1
|
Hurst S, Holloway R, Garvin H, Bocko G, Garcia K, Cofran Z, Hawks J, Berger L. A reanalysis of the Taung endocranial surface: Comparison with large samples of living hominids. J Hum Evol 2025; 200:103637. [PMID: 39965466 DOI: 10.1016/j.jhevol.2024.103637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 02/20/2025]
Abstract
Since its discovery, the natural endocast of the Taung cranium has played a central role in the interpretation of human brain evolution. Aspects of the endocast including the identification of the lunate sulcus, possible expansion of the parietal lobe, and rounded profile suggested to R. Dart that the Taung individual was aligned with humans and not with other anthropoid primates, yet these interpretations were immediately controversial and remain so today. We have generated a detailed curvature map of the Taung endocast to evaluate its surface organization with reference to 189 chimpanzee and 20 human brains. These data enable evolutionary consideration of the surface detail of depressions and projections sufficient to mark primary sulci and variations in sulcal organization due to superficial bridges between adjacent gyri. Our results suggest that the lunate sulcus in the Taung endocast displays a gyral bridge between the occipital lobe and the inferior parietal lobule seen in 65% of our adult human brain hemispheres but in only 1.8% of our chimpanzee ones. The frontal lobe organization of the Taung endocast reflects a superior frontal sulcus pattern seen in 92.8% of our adult human brain hemispheres, but in 0% of our adult chimpanzee sample, and an inferior frontal sulcus pattern seen in 100% of our adult human brain hemispheres but in only 2.1% of our chimpanzee ones. The Taung inferior frontal gyrus retains a fronto-orbital sulcus which is seen in 0% of our adult human brain hemispheres and in 100% of our adult chimpanzee ones. These observations help to resolve some apparent inconsistencies of interpretation of the posterior endocast of the Taung specimen while showing that the specimen shared some derived aspects of endocast organization with humans that were not found in chimpanzees.
Collapse
Affiliation(s)
- Shawn Hurst
- Department of Biology, University of Indianapolis, Indianapolis, IN, USA.
| | - Ralph Holloway
- Department of Anthropology, Columbia University, New York City, NY, USA
| | - Heather Garvin
- Department of Anatomy, Des Moines University, Des Moines, IA, USA
| | - Grace Bocko
- Department of Anthropology, SUNY University at Buffalo, Buffalo, NY, USA
| | - Kara Garcia
- Department of Radiology & Imaging Sciences, Indiana University School of Medicine, Evansville, IN, USA
| | - Zachary Cofran
- Department of Anthropology, Vassar College, Poughkeepsie, NY, USA
| | - John Hawks
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa; Department of Anthropology, University of Wisconsin-Madison, USA
| | - Lee Berger
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa; The National Geographic Society, Washington, DC, USA; The Carnegie Institution for Science, Washington, DC, USA
| |
Collapse
|
2
|
Hopkins WD, Spocter MA, Mulholland MM, Sherwood CC. Gray matter volume and asymmetry in Broca's and Wernicke's area homologs in chimpanzees (Pan troglodytes) using a probabilistic region of interest approach. Neuroimage 2025; 307:121038. [PMID: 39826775 DOI: 10.1016/j.neuroimage.2025.121038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025] Open
Abstract
Broca's and Wernicke's areas are comprised of Brodmann areas 44, 45 and 22 in the human brain. Because of their roles in higher cognitive and linguistic function, there has been historical and contemporary interest in comparative studies on the morphology and cytoarchitectonic organization in Broca's and Wernicke's between primate species. One challenge to comparative morphological studies between human and nonhuman primates for Broca's and Wernicke's areas is the absence in homologous sulci used to define these regions. To address this limitation, we created probabilistic atlas maps of BA44, BA45 and BA22 based on previously reported cytoarchitectonic maps of these regions in chimpanzees. We then applied the maps to segmented gray matter volume to estimate gray matter within each region and hemisphere. Females were found to have significantly higher gray matter volumes for BA44 and BA45 compared males. Significant negative associations were found between age and gray matter volume for BA44 and BA45 but not BA22. Population-level asymmetries were found for BA44, BA45 and BA22 but there are some limitations in the interpretation of these findings. Lastly, using quantitative genetic analyses, we found significant heritability in the average gray matter volume for BA44 and BA45 but not BA22. The sex and age effects found in chimpanzees are consistent with previous studies in humans.
Collapse
Affiliation(s)
- William D Hopkins
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA.
| | | | - Michele M Mulholland
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington DC, USA
| |
Collapse
|
3
|
Wang Y, Cheng L, Li D, Lu Y, Wang C, Wang Y, Gao C, Wang H, Erichsen CT, Vanduffel W, Hopkins WD, Sherwood CC, Jiang T, Chu C, Fan L. The Chimpanzee Brainnetome Atlas reveals distinct connectivity and gene expression profiles relative to humans. Innovation (N Y) 2025; 6:100755. [PMID: 39991479 PMCID: PMC11846036 DOI: 10.1016/j.xinn.2024.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/07/2024] [Indexed: 02/25/2025] Open
Abstract
Chimpanzees (Pan troglodytes) are one of humans' closest living relatives, making them the most directly relevant comparison point for understanding human brain evolution. Zeroing in on the differences in brain connectivity between humans and chimpanzees can provide key insights into the specific evolutionary changes that might have occurred along the human lineage. However, such comparisons are hindered by the absence of cross-species brain atlases established within the same framework. To address this gap, we developed the Chimpanzee Brainnetome Atlas (ChimpBNA) using a connectivity-based parcellation framework. Leveraging this new resource, we found substantial divergence in connectivity patterns between the two species across most association cortices, notably in the lateral temporal and dorsolateral prefrontal cortex. These differences deviate sharply from the pattern of cortical expansion observed when comparing humans to chimpanzees, highlighting more complex and nuanced connectivity changes in brain evolution than previously recognized. Additionally, we identified regions displaying connectional asymmetries that differed between species, likely resulting from evolutionary divergence. Genes highly expressed in regions of divergent connectivities were enriched in cell types crucial for cortical projection circuits and synapse formation, whose pronounced differences in expression patterns hint at genetic influences on neural circuit development, function, and evolution. Our study provides a fine-scale chimpanzee brain atlas and highlights the chimpanzee-human connectivity divergence in a rigorous and comparative manner. In addition, these results suggest potential gene expression correlates for species-specific differences by linking neuroimaging and genetic data, offering insights into the evolution of human-unique cognitive capabilities.
