1
|
Seo H, Cuddleston WH, Fu T, Navarro E, Parks M, Allan A, Efthymiou AG, Breen MS, Xiao X, Raj T, Humphrey J. Cytosine-to-uracil RNA editing is upregulated by pro-inflammatory stimulation of myeloid cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643382. [PMID: 40166159 PMCID: PMC11957056 DOI: 10.1101/2025.03.14.643382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Myeloid cells undergo large changes to their gene expression profile in response to inflammatory stimulation. This includes an increase in post-transcriptional modifications carried out by adenosine-to-inosine (A-to-I) and cytosine-to-uracil (C-to-U) RNA editing enzymes. However, the precise RNA editing targets altered by stimulation and the consequences of RNA editing on gene expression and the proteome have been understudied. We present a comprehensive RNA editing analysis of stimulated myeloid cells across three independent cohorts totalling 297 samples, including monocytes and IPS-derived microglia. We observed that C-to-U editing, while less abundant, has a higher effect size in response to stimulation than A-to-I, and has a greater potential to recode the proteome. We investigated the consequences of RNA editing on RNA stability and gene expression using in silico and in vitro reporter methods, and identified a recoding C-to-U site in ARSB that mimics a reported lysosomal storage disorder mutation.
Collapse
Affiliation(s)
- Hyomin Seo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Winston H Cuddleston
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ting Fu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elisa Navarro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Instituto Universitario de Investigacion en Neuroquímica, Departamento de Bioquímica y Biologia Molecular, Facultad de Medicina, Universidad Complutense, Madrid, Spain
- Centro de Investigacion Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Madrid, Spain
| | - Madison Parks
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amanda Allan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anastasia G Efthymiou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael S Breen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xinshu Xiao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Towfique Raj
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Humphrey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Estelle and Daniel Maggin Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
2
|
Choudhury M, Yamamoto R, Xiao X. Genetic architecture of RNA editing, splicing and gene expression in schizophrenia. Hum Mol Genet 2025; 34:277-290. [PMID: 39656777 PMCID: PMC11792240 DOI: 10.1093/hmg/ddae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Genome wide association studies (GWAS) have been conducted over the past decades to investigate the underlying genetic origin of neuropsychiatric diseases, such as schizophrenia (SCZ). While these studies demonstrated the significance of disease-phenotype associations, there is a pressing need to fully characterize the functional relevance of disease-associated genetic variants. Functional genetic loci can affect transcriptional and post-transcriptional phenotypes that may contribute to disease pathology. Here, we investigate the associations between genetic variation and RNA editing, splicing, and overall gene expression through identification of quantitative trait loci (QTL) in the CommonMind Consortium SCZ cohort. We find that editing QTL (edQTL), splicing QTL (sQTL) and expression QTL (eQTL) possess both unique and common gene targets, which are involved in many disease-relevant pathways, including brain function and immune response. We identified two QTL that fall into all three QTL categories (seedQTL), one of which, rs146498205, targets the lincRNA gene, RP11-156P1.3. In addition, we observe that the RNA binding protein AKAP1, with known roles in neuronal regulation and mitochondrial function, had enriched binding sites among edQTL, including the seedQTL, rs146498205. We conduct colocalization with various brain disorders and find that all QTL have top colocalizations with SCZ and related neuropsychiatric diseases. Furthermore, we identify QTL within biologically relevant GWAS loci, such as in ELA2, an important tRNA processing gene associated with SCZ risk. This work presents the investigation of multiple QTL types in parallel and demonstrates how they target both distinct and overlapping SCZ-relevant genes and pathways.
