concentrations. At the genus level, the abundance of Turicibacter, Bacteroides, Ruminococcu, Romboutsia, Asaccharobacter, and Parasutterella increased in SCT-/- mice, whereas the abundance of Akkermansia and Escherichia decreased. Functional prediction results showed that lack of SCT reduced the abundance of carbohydrate metabolism-related pathways but increased the abundance of linoleic acid metabolism and branched-chain amino acid degradation. Overall, systemic SCT knockout had only minor effects on gut microbiota composition and function in adult male mice fed a standard chow diet.
Collapse
Affiliation(s)
- Fengwei Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | | | - Billy Kwok Chong Chow
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Fong H, Zheng J, Kurrasch D. The structural and functional complexity of the integrative hypothalamus. Science 2023; 382:388-394. [PMID: 37883552 DOI: 10.1126/science.adh8488] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
The hypothalamus ("hypo" meaning below, and "thalamus" meaning bed) consists of regulatory circuits that support basic life functions that ensure survival. Sitting at the interface between peripheral, environmental, and neural inputs, the hypothalamus integrates these sensory inputs to influence a range of physiologies and behaviors. Unlike the neocortex, in which a stereotyped cytoarchitecture mediates complex functions across a comparatively small number of neuronal fates, the hypothalamus comprises upwards of thousands of distinct cell types that form redundant yet functionally discrete circuits. With single-cell RNA sequencing studies revealing further cellular heterogeneity and modern photonic tools enabling high-resolution dissection of complex circuitry, a new era of hypothalamic mapping has begun. Here, we provide a general overview of mammalian hypothalamic organization, development, and connectivity to help welcome newcomers into this exciting field.
Collapse
Affiliation(s)
- Harmony Fong
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jing Zheng
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
Meng Y, Sun J, Zhang G. Fecal microbiota transplantation holds the secret to youth. Mech Ageing Dev 2023; 212:111823. [PMID: 37192676 DOI: 10.1016/j.mad.2023.111823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
Aging shows itself not just at the cellular level, with shortened telomeres and cell cycle arrest, but also at the organ and organismal level, with diminished brainpower, dry eyes, intestinal inflammation, muscular atrophy, wrinkles, etc. When the gut microbiota, often called the "virtual organ of the host," fails to function normally, it can lead to a cascade of health problems including, but not limited to, inflammatory bowel disease, obesity, metabolic liver disease, type II diabetes, cardiovascular disease, cancer, and even neurological disorders. An effective strategy for restoring healthy gut bacteria is fecal microbiota transplantation (FMT). It can reverse the effects of aging on the digestive system, the brain, and the vision by transplanting the functional bacteria found in the excrement of healthy individuals into the gut tracts of patients. This paves the way for future research into using the microbiome as a therapeutic target for disorders associated with aging.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Xiaoheyan road, Dadong district, Shenyang, 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Xiaoheyan road, Dadong district, Shenyang, 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute. No. 44, Xiaoheyan road, Dadong district, Shenyang, 110042, China
| |
Collapse
|