Collapse
Affiliation(s)
- Yufan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luqi Cheng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Deying Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuheng Lu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changshuo Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yaping Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Chaohong Gao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium
| | - Camilla T. Erichsen
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - William D. Hopkins
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- Xiaoxiang Institute for Brain Health and Yongzhou Central Hospital, Yongzhou 425000, China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
- School of Life Sciences and Health, University of Health and Rehabilitation Sciences, Qingdao 266000, China
- Shandong Key Lab of Complex Medical Intelligence and Aging, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
4
|
Häkkinen S, Voorhies WI, Willbrand EH, Tsai YH, Gagnant T, Yao JK, Weiner KS, Bunge SA. Anchoring functional connectivity to individual sulcal morphology yields insights in a pediatric study of reasoning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.18.590165. [PMID: 38659961 PMCID: PMC11042283 DOI: 10.1101/2024.04.18.590165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A salient neuroanatomical feature of the human brain is its pronounced cortical folding, and there is mounting evidence that sulcal morphology is relevant to functional brain architecture and cognition. However, our understanding of the relationships between sulcal anatomy, brain activity, and behavior is still in its infancy. We previously found the depth of three small, shallow sulci in lateral prefrontal cortex (LPFC) was linked to reasoning performance in childhood and adolescence (Voorhies et al., 2021). These findings beg the question: what is the linking mechanism between sulcal morphology and cognition? To shed light on this question, we investigated functional connectivity among sulci in LPFC and lateral parietal cortex (LPC). We leveraged manual parcellations (21 sulci/hemisphere, total of 1806) and functional magnetic resonance (fMRI) data from a reasoning task from 43 participants aged 7-18 years (20 female). We conducted clustering and classification analyses of individual-level functional connectivity among sulci. Broadly, we found that 1) the connectivity patterns of individual sulci could be differentiated - and more accurately than rotated sulcal labels equated for size and shape; 2) sulcal connectivity did not consistently correspond with that of probabilistic labels or large-scale networks; 3) sulci clustered together into groups with similar patterns, not dictated by spatial proximity; and 4) across individuals, greater depth was associated with higher network centrality for several sulci under investigation. These results highlight that functional connectivity can be meaningfully anchored to individual sulcal anatomy, and demonstrate that functional network centrality can vary as a function of sulcal depth.
Collapse
Affiliation(s)
- Suvi Häkkinen
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Willa I. Voorhies
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Ethan H. Willbrand
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, 53726 USA
| | - Yi-Heng Tsai
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Thomas Gagnant
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Medical Science Faculty, University of Bordeaux, Bordeaux, France
| | | | - Kevin S. Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720 USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Silvia A. Bunge
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720 USA
| |
Collapse
|
5
|
Hopkins WD, Meguerditchian A. Handedness and brain asymmetries in nonhuman primates. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:197-210. [PMID: 40074397 DOI: 10.1016/b978-0-443-15646-5.00007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
A majority of humans are right-handed and exhibit left hemisphere specialization for the comprehension and production of language. To what extent population-level behavioral and brain asymmetries are unique to humans remains a topic of interest across a wide range of scientific disciplines. In this chapter, we present current findings on the expression of population-level behavioral and brain asymmetries in nonhuman primates. We further present data on the association between communication functions, and especially gestures and individual variation in neuroanatomic asymmetries in nonhuman primates, with an emphasis on data from chimpanzees and baboons. The collective data are interpreted within the context of different theories on the evolution of language lateralization.
Collapse
Affiliation(s)
- William D Hopkins
- Department of Comparative Medicine, The University of Texas MD Anderson Cancer Center, Bastrop, TX, United States.
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, CNRS, Aix-Marseille University, Institute of Language, Communication and the Brain, Marseille, France
| |
Collapse
|
6
|
Hastings Iii WL, Willbrand EH, Kelly JP, Washington ST, Tameilau P, Sathishkumar RN, Maboudian SA, Parker BJ, Elliott MV, Johnson SL, Weiner KS. Emotion-related impulsivity is related to orbitofrontal cortical sulcation. Cortex 2024; 181:140-154. [PMID: 39541920 PMCID: PMC11681932 DOI: 10.1016/j.cortex.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/04/2024] [Accepted: 08/22/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Emotion-related impulsivity (ERI) describes the trait-like tendency toward poor self-control when experiencing strong emotions. ERI has been shown to be elevated across psychiatric disorders and predictive of the onset and worsening of psychiatric syndromes. Recent work has correlated ERI scores with the region-level neuroanatomical properties of the orbitofrontal cortex (OFC), but not posteromedial cortex (PMC). Informed by a growing body of research indicating that examining the morphology of specific cortical folds (sulci) can produce unique insights into behavioral outcomes, the present study modeled the association between ERI and the morphology of sulci within OFC and PMC, which is a finer scale than previously conducted. METHODS Analyses were conducted in a transdiagnostic sample of 118 adult individuals with a broad range of psychiatric syndromes. First, we manually defined over 4,000 sulci across 236 cerebral hemispheres. Second, we implemented a model-based LASSO regression to relate OFC sulcal morphology to ERI. Third, we tested whether effects were specific to OFC sulci, sulcal depth, and ERI (as compared to PMC sulci, sulcal gray matter thickness, and non-emotion-related impulsivity). RESULTS The LASSO regression revealed bilateral associations of ERI with the depths of eight OFC sulci. These effects were strongest for OFC sulci, sulcal depth, and ERI in comparison to PMC sulci, sulcal gray matter thickness, and non-emotion-related impulsivity. In addition, we identified a new transverse component of the olfactory sulcus in every hemisphere that is dissociable from the longitudinal component based on anatomical features and correlation with behavior, which could serve as a new transdiagnostic biomarker. CONCLUSIONS The results of this data-driven investigation provide greater neuroanatomical and neurodevelopmental specificity on how OFC is related to ERI. As such, findings link neuroanatomical characteristics to a trait that is highly predictive of psychopathology.