Collapse
Affiliation(s)
- Mudra Choudhury
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, United States
| | - Ryo Yamamoto
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, United States
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, United States
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 612 Charles E. Young Drive East, Box 957246, Los Angeles, CA 90095-7246, United States
- Molecular Biology Institute, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095-1570, United States
| |
Collapse
|
3
|
Chu H, Zhu H, Ma J, Jiang Y, Cui C, Yan X, Li Q, Zhang X, Chen D, Li X, Li R. Mitochondrial Dysfunction and Metabolic Indicators in Patients with Drug-Naive First-Episode Schizophrenia: A Case-Control Study. Neuropsychiatr Dis Treat 2024; 20:2433-2442. [PMID: 39687781 PMCID: PMC11647910 DOI: 10.2147/ndt.s501527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024] Open
Abstract
Objective This paper aims to explore the expression characteristics of mitochondrial function-related genes in patients with first-episode schizophrenia (SCZ)and the correlation between differentially expressed genes and clinical metabolic indicators. Methods Twenty patients with first-episode SCZ who had not taken antipsychotic drugs (patient group) and twenty healthy controls (control group) were included. Quantitative real-time PCR technology was used to detect the expression levels of genes related to mitochondrial quality control and oxidative phosphorylation in peripheral blood leukocytes, and metabolic indicators such as blood biochemistry and blood glucose were collected. Results The gene expression levels of key genes related to mitochondrial function, PGC-1a, PARK2, and LC3B, in the patient group were significantly lower than those in the control group (P < 0.05). Correlation analysis showed that the expression level of PGC-1a gene in the patient group was negatively correlated with very low-density lipoprotein levels (r =-0.451), and the expression level of PARK2 gene in the patient group was negatively correlated with uric acid levels (r =-0.447). Conclusion The expression levels of multiple key genes in the mitochondrial quality control and oxidative phosphorylation processes in patients with first-episode SCZ display a downward trend. The differentially expressed genes are correlated with the metabolic abnormalities of the patients, suggesting that mitochondrial dysfunction may be related to the high incidence of metabolic diseases in patients with SCZ.
Collapse
Affiliation(s)
- Haoran Chu
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, People’s Republic of China
| | - Houming Zhu
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, People’s Republic of China
| | - Jiashu Ma
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, People’s Republic of China
| | - Yijia Jiang
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, People’s Republic of China
| | - Cuicui Cui
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, People’s Republic of China
| | - Xianxia Yan
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, People’s Republic of China
| | - Qin Li
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, People’s Republic of China
| | - Xinyan Zhang
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, People’s Republic of China
| | - Diancai Chen
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, People’s Republic of China
| | - Xianwei Li
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, People’s Republic of China
| | - Ranran Li
- Department of Psychiatry, Shandong Mental Health Center, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
4
|
Wang G, Liu S, Fan X, Li J, Xue Q, Liu K, Li X, Yang Y, Wang X, Song M, Shao M, Li W, Han Y, Lv L, Su X. Mitochondrial Dysfunction and Cognitive Impairment in Schizophrenia: The Role of Inflammation. Schizophr Bull 2024:sbae196. [PMID: 39535935 DOI: 10.1093/schbul/sbae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND HYPOTHESIS The complex immune-brain interactions and the regulatory role of mitochondria in the immune response suggest that mitochondrial damage reported in schizophrenia (SZ) may be related to abnormalities observed in immune and brain functions. STUDY DESIGN Mitochondrial DNA copy number (mtDNA CN), a biomarker of mitochondrial function, was assessed in peripheral blood leukocytes (PBLs) of 121 healthy individuals and 118 SZ patients before and after 8 weeks of antipsychotic treatment, and a meta-analysis related to blood mtDNA CN was conducted. Plasma C-reactive protein (CRP) levels in SZ patients were obtained from the medical record system. Spearman correlation analysis and hierarchical linear regression were used to analyze the relationships among mtDNA CN, CRP levels, and cognitive function. A mediation model was constructed using the PROCESS program. STUDY RESULTS Our results revealed the decreased mtDNA CN in PBLs from SZ patients (P = .05). The meta-analysis supported the decreased blood mtDNA CN in SZ patients (P < .01). The mtDNA CN in PBL was positively correlated with working memory (P = .02) and negatively correlated with plasma CRP levels (P = .039). Furthermore, a lower mtDNA CN in PBL in SZ patients was a significant predictor of worse working memory (P = .006). CRP acted as a mediator with an 8.0% effect. CONCLUSIONS This study revealed an association between peripheral mitochondrial dysfunction and cognitive impairment in SZ, with inflammation acting as a mediating effect. Therefore, mitochondrial dysfunction might provide novel targets for new treatments for cognitive impairment in SZ.
