1
|
Bernadet J, Borisova AY, Guitreau M, Safonov OG, Asimow P, Nédélec A, Bohrson WA, Kosova SA, de Parseval P. Making continental crust on water-bearing terrestrial planets. SCIENCE ADVANCES 2025; 11:eads6746. [PMID: 40138399 PMCID: PMC11939034 DOI: 10.1126/sciadv.ads6746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/24/2025] [Indexed: 03/29/2025]
Abstract
The debate about early Earth differentiation focuses on the processes responsible for the formation of protocrust(s) and continental crust of felsic (SiO2 ≥ 55 weight %) composition. One aspect of this debate is how Hadean zircons fit into an ultramafic environment. On the basis of experiments, thermodynamic modeling, and elemental partitioning, we show that felsic melts could have been generated by shallow interaction between primordial serpentinized peridotite and basaltic magmas on Earth and Mars. On the basis of the hafnium isotopic evolution of Hadean detrital zircons worldwide, we infer that these interactions allowed for the formation of extensive Hadean felsic crust (4.4 to 4.5 billion years ago), which, in turn, would account for up to 50% of the present continental crustal mass. A similar process may have occurred on Mars. The serpentinized protocrust had a dual role in the primitive planetary environment: to provide ingredients for the continental crust and to enable life to emerge on water-bearing terrestrial planets.
Collapse
Affiliation(s)
- Justine Bernadet
- Géosciences Environnement Toulouse, GET, Université de Toulouse, CNRS, IRD, UPS, France, 14 Avenue E. Belin, 31400 Toulouse, France
| | - Anastassia Y. Borisova
- Géosciences Environnement Toulouse, GET, Université de Toulouse, CNRS, IRD, UPS, France, 14 Avenue E. Belin, 31400 Toulouse, France
| | - Martin Guitreau
- Laboratoire Magmas et Volcans, CNRS-UMR6524, IRD-UMR163, OPGC, Université Clermont Auvergne, F- 63178 Aubière, France
| | - Oleg G. Safonov
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
- Korzhinskii Institute of Experimental Mineralogy, 142432 Chernogolovka, Moscow Region, Russia
| | - Paul Asimow
- California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Anne Nédélec
- Géosciences Environnement Toulouse, GET, Université de Toulouse, CNRS, IRD, UPS, France, 14 Avenue E. Belin, 31400 Toulouse, France
| | - Wendy A. Bohrson
- Department of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Svetlana A. Kosova
- Korzhinskii Institute of Experimental Mineralogy, 142432 Chernogolovka, Moscow Region, Russia
| | - Philippe de Parseval
- Géosciences Environnement Toulouse, GET, Université de Toulouse, CNRS, IRD, UPS, France, 14 Avenue E. Belin, 31400 Toulouse, France
| |
Collapse
|
2
|
Chimiak L, Hara E, Sessions A, Templeton A. Glycine synthesis from nitrate and glyoxylate mediated by ferroan brucite: An integrated pathway for prebiotic amine synthesis. Proc Natl Acad Sci U S A 2024; 121:e2408248121. [PMID: 39467141 PMCID: PMC11551427 DOI: 10.1073/pnas.2408248121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/04/2024] [Indexed: 10/30/2024] Open
Abstract
Amino acids are present in all known life, so identifying the environmental conditions under which they can be synthesized constrains where life on Earth might have formed and where life might be found on other planetary bodies. All known abiotic amino acid syntheses require ammonia, which is only produced in reducing and neutral atmospheres. Here, we demonstrate that the Fe-bearing hydroxide mineral ferroan brucite [Fe0.33,Mg0.67(OH)2] can mediate the reaction of nitrate and glyoxylate to form glycine, the simplest amino acid used in life. Up to 97% of this glycine was detected only after acid digestion of the mineral, demonstrating that it had been strongly partitioned to the mineral. The dicarboxylic amino acid 3-hydroxy aspartate was also detected, which suggests that reactants underwent a mechanism that simultaneously produced mono- and dicarboxylic amino acids. Nitrate can be produced in both neutral and oxidizing atmospheres, so reductive amination of nitrate and glyoxylate on a ferroan brucite surface expands origins of life scenarios. First, it expands the environmental conditions in which life's precursors could form to include oxidizing atmospheres. Second, it demonstrates the ability of ferroan brucite, an abundant, secondary mineral in serpentinizing systems where olivine is partly hydrated, to mediate reductive amination. Finally, the results demonstrate the need to consider mineral-bound products when analyzing samples for abiotic amino acid synthesis.