Collapse
Affiliation(s)
| | - Ethan H Willbrand
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| | - Joseph P Kelly
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, IL USA.
| | - Sydney T Washington
- Department of Psychology, California State University, Fullerton, Fullerton, CA, USA.
| | - Phyllis Tameilau
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| | | | - Samira A Maboudian
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA; Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA.
| | - Benjamin J Parker
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA; Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA.
| | - Matthew V Elliott
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| | - Sheri L Johnson
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| | - Kevin S Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA; Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
7
|
Vickery S, Patil KR, Dahnke R, Hopkins WD, Sherwood CC, Caspers S, Eickhoff SB, Hoffstaedter F. The uniqueness of human vulnerability to brain aging in great ape evolution. SCIENCE ADVANCES 2024; 10:eado2733. [PMID: 39196942 PMCID: PMC11352902 DOI: 10.1126/sciadv.ado2733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
Aging is associated with progressive gray matter loss in the brain. This spatially specific, morphological change over the life span in humans is also found in chimpanzees, and the comparison between these great ape species provides a unique evolutionary perspective on human brain aging. Here, we present a data-driven, comparative framework to explore the relationship between gray matter atrophy with age and recent cerebral expansion in the phylogeny of chimpanzees and humans. In humans, we show a positive relationship between cerebral aging and cortical expansion, whereas no such relationship was found in chimpanzees. This human-specific association between strong aging effects and large relative cortical expansion is particularly present in higher-order cognitive regions of the ventral prefrontal cortex and supports the "last-in-first-out" hypothesis for brain maturation in recent evolutionary development of human faculties.
Collapse
Affiliation(s)
- Sam Vickery
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Center Jülich, Jülich, Germany
- Division of Physiotherapy, Department of Applied Health Sciences, Hochschule für Gesundheit (University of Applied Sciences), Bochum, Germany
| | - Kaustubh R. Patil
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Center Jülich, Jülich, Germany
| | - Robert Dahnke
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany
- Structural Brain Mapping Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - William D. Hopkins
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX, USA
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Center Jülich, Jülich, Germany
| | - Felix Hoffstaedter
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-7), Research Center Jülich, Jülich, Germany
| |
Collapse
|
8
|
Alldritt S, Ramirez J, de Wael RV, Bethlehem R, Seidlitz J, Wang Z, Nenning K, Esper N, Smallwood J, Franco A, Byeon K, Alexander-Bloch A, Amaral D, Amiez C, Balezeau F, Baxter M, Becker G, Bennett J, Berkner O, Blezer E, Brambrink A, Brochier T, Butler B, Campos L, Canet-Soulas E, Chalet L, Chen A, Cléry J, Constantinidis C, Cook D, Dehaene S, Dorfschmidt L, Drzewiecki C, Erdman J, Everling S, Falchier A, Fleysher L, Fox A, Freiwald W, Froesel M, Froudist-Walsh S, Fudge J, Funck T, Gacoin M, Gale D, Gallivan J, Garin C, Griffiths T, Guedj C, Hadj-Bouziane F, Hamed S, Harel N, Hartig R, Hiba B, Howell B, Jarraya B, Jung B, Kalin N, Karpf J, Kastner S, Klink C, Kovacs-Balint Z, Kroenke C, Kuchan M, Kwok S, Lala K, Leopold D, Li G, Lindenfors P, Linn G, Mars R, Masiello K, Menon R, Messinger A, Meunier M, Mok K, Morrison J, Nacef J, Nagy J, Neudecker V, Neuringer M, Noonan M, Ortiz-Rios M, Perez-Zoghbi J, Petkov C, Pinsk M, Poirier C, Procyk E, Rajimehr R, Reader S, Rudko D, Rushworth M, Russ B, Sallet J, Sanchez M, Schmid M, Schwiedrzik C, Scott J, Sein J, Sharma K, et alAlldritt S, Ramirez J, de Wael RV, Bethlehem R, Seidlitz J, Wang Z, Nenning K, Esper N, Smallwood J, Franco A, Byeon K, Alexander-Bloch A, Amaral D, Amiez C, Balezeau F, Baxter M, Becker G, Bennett J, Berkner O, Blezer E, Brambrink A, Brochier T, Butler B, Campos L, Canet-Soulas E, Chalet L, Chen A, Cléry J, Constantinidis C, Cook D, Dehaene S, Dorfschmidt L, Drzewiecki C, Erdman J, Everling S, Falchier A, Fleysher L, Fox A, Freiwald W, Froesel M, Froudist-Walsh S, Fudge J, Funck T, Gacoin M, Gale D, Gallivan J, Garin C, Griffiths T, Guedj C, Hadj-Bouziane F, Hamed S, Harel N, Hartig R, Hiba B, Howell B, Jarraya B, Jung B, Kalin N, Karpf J, Kastner S, Klink C, Kovacs-Balint Z, Kroenke C, Kuchan M, Kwok S, Lala K, Leopold D, Li G, Lindenfors P, Linn G, Mars R, Masiello K, Menon R, Messinger A, Meunier M, Mok K, Morrison J, Nacef J, Nagy J, Neudecker V, Neuringer M, Noonan M, Ortiz-Rios M, Perez-Zoghbi J, Petkov C, Pinsk M, Poirier C, Procyk E, Rajimehr R, Reader S, Rudko D, Rushworth M, Russ B, Sallet J, Sanchez M, Schmid M, Schwiedrzik C, Scott J, Sein J, Sharma K, Shmuel A, Styner M, Sullivan E, Thiele A, Todorov O, Tsao D, Tusche A, Vlasova R, Wang Z, Wang L, Wang J, Weiss A, Wilson C, Yacoub E, Zarco W, Zhou Y, Zhu J, Margulies D, Fair D, Schroeder C, Milham M, Xu T. Brain Charts for the Rhesus Macaque Lifespan. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610193. [PMID: 39257737 PMCID: PMC11383706 DOI: 10.1101/2024.08.28.610193] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Recent efforts to chart human brain growth across the lifespan using large-scale MRI data have provided reference standards for human brain development. However, similar models for nonhuman primate (NHP) growth are lacking. The rhesus macaque, a widely used NHP in translational neuroscience due to its similarities in brain anatomy, phylogenetics, cognitive, and social behaviors to humans, serves as an ideal NHP model. This study aimed to create normative growth charts for brain structure across the macaque lifespan, enhancing our understanding of neurodevelopment and aging, and facilitating cross-species translational research. Leveraging data from the PRIMatE Data Exchange (PRIME-DE) and other sources, we aggregated 1,522 MRI scans from 1,024 rhesus macaques. We mapped non-linear developmental trajectories for global and regional brain structural changes in volume, cortical thickness, and surface area over the lifespan. Our findings provided normative charts with centile scores for macaque brain structures and revealed key developmental milestones from prenatal stages to aging, highlighting both species-specific and comparable brain maturation patterns between macaques and humans. The charts offer a valuable resource for future NHP studies, particularly those with small sample sizes. Furthermore, the interactive open resource (https://interspeciesmap.childmind.org) supports cross-species comparisons to advance translational neuroscience research.