Collapse
Affiliation(s)
- Guanyu Wang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Senqi Liu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Xiaoyun Fan
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Jinming Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
| | - Qianzi Xue
- The Second Clinical College of Xinxiang Medical University, Xinxiang 453003, China
| | - Kang Liu
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Xue Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Xiujuan Wang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Meng Song
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Minglong Shao
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Wenqiang Li
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Yong Han
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| | - Xi Su
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453002, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang 453002, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang 453002, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang 453002, China
| |
Collapse
|
5
|
Yang W, Lian K, Ye J, Cheng Y, Xu X. Analyses of single-cell and bulk RNA sequencing combined with machine learning reveal the expression patterns of disrupted mitophagy in schizophrenia. Front Psychiatry 2024; 15:1429437. [PMID: 39355378 PMCID: PMC11442249 DOI: 10.3389/fpsyt.2024.1429437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024] Open
Abstract
Background Mitochondrial dysfunction is an important factor in the pathogenesis of schizophrenia. However, the relationship between mitophagy and schizophrenia remains to be elucidated. Methods Single-cell RNA sequencing datasets of peripheral blood and brain organoids from SCZ patients and healthy controls were retrieved. Mitophagy-related genes that were differentially expressed between the two groups were screened. The diagnostic model based on key mitophagy genes was constructed using two machine learning methods, and the relationship between mitophagy and immune cells was analyzed. Single-cell RNA sequencing data of brain organoids was used to calculate the mitophagy score (Mitoscore). Results We found 7 key mitophagy genes to construct a diagnostic model. The mitophagy genes were related to the infiltration of neutrophils, activated dendritic cells, resting NK cells, regulatory T cells, resting memory T cells, and CD8 T cells. In addition, we identified 12 cell clusters based on the Mitoscore, and the most abundant neurons were further divided into three subgroups. Results at the single-cell level showed that Mitohigh_Neuron established a novel interaction with endothelial cells via SPP1 signaling pathway, suggesting their distinct roles in SCZ pathogenesis. Conclusion We identified a mitophagy signature for schizophrenia that provides new insights into disease pathogenesis and new possibilities for its diagnosis and treatment.
Collapse
Affiliation(s)
- Wei Yang
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Psychiatry, The Second People’s Hospital of Yuxi, Yuxi, Yunnan, China
- Yuxi Hospital affiliated to Kunming University of Science and Technology, Yuxi, Yunnan, China
| | - Kun Lian
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jing Ye
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Schizophrenia Research Program, Yunnan Clinical Research Center for Mental Disorders, Kunming, Yunnan, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Schizophrenia Research Program, Yunnan Clinical Research Center for Mental Disorders, Kunming, Yunnan, China
| |
Collapse
|
6
|
Karagianni K, Dafou D, Xanthopoulos K, Sklaviadis T, Kanata E. RNA editing regulates glutamatergic synapses in the frontal cortex of a molecular subtype of Amyotrophic Lateral Sclerosis. Mol Med 2024; 30:101. [PMID: 38997636 PMCID: PMC11241978 DOI: 10.1186/s10020-024-00863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/12/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Amyotrophic Lateral Sclerosis (ALS) is a highly heterogenous neurodegenerative disorder that primarily affects upper and lower motor neurons, affecting additional cell types and brain regions. Underlying molecular mechanisms are still elusive, in part due to disease heterogeneity. Molecular disease subtyping through integrative analyses including RNA editing profiling is a novel approach for identification of molecular networks involved in pathogenesis. METHODS We aimed to highlight the role of RNA editing in ALS, focusing on the frontal cortex and the prevalent molecular