Collapse
Affiliation(s)
- L. Chimiak
- Department of Geological Sciences, University of Colorado, Boulder, CO80309
| | - E. Hara
- Department of Geological Sciences, University of Colorado, Boulder, CO80309
| | - A. Sessions
- Department of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - A.S. Templeton
- Department of Geological Sciences, University of Colorado, Boulder, CO80309
| |
Collapse
|
3
|
Murray J, Jagoutz O. Olivine alteration and the loss of Mars' early atmospheric carbon. SCIENCE ADVANCES 2024; 10:eadm8443. [PMID: 39321300 PMCID: PMC11423889 DOI: 10.1126/sciadv.adm8443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
The early Martian atmosphere had 0.25 to 4 bar of CO2 but thinned rapidly around 3.5 billion years ago. The fate of that carbon remains poorly constrained. The hydrothermal alteration of ultramafic rocks, rich in Fe(II) and Mg, forms both abiotic methane, serpentine, and high-surface-area smectite clays. Given the abundance of ultramafic rocks and smectite in the Martian upper crust and the growing evidence of organic carbon in Martian sedimentary rocks, we quantify the effects of ultramafic alteration on the carbon cycle of early Mars. We calculate the capacity of Noachian-age clays to store organic carbon. Up to 1.7 bar of CO2 can plausibly be adsorbed on clay surfaces. Coupling abiotic methanogenesis with best estimates of Mars' δ13C history predicts a reservoir of 0.6 to 1.3 bar of CO2 equivalent. Such a reservoir could be used as an energy source for long-term missions. Our results further illustrate the control of water-rock reactions on the atmospheric evolution of planets.
Collapse
Affiliation(s)
- Joshua Murray
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Oliver Jagoutz
- Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
Feldman AD, Hausrath EM, Rampe EB, Tu V, Peretyazhko TS, DeFelice C, Sharp T. Fe-rich X-ray amorphous material records past climate and persistence of water on Mars. COMMUNICATIONS EARTH & ENVIRONMENT 2024; 5:364. [PMID: 38978761 PMCID: PMC11227439 DOI: 10.1038/s43247-024-01495-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 06/05/2024] [Indexed: 07/10/2024]
Abstract
X-ray amorphous material comprises 15-73 wt.% of sedimentary rocks and eolian sediments in Gale crater. This material is variably siliceous and iron rich but aluminum poor. The presence of volatiles is consistent with the existence of incipient weathering products. To better understand the implications of this material for past aqueous conditions on Mars, here we investigate X-ray amorphous material formation and longevity within terrestrial iron rich soils with varying ages and environmental conditions using bulk and selective dissolution methods, X-ray diffraction, and transmission electron microscopy. Results indicate that in situ aqueous alteration is required to concentrate iron into clay-size fraction material. Cooler climates promote the formation and persistence of X-ray amorphous material whereas warmer climates promote the formation of crystalline secondary phases. Iron rich X-ray amorphous material formation and persistence on Mars are therefore consistent with past cool and relatively wet environments followed by long-term cold and dry conditions.