Collapse
Affiliation(s)
- S. Alldritt
- Center for the Integrative Developmental Neuroscience, Child Mind Institute
| | | | | | - R. Bethlehem
- University of Cambridge, Department of Psychology
| | | | | | | | | | | | | | | | - A. Alexander-Bloch
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children’s Hospital of Philadelphia
- Department of Psychiatry, University of Pennsylvania
| | - D.G. Amaral
- Department of Psychiatry and Behavioral Sciences and The MIND Institute
- University of California Davis
| | - C. Amiez
- Stem Cell and Brain Research Institute
| | | | - M.G. Baxter
- Section on Comparative Medicine, Wake Forest University School of Medicine
| | | | - J. Bennett
- University of California Davis, Dept of Psychology
| | - O. Berkner
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | | | | | - B. Butler
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | | | | | - A. Chen
- East China Normal University
| | | | | | | | | | | | | | | | | | - A. Falchier
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | - A. Fox
- University of California Davis
| | | | - M. Froesel
- Institute for Cognitive Science Marc Jeannerod
| | | | | | | | - M. Gacoin
- Institute for Cognitive Science Marc Jeannerod
| | | | | | - C.M. Garin
- Department of Biomedical Engineering, Vanderbilt University
- Institut des Sciences Cognitives Marc Jeannerod (ISC-MJ)
| | | | - C. Guedj
- Lyon Neuroscience Research Center, University of Geneva
| | | | - S.B. Hamed
- Institute for Cognitive Science Marc Jeannerod
| | | | - R. Hartig
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | - B. Hiba
- Institute for Cognitive Science Marc Jeannerod
| | - B.R. Howell
- Emory National Primate Research Center, Emory University
- Fralin Biomedical Research Institute, Virginia Tech
- Carilion Department of Human Development and Family Science, Virginia Tech
| | | | | | | | - J. Karpf
- Oregon National Primate Research Center
| | - S. Kastner
- Princeton Neuroscience Institute & Department of Psychology, Princeton University
| | - C. Klink
- Netherlands Institute for Neuroscience
| | | | | | | | | | - K.N. Lala
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St. Andrews
| | | | - G. Li
- University of North Carolina at Chapel Hill
| | - P. Lindenfors
- Institute for Futures Studies, Stockholm, Sweden
- Centre for Cultural Evolution & Department of Zoology, Stockholm University, Sweden
| | - G. Linn
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | - K. Masiello
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | | | | | - M. Meunier
- Lyon Neuroscience Research Center, ImpAct Team
| | | | | | | | - J. Nagy
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai
| | | | | | | | - M. Ortiz-Rios
- Functional Imaging Laboratory, German Primate Center – Leibniz Institute for Primate Research
| | | | | | - M. Pinsk
- Princeton Neuroscience Institute, Princeton University
| | | | - E. Procyk
- Stem Cell and Brain Research Institute
| | - R. Rajimehr
- McGovern Institute for Brain Research, Massachusetts Institute of Technology
| | - S.M. Reader
- Department of Biology, Utrecht University
- Department of Biology, McGill University
| | | | | | - B.E. Russ
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
| | - J. Sallet
- University of Oxford
- INSERM Stem Cell & Brain Research Institute
| | - M.M. Sanchez
- Emory National Primate Research Center; Emory University
- Department of Psychiatry & Behavioral Sciences, School of Medicine
| | | | - C.M. Schwiedrzik
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Cognitive Neurobiology
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen
- Perception and Plasticity Group, German Primate Center – Leibniz Institute for Primate Research
| | - J.A. Scott
- Department of Bioengineering, Santa Clara University
| | | | | | | | - M. Styner
- University of North Carolina at Chapel Hill
| | | | | | - O.S. Todorov
- Department of Biology and Helmholtz Institute, Utrecht University
| | - D. Tsao
- Department of Computation and Neural Systems, California Institute of Technology
| | | | - R. Vlasova
- University of North Carolina at Chapel Hill
| | | | - L. Wang
- East China Normal University
| | - J. Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | | | | | | | | | - Y. Zhou
- Krieger Mind/Brain Institute, Department of Neurosurgery, Johns Hopkins University
| | - J. Zhu
- Department of Biomedical Engineering, Vanderbilt University
| | | | | | - C. Schroeder
- Translational Neuroscience division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute
- Deptartment of Psychiatry, Neurology and Neurosurgery, Columbia University
| | - M. Milham
- Child Mind Institute
- Nathan Kline Institute
| | - T. Xu
- Center for the Integrative Developmental Neuroscience, Child Mind Institute
| |
Collapse
|
9
|
Ducret M, Giacometti C, Dirheimer M, Dureux A, Autran-Clavagnier D, Hadj-Bouziane F, Verstraete C, Lamberton F, Wilson CRE, Amiez C, Procyk E. Medial to lateral frontal functional connectivity mapping reveals the organization of cingulate cortex. Cereb Cortex 2024; 34:bhae322. [PMID: 39129533 DOI: 10.1093/cercor/bhae322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/12/2024] [Accepted: 07/25/2024] [Indexed: 08/13/2024] Open
Abstract
The functional organization of the frontal lobe is a source of debate, focusing on broad functional subdivisions, large-scale networks, or local refined specificities. Multiple neurocognitive models have tried to explain how functional interactions between cingulate and lateral frontal regions contribute to decision making and cognitive control, but their neuroanatomical bases remain unclear. We provide a detailed description of the functional connectivity between cingulate and lateral frontal regions using resting-state functional MRI in rhesus macaques. The analysis focuses on the functional connectivity of the rostral part of the cingulate sulcus with the lateral frontal cortex. Data-driven and seed-based analysis revealed three clusters within the cingulate sulcus organized along the rostro-caudal axis: the anterior, mid, and posterior clusters display increased functional connectivity with, respectively, the anterior lateral prefrontal regions, face-eye lateral frontal motor cortical areas, and hand lateral frontal motor cortex. The location of these clusters can be predicted in individual subjects based on morphological landmarks. These results suggest that the anterior cluster corresponds to the anterior cingulate cortex, whereas the posterior clusters correspond to the face-eye and hand cingulate motor areas within the anterior midcingulate cortex. These data provide a comprehensive framework to identify cingulate subregions based on functional connectivity and local organization.