disease subtype (ALS-Ox), previously determined by transcriptomic profile stratification. We established global RNA editing (editome) and gene expression (transcriptome) profiles in control and ALS-Ox cases, utilizing publicly available RNA-seq data (GSE153960) and an in-house analysis pipeline. Functional annotation and pathway analyses identified molecular processes affected by RNA editing alterations. Pearson correlation analyses assessed RNA editing effects on expression. Similar analyses on additional ALS-Ox and control samples (GSE124439) were performed for verification. Targeted re-sequencing and qRT-PCR analysis targeting CACNA1C, were performed using frontal cortex tissue from ALS and control samples (n = 3 samples/group). RESULTS We identified reduced global RNA editing in the frontal cortex of ALS-Ox cases. Differentially edited transcripts are enriched in synapses, particularly in the glutamatergic synapse pathway. Bioinformatic analyses on additional ALS-Ox and control RNA-seq data verified these findings. We identified increased recoding at the Q621R site in the GRIK2 transcript and determined positive correlations between RNA editing and gene expression alterations in ionotropic receptor subunits GRIA2, GRIA3 and the CACNA1C transcript, which encodes the pore forming subunit of a post-synaptic L-type calcium channel. Experimental data verified RNA editing alterations and editing-expression correlation in CACNA1C, highlighting CACNA1C as a target for further study. CONCLUSIONS We provide evidence on the involvement of RNA editing in the frontal cortex of an ALS molecular subtype, highlighting a modulatory role mediated though recoding and gene expression regulation on glutamatergic synapse related transcripts. We report RNA editing effects in disease-related transcripts and validated editing alterations in CACNA1C. Our study provides targets for further functional studies that could shed light in underlying disease mechanisms enabling novel therapeutic approaches.
Collapse
Affiliation(s)
- Korina Karagianni
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Dimitra Dafou
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001, Thermi, Greece
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Eirini Kanata
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
7
|
Liu Y, Lin H, Liu M, Lin L, Wen Y. Establishment of a Mitochondrial Metabolism-Related Diagnostic Model in Schizophrenia Based on LASSO Algorithm. Psychiatry Investig 2024; 21:618-628. [PMID: 38960439 PMCID: PMC11222072 DOI: 10.30773/pi.2024.0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/18/2024] [Accepted: 03/25/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE Schizophrenia is a common mental disorder, and mitochondrial function represents a potential therapeutic target for psychiatric diseases. The role of mitochondrial metabolism-related genes (MRGs) in the diagnosis of schizophrenia remains unknown. This study aimed to identify candidate genes that may influence the diagnosis and treatment of schizophrenia based on MRGs. METHODS Three schizophrenia datasets were obtained from the Gene Expression Omnibus database. MRGs were collected from relevant literature. The differentially expressed genes between normal samples and schizophrenia samples were screened using the limma package. Venn analysis was performed to identify differentially expressed MRGs (DEMRGs) in schizophrenia. Based on the STRING database, hub genes in DEMRGs were identified using the MCODE algorithm in Cytoscape. A diagnostic model containing hub genes was constructed using LASSO regression and logistic regression analysis. The relationship between hub genes and drug sensitivity was explored using the DSigDB database. An interaction network between miRNA-transcription factor (TF)-hub genes was created using the Network-Analyst website. RESULTS A total of 1,234 MRGs, 172 DEMRGs, and 6 hub genes with good diagnostic performance were identified. Ten potential candidate drugs (rifampicin, fulvestrant, pentadecafluorooctanoic acid, etc.) were selected. Thirty-four miRNAs targeting genes in the diagnostic model (ANGPTL4, CPT2, GLUD1, MED1, and MED20), as well as 137 TFs, were identified. CONCLUSION Six potential candidate genes showed promising diagnostic significance. rifampicin, fulvestrant, and pentadecafluorooctanoic acid were potential drugs for future research in the treatment of schizophrenia. These findings provided valuable evidence for the understanding of schizophrenia pathogenesis, diagnosis, and drug treatment.