Collapse
Affiliation(s)
- Anthony D. Feldman
- Present Address: Department of Geosciences, University of Nevada Las Vegas, Las Vegas, NV USA
- Present Address: Desert Research Institute, Las Vegas, NV USA
| | - Elisabeth M. Hausrath
- Present Address: Department of Geosciences, University of Nevada Las Vegas, Las Vegas, NV USA
| | - Elizabeth B. Rampe
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX USA
| | - Valerie Tu
- Jacobs Technology, NASA Johnson Space Center, Houston, TX USA
| | | | - Christopher DeFelice
- Present Address: Department of Geosciences, University of Nevada Las Vegas, Las Vegas, NV USA
- Present Address: Pacific Northwest National Laboratory, Richland, WA USA
| | - Thomas Sharp
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| |
Collapse
|
5
|
Liu J, Michalski JR, Wang Z, Gao WS. Atmospheric oxidation drove climate change on Noachian Mars. Nat Commun 2024; 15:5648. [PMID: 38969635 PMCID: PMC11226428 DOI: 10.1038/s41467-024-47326-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/23/2024] [Indexed: 07/07/2024] Open
Abstract
Modern Mars is bipolar, cold, and oxidizing, while early Mars was characterized by icy highlands, episodic warmth and reducing atmosphere. The timing and association of the climate and redox transitions remain inadequately understood. Here we examine the spatiotemporal distribution of the low surface iron abundance in the ancient Martian terrains, revealing that iron abundance decreases with elevation in the older Noachian terrains but with latitude in the younger Noachian terrains. These observations suggest: (a) low-temperature conditions contribute to surface iron depletion, likely facilitated by anoxic leaching through freeze-thaw cycles under a reducing atmosphere, and (b) temperature distribution mode shifted from elevation-dominant to latitude-dominant during the Noachian period. Additionally, we find iron leaching intensity decreases from the Early to Late Noachian epoch, suggesting a gradual atmospheric oxidation coupled with temperature mode transition during the Noachian period. We think atmospheric oxidation led to Mars becoming cold and bipolar in its early history.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Earth Sciences and Laboratory for Space Research, The University of Hong Kong, Hong Kong, China.
- NWU-HKU Joint Center of Earth and Planetary Sciences, Department of Earth Sciences, The University of Hong Kong, Hong Kong, China.
| | - Joseph R Michalski
- Department of Earth Sciences and Laboratory for Space Research, The University of Hong Kong, Hong Kong, China.
| | - Zhicheng Wang
- Department of Earth Sciences and Laboratory for Space Research, The University of Hong Kong, Hong Kong, China
| | - Wen-Sheng Gao
- School of Earth Resources, China University of Geosciences, 430074, Wuhan, China
| |
Collapse
|
6
|
Hart R, Cardace D. Mineral Indicators of Geologically Recent Past Habitability on Mars. Life (Basel) 2023; 13:2349. [PMID: 38137950 PMCID: PMC10744562 DOI: 10.3390/life13122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/25/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
We provide new support for habitable microenvironments in the near-subsurface of Mars, hosted in Fe- and Mg-rich rock units, and present a list of minerals that can serve as indicators of specific water-rock reactions in recent geologic paleohabitats for follow-on study. We modeled, using a thermodynamic basis without selective phase suppression, the reactions of published Martian meteorites and Jezero Crater igneous rock compositions and reasonable planetary waters (saline, alkaline waters) using Geochemist's Workbench Ver. 12.0. Solid-phase inputs were meteorite compositions for ALH 77005, Nakhla, and Chassigny, and two rock units from the Mars 2020 Perseverance rover sites, Máaz and Séítah. Six plausible Martian groundwater types [NaClO4, Mg(ClO4)2, Ca(ClO4)2, Mg-Na2(ClO4)2, Ca-Na2(ClO4)2, Mg-Ca(ClO4)2] and a unique Mars soil-water analog solution (dilute saline solution) named "Rosy Red", related to the Phoenix Lander mission, were the aqueous-phase inputs. Geophysical conditions were tuned to near-subsurface Mars (100 °C or 373.15 K, associated with residual heat from a magmatic system, impact event, or a concentration of radionuclides, and 101.3 kPa, similar to <10 m depth). Mineral products were dominated by phyllosilicates such as serpentine-group minerals in most reaction paths, but differed in some important indicator minerals. Modeled products varied in physicochemical properties (pH, Eh, conductivity), major ion activities, and related gas fugacities, with different ecological implications. The microbial habitability of pore spaces in subsurface groundwater percolation systems was interrogated at equilibrium in a thermodynamic framework, based on Gibbs Free Energy Minimization. Models run with the Chassigny meteorite produced the overall highest H2 fugacity. Models reliant on the Rosy Red soil-water analog produced the highest sustained CH4 fugacity (maximum values observed for reactant ALH 77005). In general, Chassigny meteorite protoliths produced the best yield regarding Gibbs Free Energy, from an astrobiological perspective. Occurrences of serpentine and saponite across models are key: these minerals have been observed using CRISM spectral data, and their formation via serpentinization would be consistent with geologically recent-past H2 and CH4 production and sustained energy sources for microbial life. We list index minerals to be used as diagnostic for paleo water-rock models that could have supported geologically recent-past microbial activity, and suggest their application as criteria for future astrobiology study-site selections.