Collapse
Affiliation(s)
- Marion Ducret
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, INSERM U1208, 18 avenue du Doyen Jean Lépine, 69500 Bron, France
| | - Camille Giacometti
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, INSERM U1208, 18 avenue du Doyen Jean Lépine, 69500 Bron, France
| | - Manon Dirheimer
- Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 16 avenue du doyen Lépine, 69500 Bron, France
- University of Lyon 1, Lyon, France
| | - Audrey Dureux
- Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 16 avenue du doyen Lépine, 69500 Bron, France
- University of Lyon 1, Lyon, France
| | | | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action and Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), 16 avenue du doyen Lépine, 69500 Bron, France
- University of Lyon 1, Lyon, France
| | - Charles Verstraete
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, INSERM U1208, 18 avenue du Doyen Jean Lépine, 69500 Bron, France
- Institut de neuromodulation, GHU Paris psychiatrie et neurosciences, Centre Hospitalier Sainte-Anne, pôle hospitalo-universitaire 15, Université Paris Cité, Paris, France
| | - Franck Lamberton
- CERMEP, Imagerie du Vivant, 95 Boulevard Pinel, F-69677 Bron, Auvergne-Rhône-Alpes, France
- SFR Lyon-Est, Université Lyon 1, CNRS UAR3453, INSERM US7, U69500, Lyon, France
| | - Charles R E Wilson
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, INSERM U1208, 18 avenue du Doyen Jean Lépine, 69500 Bron, France
| | - Céline Amiez
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, INSERM U1208, 18 avenue du Doyen Jean Lépine, 69500 Bron, France
| | - Emmanuel Procyk
- Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, INSERM U1208, 18 avenue du Doyen Jean Lépine, 69500 Bron, France
| |
Collapse
|
10
|
Wang Y, Cheng L, Li D, Lu Y, Wang C, Wang Y, Gao C, Wang H, Vanduffel W, Hopkins WD, Sherwood CC, Jiang T, Chu C, Fan L. Comparative Analysis of Human-Chimpanzee Divergence in Brain Connectivity and its Genetic Correlates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.03.597252. [PMID: 38895242 PMCID: PMC11185649 DOI: 10.1101/2024.06.03.597252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Chimpanzees (Pan troglodytes) are humans' closest living relatives, making them the most directly relevant comparison point for understanding human brain evolution. Zeroing in on the differences in brain connectivity between humans and chimpanzees can provide key insights into the specific evolutionary changes that might have occured along the human lineage. However, conducting comparisons of brain connectivity between humans and chimpanzees remains challenging, as cross-species brain atlases established within the same framework are currently lacking. Without the availability of cross-species brain atlases, the region-wise connectivity patterns between humans and chimpanzees cannot be directly compared. To address this gap, we built the first Chimpanzee Brainnetome Atlas (ChimpBNA) by following a well-established connectivity-based parcellation framework. Leveraging this new resource, we found substantial divergence in connectivity patterns across most association cortices, notably in the lateral temporal and dorsolateral prefrontal cortex between the two species. Intriguingly, these patterns significantly deviate from the patterns of cortical expansion observed in humans compared to chimpanzees. Additionally, we identified regions displaying connectional asymmetries that differed between species, likely resulting from evolutionary divergence. Genes associated with these divergent connectivities were found to be enriched in cell types crucial for cortical projection circuits and synapse formation. These genes exhibited more pronounced differences in expression patterns in regions with higher connectivity divergence, suggesting a potential foundation for brain connectivity evolution. Therefore, our study not only provides a fine-scale brain atlas of chimpanzees but also highlights the connectivity divergence between humans and chimpanzees in a more rigorous and comparative manner and suggests potential genetic correlates for the observed divergence in brain connectivity patterns between the two species. This can help us better understand the origins and development of uniquely human cognitive capabilities.
Collapse
Affiliation(s)
- Yufan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Luqi Cheng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Deying Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yuheng Lu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Changshuo Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yaping Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Chaohong Gao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Haiyan Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro- and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - William D. Hopkins
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
- Research Center for Augmented Intelligence, Zhejiang Lab, Hangzhou 311100, China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100190, China
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| |
Collapse
|
11
|
Maboudian SA, Willbrand EH, Kelly JP, Jagust WJ, Weiner KS. Defining Overlooked Structures Reveals New Associations between the Cortex and Cognition in Aging and Alzheimer's Disease. J Neurosci 2024; 44:e1714232024. [PMID: 38383497 PMCID: PMC11026365 DOI: 10.1523/jneurosci.1714-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/05/2024] [Accepted: 01/27/2024] [Indexed: 02/23/2024] Open
Abstract
Recent work suggests that indentations of the cerebral cortex, or sulci, may be uniquely vulnerable to atrophy in aging and Alzheimer's disease (AD) and that the posteromedial cortex (PMC) is particularly vulnerable to atrophy and pathology accumulation. However, these studies did not consider small, shallow, and variable tertiary sulci that are located in association cortices and are often associated with human-specific aspects of cognition. Here, we manually defined 4,362 PMC sulci in 432 hemispheres in 216 human participants (50.5% female) and found that these smaller putative tertiary sulci showed more age- and AD-related thinning than larger, more consistent sulci, with the strongest effects for two newly uncovered sulci. A model-based approach relating sulcal morphology to cognition identified that a subset of these sulci was most associated with memory and executive function scores in older adults. These findings lend support to the retrogenesis hypothesis linking brain development and aging and provide new neuroanatomical targets for future studies of aging and AD.