Collapse
Affiliation(s)
- Yinfang Liu
- Department of Pharmacy, The Third Hospital of Longyan, Longyan, China
| | - Han Lin
- Department of Pharmacy, The Third Hospital of Longyan, Longyan, China
| | - Meicen Liu
- Department of Pharmacy, The First Hospital of Longyan, Longyan, China
| | - Liping Lin
- Department of Pharmacy, The Third Hospital of Longyan, Longyan, China
| | - Yaohui Wen
- Department of Laboratory Medicine, The Third Hospital of Longyan, Longyan, China
| |
Collapse
|
8
|
Sharma S, Fazal FM. Localization of RNAs to the mitochondria-mechanisms and functions. RNA (NEW YORK, N.Y.) 2024; 30:597-608. [PMID: 38448244 PMCID: PMC11098466 DOI: 10.1261/rna.079999.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
The mammalian mitochondrial proteome comprises over 1000 proteins, with the majority translated from nuclear-encoded messenger RNAs (mRNAs). Mounting evidence suggests many of these mRNAs are localized to the outer mitochondrial membrane (OMM) in a pre- or cotranslational state. Upon reaching the mitochondrial surface, these mRNAs are locally translated to produce proteins that are cotranslationally imported into mitochondria. Here, we summarize various mechanisms cells use to localize RNAs, including transfer RNAs (tRNAs), to the OMM and recent technological advancements in the field to study these processes. While most early studies in the field were carried out in yeast, recent studies reveal RNA localization to the OMM and their regulation in higher organisms. Various factors regulate this localization process, including RNA sequence elements, RNA-binding proteins (RBPs), cytoskeletal motors, and translation machinery. In this review, we also highlight the role of RNA structures and modifications in mitochondrial RNA localization and discuss how these features can alter the binding properties of RNAs. Finally, in addition to RNAs related to mitochondrial function, RNAs involved in other cellular processes can also localize to the OMM, including those implicated in the innate immune response and piRNA biogenesis. As impairment of messenger RNA (mRNA) localization and regulation compromise mitochondrial function, future studies will undoubtedly expand our understanding of how RNAs localize to the OMM and investigate the consequences of their mislocalization in disorders, particularly neurodegenerative diseases, muscular dystrophies, and cancers.
Collapse
Affiliation(s)
- Surbhi Sharma
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, USA
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas 77030, USA
| | - Furqan M Fazal
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, USA
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
9
|
Yang L, Yi L, Yang J, Zhang R, Xie Z, Wang H. Temporal landscape and translational regulation of A-to-I RNA editing in mouse retina development. BMC Biol 2024; 22:106. [PMID: 38715001 PMCID: PMC11077751 DOI: 10.1186/s12915-024-01908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 05/01/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND The significance of A-to-I RNA editing in nervous system development is widely recognized; however, its influence on retina development remains to be thoroughly understood. RESULTS In this study, we performed RNA sequencing and ribosome profiling experiments on developing mouse retinas to characterize the temporal landscape of A-to-I editing. Our findings revealed temporal changes in A-to-I editing, with distinct editing patterns observed across different developmental stages. Further analysis showed the interplay between A-to-I editing and alternative splicing, with A-to-I editing influencing splicing efficiency and the quantity of splicing events. A-to-I editing held the potential to enhance translation diversity, but this came at the expense of reduced translational efficiency. When coupled with splicing, it could produce a coordinated effect on gene translation. CONCLUSIONS Overall, this study presents a temporally resolved atlas of A-to-I editing, connecting its changes with the impact on alternative splicing and gene translation in retina development.