Collapse
Affiliation(s)
- Roger Hart
- Department of Physics and Engineering, Community College of Rhode Island, Lincoln, RI 02865, USA
- Department of Geosciences, University of Rhode Island, Kingston, RI 02881, USA;
| | - Dawn Cardace
- Department of Geosciences, University of Rhode Island, Kingston, RI 02881, USA;
| |
Collapse
|
7
|
Schwander L, Brabender M, Mrnjavac N, Wimmer JLE, Preiner M, Martin WF. Serpentinization as the source of energy, electrons, organics, catalysts, nutrients and pH gradients for the origin of LUCA and life. Front Microbiol 2023; 14:1257597. [PMID: 37854333 PMCID: PMC10581274 DOI: 10.3389/fmicb.2023.1257597] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/04/2023] [Indexed: 10/20/2023] Open
Abstract
Serpentinization in hydrothermal vents is central to some autotrophic theories for the origin of life because it generates compartments, reductants, catalysts and gradients. During the process of serpentinization, water circulates through hydrothermal systems in the crust where it oxidizes Fe (II) in ultramafic minerals to generate Fe (III) minerals and H2. Molecular hydrogen can, in turn, serve as a freely diffusible source of electrons for the reduction of CO2 to organic compounds, provided that suitable catalysts are present. Using catalysts that are naturally synthesized in hydrothermal vents during serpentinization H2 reduces CO2 to formate, acetate, pyruvate, and methane. These compounds represent the backbone of microbial carbon and energy metabolism in acetogens and methanogens, strictly anaerobic chemolithoautotrophs that use the acetyl-CoA pathway of CO2 fixation and that inhabit serpentinizing environments today. Serpentinization generates reduced carbon, nitrogen and - as newer findings suggest - reduced phosphorous compounds that were likely conducive to the origins process. In addition, it gives rise to inorganic microcompartments and proton gradients of the right polarity and of sufficient magnitude to support chemiosmotic ATP synthesis by the rotor-stator ATP synthase. This would help to explain why the principle of chemiosmotic energy harnessing is more conserved (older) than the machinery to generate ion gradients via pumping coupled to exergonic chemical reactions, which in the case of acetogens and methanogens involve H2-dependent CO2 reduction. Serpentinizing systems exist in terrestrial and deep ocean environments. On the early Earth they were probably more abundant than today. There is evidence that serpentinization once occurred on Mars and is likely still occurring on Saturn's icy moon Enceladus, providing a perspective on serpentinization as a source of reductants, catalysts and chemical disequilibrium for life on other worlds.
Collapse
Affiliation(s)
- Loraine Schwander
- Institute of Molecular Evolution, Biology Department, Math. -Nat. Faculty, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Max Brabender
- Institute of Molecular Evolution, Biology Department, Math. -Nat. Faculty, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Natalia Mrnjavac
- Institute of Molecular Evolution, Biology Department, Math. -Nat. Faculty, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Jessica L. E. Wimmer
- Institute of Molecular Evolution, Biology Department, Math. -Nat. Faculty, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Martina Preiner
- Microcosm Earth Center, Max Planck Institute for Terrestrial Microbiology and Philipps-Universität, Marburg, Germany
| | - William F. Martin
- Institute of Molecular Evolution, Biology Department, Math. -Nat. Faculty, Heinrich-Heine-Universität, Düsseldorf, Germany
| |
Collapse
|