Collapse
Affiliation(s)
- Samira A Maboudian
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
- Department of Neuroscience, University of California Berkeley, Berkeley, California 94720
| | - Ethan H Willbrand
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53726
| | - Joseph P Kelly
- Department of Medical Social Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
- Department of Neuroscience, University of California Berkeley, Berkeley, California 94720
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California 94720
- Department of Neuroscience, University of California Berkeley, Berkeley, California 94720
- Department of Psychology, University of California Berkeley, Berkeley, California 94720
| |
Collapse
|
12
|
Drzewiecki CM, Fox AS. Understanding the heterogeneity of anxiety using a translational neuroscience approach. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:228-245. [PMID: 38356013 PMCID: PMC11039504 DOI: 10.3758/s13415-024-01162-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 02/16/2024]
Abstract
Anxiety disorders affect millions of people worldwide and present a challenge in neuroscience research because of their substantial heterogeneity in clinical presentation. While a great deal of progress has been made in understanding the neurobiology of fear and anxiety, these insights have not led to effective treatments. Understanding the relationship between phenotypic heterogeneity and the underlying biology is a critical first step in solving this problem. We show translation, reverse translation, and computational modeling can contribute to a refined, cross-species understanding of fear and anxiety as well as anxiety disorders. More specifically, we outline how animal models can be leveraged to develop testable hypotheses in humans by using targeted, cross-species approaches and ethologically informed behavioral paradigms. We discuss reverse translational approaches that can guide and prioritize animal research in nontraditional research species. Finally, we advocate for the use of computational models to harmonize cross-species and cross-methodology research into anxiety. Together, this translational neuroscience approach will help to bridge the widening gap between how we currently conceptualize and diagnose anxiety disorders, as well as aid in the discovery of better treatments for these conditions.
Collapse
Affiliation(s)
- Carly M Drzewiecki
- California National Primate Research Center, University of California, Davis, CA, USA.
| | - Andrew S Fox
- California National Primate Research Center, University of California, Davis, CA, USA.
- Department of Psychology, University of California, Davis, CA, USA.
| |
Collapse
|
13
|
Giacometti C, Autran-Clavagnier D, Dureux A, Viñales L, Lamberton F, Procyk E, Wilson CRE, Amiez C, Hadj-Bouziane F. Differential functional organization of amygdala-medial prefrontal cortex networks in macaque and human. Commun Biol 2024; 7:269. [PMID: 38443489 PMCID: PMC10914752 DOI: 10.1038/s42003-024-05918-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Over the course of evolution, the amygdala (AMG) and medial frontal cortex (mPFC) network, involved in behavioral adaptation, underwent structural changes in the old-world monkey and human lineages. Yet, whether and how the functional organization of this network differs remains poorly understood. Using resting-state functional magnetic resonance imagery, we show that the functional connectivity (FC) between AMG nuclei and mPFC regions differs between humans and awake macaques. In humans, the AMG-mPFC FC displays U-shaped pattern along the corpus callosum: a positive FC with the ventromedial prefrontal (vmPFC) and anterior cingulate cortex (ACC), a negative FC with the anterior mid-cingulate cortex (MCC), and a positive FC with the posterior MCC. Conversely, in macaques, the negative FC shifted more ventrally at the junction between the vmPFC and the ACC. The functional organization divergence of AMG-mPFC network between humans and macaques might help understanding behavioral adaptation abilities differences in their respective socio-ecological niches.
Collapse
Affiliation(s)
- Camille Giacometti
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France.
| | - Delphine Autran-Clavagnier
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
- Inovarion, 75005, Paris, France
| | - Audrey Dureux
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL); Université Lyon 1, 69500, Bron, France
| | - Laura Viñales
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Franck Lamberton
- La Structure Fédérative de Recherche Santé Lyon-Est, CNRS UAR 3453, INSERM US7, Lyon 1 University, 69008, Lyon, France
- Centre d'Etude et de Recherche Multimodal et Pluridisciplinaire en Imagerie du Vivant (CERMEP), 69677, Bron, France
| | - Emmanuel Procyk
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Charles R E Wilson
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Céline Amiez
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France.
| | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL); Université Lyon 1, 69500, Bron, France.
| |
Collapse
|
14
|
Willbrand EH, Jackson S, Chen S, Hathaway CB, Voorhies WI, Bunge SA, Weiner KS. Sulcal variability in anterior lateral prefrontal cortex contributes to variability in reasoning performance among young adults. Brain Struct Funct 2024; 229:387-402. [PMID: 38184493 DOI: 10.1007/s00429-023-02734-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/12/2023] [Indexed: 01/08/2024]
Abstract
Identifying structure-function correspondences is a major goal among biologists, cognitive neuroscientists, and brain mappers. Recent studies have identified relationships between performance on cognitive tasks and the presence or absence of small, shallow indentations, or sulci, of the human brain. Building on the previous finding that the presence of the ventral para-intermediate frontal sulcus (pimfs-v) in the left anterior lateral prefrontal cortex (aLPFC) was related to reasoning task performance in children and adolescents, we tested whether this relationship extended to a different sample, age group, and reasoning task. As predicted, the presence of this aLPFC sulcus was also associated with higher reasoning scores in young adults (ages 22-36). These findings have not only direct developmental, but also evolutionary relevance-as recent work shows that the pimfs-v is exceedingly rare in chimpanzees. Thus, the pimfs-v is a key developmental, cognitive, and evolutionarily relevant feature that should be considered in future studies examining how the complex relationships among multiscale anatomical and functional features of the brain give rise to abstract thought.