Collapse
Affiliation(s)
- Ludong Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Liang Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Jiaqi Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China
| | - Rui Zhang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| | - Hongwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510060, China.
| |
Collapse
|
10
|
Zhang F, Ignatova VV, Ming GL, Song H. Advances in brain epitranscriptomics research and translational opportunities. Mol Psychiatry 2024; 29:449-463. [PMID: 38123727 PMCID: PMC11116067 DOI: 10.1038/s41380-023-02339-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
Various chemical modifications of all RNA transcripts, or epitranscriptomics, have emerged as crucial regulators of RNA metabolism, attracting significant interest from both basic and clinical researchers due to their diverse functions in biological processes and immense clinical potential as highlighted by the recent profound success of RNA modifications in improving COVID-19 mRNA vaccines. Rapid accumulation of evidence underscores the critical involvement of various RNA modifications in governing normal neural development and brain functions as well as pathogenesis of brain disorders. Here we provide an overview of RNA modifications and recent advancements in epitranscriptomic studies utilizing animal models to elucidate important roles of RNA modifications in regulating mammalian neurogenesis, gliogenesis, synaptic formation, and brain function. Moreover, we emphasize the pivotal involvement of RNA modifications and their regulators in the pathogenesis of various human brain disorders, encompassing neurodevelopmental disorders, brain tumors, psychiatric and neurodegenerative disorders. Furthermore, we discuss potential translational opportunities afforded by RNA modifications in combatting brain disorders, including their use as biomarkers, in the development of drugs or gene therapies targeting epitranscriptomic pathways, and in applications for mRNA-based vaccines and therapies. We also address current limitations and challenges hindering the widespread clinical application of epitranscriptomic research, along with the improvements necessary for future progress.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Valentina V Ignatova
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Weng S, Yang X, Yu N, Wang PC, Xiong S, Ruan H. Harnessing ADAR-Mediated Site-Specific RNA Editing in Immune-Related Disease: Prediction and Therapeutic Implications. Int J Mol Sci 2023; 25:351. [PMID: 38203521 PMCID: PMC10779106 DOI: 10.3390/ijms25010351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
ADAR (Adenosine Deaminases Acting on RNA) proteins are a group of enzymes that play a vital role in RNA editing by converting adenosine to inosine in RNAs. This process is a frequent post-transcriptional event observed in metazoan transcripts. Recent studies indicate widespread dysregulation of ADAR-mediated RNA editing across many immune-related diseases, such as human cancer. We comprehensively review ADARs' function as pattern recognizers and their capability to contribute to mediating immune-related pathways. We also highlight the potential role of site-specific RNA editing in maintaining homeostasis and its relationship to various diseases, such as human cancers. More importantly, we summarize the latest cutting-edge computational approaches and data resources for predicting and analyzing RNA editing sites. Lastly, we cover the recent advancement in site-directed ADAR editing tool development. This review presents an up-to-date overview of ADAR-mediated RNA editing, how site-specific RNA editing could potentially impact disease pathology, and how they could be harnessed for therapeutic applications.
Collapse
Affiliation(s)
- Shenghui Weng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Xinyi Yang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Nannan Yu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Peng-Cheng Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
| | - Hang Ruan
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China; (S.W.); (P.-C.W.)
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| |
Collapse
|
12
|
Mercer HM, Nair AM, Ridgel A, Piontkivska H. Alterations in RNA editing in skeletal muscle following exercise training in individuals with Parkinson's disease. PLoS One 2023; 18:e0287078. [PMID: 38134032 PMCID: PMC10745226 DOI: 10.1371/journal.pone.0287078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease behind Alzheimer's Disease, currently affecting more than 10 million people worldwide and 1.5 times more males than females. The progression of PD results in the loss of function due to neurodegeneration and neuroinflammation. The etiology of PD is multifactorial, including both genetic and environmental origins. Here we explored changes in RNA editing, specifically editing through the actions of the Adenosine Deaminases Acting on RNA (ADARs), in the progression of PD. Analysis of ADAR editing of skeletal muscle transcriptomes from PD patients and controls, including those that engaged in a rehabilitative exercise training program revealed significant differences in ADAR editing patterns based on age, disease status, and following rehabilitative exercise. Further, deleterious editing events in protein coding regions were identified in multiple genes with known associations to PD pathogenesis. Our findings of differential ADAR editing complement findings of changes in transcriptional networks identified by a recent study and offer insights into dynamic ADAR editing changes associated with PD pathogenesis.