Collapse
Affiliation(s)
- Ethan H Willbrand
- Medical Scientist Training Program, School of Medicine and Public Health, University of WI-Madison, Madison, WI, USA
| | - Samantha Jackson
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Szeshuen Chen
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Willa I Voorhies
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Silvia A Bunge
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| | - Kevin S Weiner
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
15
|
Goltermann O, Alagöz G, Molz B, Fisher SE. Neuroimaging genomics as a window into the evolution of human sulcal organization. Cereb Cortex 2024; 34:bhae078. [PMID: 38466113 PMCID: PMC10926775 DOI: 10.1093/cercor/bhae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/03/2024] [Accepted: 02/04/2024] [Indexed: 03/12/2024] Open
Abstract
Primate brain evolution has involved prominent expansions of the cerebral cortex, with largest effects observed in the human lineage. Such expansions were accompanied by fine-grained anatomical alterations, including increased cortical folding. However, the molecular bases of evolutionary alterations in human sulcal organization are not yet well understood. Here, we integrated data from recently completed large-scale neuroimaging genetic analyses with annotations of the human genome relevant to various periods and events in our evolutionary history. These analyses identified single-nucleotide polymorphism (SNP) heritability enrichments in fetal brain human-gained enhancer (HGE) elements for a number of sulcal structures, including the central sulcus, which is implicated in human hand dexterity. We zeroed in on a genomic region that harbors DNA variants associated with left central sulcus shape, an HGE element, and genetic loci involved in neurogenesis including ZIC4, to illustrate the value of this approach for probing the complex factors contributing to human sulcal evolution.
Collapse
Affiliation(s)
- Ole Goltermann
- Max Planck School of Cognition, Stephanstrasse 1a, 04103 Leipzig, Germany
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, The Netherlands
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Gökberk Alagöz
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, The Netherlands
| | - Barbara Molz
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, The Netherlands
| | - Simon E Fisher
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Wundtlaan 1, 6525 XD Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition & Behaviour, Radboud University, Thomas van Aquinostraat 4, 6525 GD Nijmegen, The Netherlands
| |
Collapse
|
16
|
Levy R. The prefrontal cortex: from monkey to man. Brain 2024; 147:794-815. [PMID: 37972282 PMCID: PMC10907097 DOI: 10.1093/brain/awad389] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/01/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
The prefrontal cortex is so important to human beings that, if deprived of it, our behaviour is reduced to action-reactions and automatisms, with no ability to make deliberate decisions. Why does the prefrontal cortex hold such importance in humans? In answer, this review draws on the proximity between humans and other primates, which enables us, through comparative anatomical-functional analysis, to understand the cognitive functions we have in common and specify those that distinguish humans from their closest cousins. First, a focus on the lateral region of the prefrontal cortex illustrates the existence of a continuum between rhesus monkeys (the most studied primates in neuroscience) and humans for most of the major cognitive functions in which this region of the brain plays a central role. This continuum involves the presence of elementary mental operations in the rhesus monkey (e.g. working memory or response inhibition) that are constitutive of 'macro-functions' such as planning, problem-solving and even language production. Second, the human prefrontal cortex has developed dramatically compared to that of other primates. This increase seems to concern the most anterior part (the frontopolar cortex). In humans, the development of the most anterior prefrontal cortex is associated with three major and interrelated cognitive changes: (i) a greater working memory capacity, allowing for greater integration of past experiences and prospective futures; (ii) a greater capacity to link discontinuous or distant data, whether temporal or semantic; and (iii) a greater capacity for abstraction, allowing humans to classify knowledge in different ways, to engage in analogical reasoning or to acquire abstract values that give rise to our beliefs and morals. Together, these new skills enable us, among other things, to develop highly sophisticated social interactions based on language, enabling us to conceive beliefs and moral judgements and to conceptualize, create and extend our vision of our environment beyond what we can physically grasp. Finally, a model of the transition of prefrontal functions between humans and non-human primates concludes this review.
Collapse
Affiliation(s)
- Richard Levy
- AP–HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Neurology, Sorbonne Université, Institute of Memory and Alzheimer’s Disease, 75013 Paris, France
- Sorbonne Université, INSERM U1127, CNRS 7225, Paris Brain Institute- ICM, 75013 Paris, France
| |
Collapse
|
17
|
Wang X, Leprince Y, Lebenberg J, Langlet C, Mohlberg H, Rivière D, Auzias G, Dickscheid T, Amunts K, Mangin JF. A framework to improve the alignment of individual cytoarchitectonic maps of the Julich-Brain atlas using cortical folding landmarks. Cereb Cortex 2024; 34:bhad538. [PMID: 38236742 DOI: 10.1093/cercor/bhad538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 02/06/2024] Open
Abstract
The segregation of the cortical mantle into cytoarchitectonic areas provides a structural basis for the specialization of different brain regions. In vivo neuroimaging experiments can be linked to this postmortem cytoarchitectonic parcellation via Julich-Brain. This atlas embeds probabilistic maps that account for inter-individual variability in the localization of cytoarchitectonic areas in the reference spaces targeted by spatial normalization. We built a framework to improve the alignment of architectural areas across brains using cortical folding landmarks. This framework, initially designed for in vivo imaging, was adapted to postmortem histological data. We applied this to the first 14 brains used to establish the Julich-Brain atlas to infer a refined atlas with more focal probabilistic maps. The improvement achieved is significant in the primary regions and some of the associative areas. This framework also provides a tool for exploring the relationship between cortical folding patterns and cytoarchitectonic areas in different cortical regions to establish new landmarks in the remainder of the cortex.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Saclay, France
| | - Yann Leprince
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Saclay, France
- UNIACT, NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Jessica Lebenberg
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Saclay, France
- Lariboisière University Hospital, APHP, Translational Neurovascular Centre and Department of Neurology, FHU NeuroVasc, Paris, France
| | - Clement Langlet
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Saclay, France
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52425 Jülich, Germany
| | - Denis Rivière
- Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Saclay, France
| | - Guillaume Auzias
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université, CNRS, Marseille, France
| | - Timo Dickscheid
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52425 Jülich, Germany