Collapse
Affiliation(s)
- Heather Milliken Mercer
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
- Department of Biological and Environmental Sciences, University of Mount Union, Alliance, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| | - Aiswarya Mukundan Nair
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
| | - Angela Ridgel
- School of Health Sciences, Kent State University, Kent, OH, United States of America
- Brain Health Research Institute, Kent State University, Kent, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
- Brain Health Research Institute, Kent State University, Kent, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| |
Collapse
|
13
|
Yamamoto R, Liu Z, Choudhury M, Xiao X. dsRID: in silico identification of dsRNA regions using long-read RNA-seq data. Bioinformatics 2023; 39:btad649. [PMID: 37871161 PMCID: PMC10628436 DOI: 10.1093/bioinformatics/btad649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/02/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023] Open
Abstract
MOTIVATION Double-stranded RNAs (dsRNAs) are potent triggers of innate immune responses upon recognition by cytosolic dsRNA sensor proteins. Identification of endogenous dsRNAs helps to better understand the dsRNAome and its relevance to innate immunity related to human diseases. RESULTS Here, we report dsRID (double-stranded RNA identifier), a machine-learning-based method to predict dsRNA regions in silico, leveraging the power of long-read RNA-sequencing (RNA-seq) and molecular traits of dsRNAs. Using models trained with PacBio long-read RNA-seq data derived from Alzheimer's disease (AD) brain, we show that our approach is highly accurate in predicting dsRNA regions in multiple datasets. Applied to an AD cohort sequenced by the ENCODE consortium, we characterize the global dsRNA profile with potentially distinct expression patterns between AD and controls. Together, we show that dsRID provides an effective approach to capture global dsRNA profiles using long-read RNA-seq data. AVAILABILITY AND IMPLEMENTATION Software implementation of dsRID, and genomic coordinates of regions predicted by dsRID in all samples are available at the GitHub repository: https://github.com/gxiaolab/dsRID.
Collapse
Affiliation(s)
- Ryo Yamamoto
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA 90095-1570, United States
| | - Zhiheng Liu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-7246, United States
| | - Mudra Choudhury
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-7246, United States
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA 90095-1570, United States
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90095-7246, United States
- Molecular Biology Institute, University of California, Los Angeles, CA 90095-1570, United States
| |
Collapse
|
14
|
Yamamoto R, Liu Z, Choudhury M, Xiao X. dsRID: Editing-free in silico identification of dsRNA region using long-read RNA-seq data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543466. [PMID: 37333092 PMCID: PMC10274638 DOI: 10.1101/2023.06.02.543466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Double-stranded RNAs (dsRNAs) are potent triggers of innate immune responses upon recognition by cytosolic dsRNA sensor proteins. Identification of endogenous dsRNAs helps to better understand the dsRNAome and its relevance to innate immunity related to human diseases. Here, we report dsRID (double-stranded RNA identifier), a machine learning-based method to predict dsRNA regions in silico, leveraging the power of long-read RNA-sequencing (RNA-seq) and molecular traits of dsRNAs. Using models trained with PacBio long-read RNA-seq data derived from Alzheimer's disease (AD) brain, we show that our approach is highly accurate in predicting dsRNA regions in multiple datasets. Applied to an AD cohort sequenced by the ENCODE consortium, we characterize the global dsRNA profile with potentially distinct expression patterns between AD and controls. Together, we show that dsRID provides an effective approach to capture global dsRNA profiles using long-read RNA-seq data.
Collapse
Affiliation(s)
- Ryo Yamamoto
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California, USA
| | - Zhiheng Liu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Mudra Choudhury
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California, USA
| | - Xinshu Xiao
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| |
Collapse
|