- Institute of Computer Science, Heinrich-Heine University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52425 Jülich, Germany
- Cecile und Oskar Vogt Institut für Hirnforschung, University Hospital Düsseldorf, Heinrich-Heine Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
18
|
DiNicola LM, Sun W, Buckner RL. Side-by-side regions in dorsolateral prefrontal cortex estimated within the individual respond differentially to domain-specific and domain-flexible processes. J Neurophysiol 2023; 130:1602-1615. [PMID: 37937340 PMCID: PMC11068361 DOI: 10.1152/jn.00277.2023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/06/2023] [Accepted: 10/28/2023] [Indexed: 11/09/2023] Open
Abstract
A recurring debate concerns whether regions of primate prefrontal cortex (PFC) support domain-flexible or domain-specific processes. Here we tested the hypothesis with functional MRI (fMRI) that side-by-side PFC regions, within distinct parallel association networks, differentially support domain-flexible and domain-specialized processing. Individuals (N = 9) were intensively sampled, and all effects were estimated within their own idiosyncratic anatomy. Within each individual, we identified PFC regions linked to distinct networks, including a dorsolateral PFC (DLPFC) region coupled to the medial temporal lobe (MTL) and an extended region associated with the canonical multiple-demand network. We further identified an inferior PFC region coupled to the language network. Exploration in separate task data, collected within the same individuals, revealed a robust functional triple dissociation. The DLPFC region linked to the MTL was recruited during remembering and imagining the future, distinct from juxtaposed regions that were modulated in a domain-flexible manner during working memory. The inferior PFC region linked to the language network was recruited during sentence processing. Detailed analysis of the trial-level responses further revealed that the DLPFC region linked to the MTL specifically tracked processes associated with scene construction. These results suggest that the DLPFC possesses a domain-specialized region that is small and easily confused with nearby (larger) regions associated with cognitive control. The newly described region is domain specialized for functions traditionally associated with the MTL. We discuss the implications of these findings in relation to convergent anatomical analysis in the monkey.NEW & NOTEWORTHY Competing hypotheses link regions of prefrontal cortex (PFC) to domain-flexible or domain-specific processes. Here, using a precision neuroimaging approach, we identify a domain-specialized region in dorsolateral PFC, coupled to the medial temporal lobe and recruited for scene construction. This region is juxtaposed to, but distinct from, broader PFC regions recruited flexibly for cognitive control. Region distinctions align with broader network differences, suggesting that PFC regions gain dissociable processing properties via segregated anatomical projections.
Collapse
Affiliation(s)
- Lauren M DiNicola
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Wendy Sun
- Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, United States
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| |
Collapse
|
19
|
Amiez C, Verstraete C, Sallet J, Hadj-Bouziane F, Ben Hamed S, Meguerditchian A, Procyk E, Wilson CRE, Petrides M, Sherwood CC, Hopkins WD. The relevance of the unique anatomy of the human prefrontal operculum to the emergence of speech. Commun Biol 2023; 6:693. [PMID: 37407769 DOI: 10.1038/s42003-023-05066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Identifying the evolutionary origins of human speech remains a topic of intense scientific interest. Here we describe a unique feature of adult human neuroanatomy compared to chimpanzees and other primates that may provide an explanation of changes that occurred to enable the capacity for speech. That feature is the Prefrontal extent of the Frontal Operculum (PFOp) region, which is located in the ventrolateral prefrontal cortex, adjacent and ventromedial to the classical Broca's area. We also show that, in chimpanzees, individuals with the most human-like PFOp, particularly in the left hemisphere, have greater oro-facial and vocal motor control abilities. This critical discovery, when combined with recent paleontological evidence, suggests that the PFOp is a recently evolved feature of human cortical structure (perhaps limited to the genus Homo) that emerged in response to increasing selection for cognitive and motor functions evident in modern speech abilities.
Collapse
Affiliation(s)
- Céline Amiez
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208, Bron, France.
| | - Charles Verstraete
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208, Bron, France
- Institut du Cerveau et de la Moelle épinière, Sorbonne Université, Inserm, CNRS, Paris, France
| | - Jérôme Sallet
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208, Bron, France
- Wellcome Integrative Neuroimaging Centre, Department of Experimental Psychology, University of Oxford, Oxford, OX1 3SR, UK
| | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France
- University of Lyon 1, Lyon, France
| | - Suliann Ben Hamed
- Institut des Sciences Cognitives Marc Jeannerod, UMR5229, CNRS-Université Claude Bernard Lyon I, Bron, France
| | - Adrien Meguerditchian
- Laboratoire de Psychologie Cognitive, UMR7290, Aix-Marseille Université, CNRS, 13331, Marseille, France
- Station de Primatologie CNRS, UAR846, 13790, Rousset, France
- Institut Language, Communication and the Brain (ILCB), Aix-Marseille Université, 13604, Aix-en-Provence, France
| | - Emmanuel Procyk
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208, Bron, France
| | - Charles R E Wilson
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208, Bron, France
| | - Michael Petrides
- Montreal Neurological Institute, Department of Neurology and Neurosurgery and Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
| | - William D Hopkins
- Department of Comparative Medicine, University of Texas MD Anderson Cancer Center, Bastrop, Texas, USA.
| |
Collapse
|
20
|
Maboudian SA, Willbrand EH, Jagust WJ, Weiner KS. Defining overlooked structures reveals new associations between cortex and cognition in aging and Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.546558. [PMID: 37425904 PMCID: PMC10327001 DOI: 10.1101/2023.06.29.546558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Recent work suggests that indentations of the cerebral cortex, or sulci, may be uniquely vulnerable to atrophy in aging and Alzheimer's disease (AD) and that posteromedial cortex (PMC) is particularly vulnerable to atrophy and pathology accumulation. However, these studies did not consider small, shallow, and variable tertiary sulci that are located in association cortices and are often associated with human-specific aspects of cognition. Here, we first manually defined 4,362 PMC sulci in 432 hemispheres in 216 participants. Tertiary sulci showed more age- and AD-related thinning than non-tertiary sulci, with the strongest effects for two newly uncovered tertiary sulci. A model-based approach relating sulcal morphology to cognition identified that a subset of these sulci were most associated with memory and executive function scores in older adults. These findings support the retrogenesis hypothesis linking brain development and aging, and provide new neuroanatomical targets for future studies of aging and AD.
Collapse
Affiliation(s)
- Samira A. Maboudian
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
| | - Ethan H. Willbrand
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720 USA
| | - William J. Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Kevin S. Weiner
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720 USA
| | | |
Collapse
|
21
|
Willbrand EH, Bunge SA, Weiner KS. Neuroanatomical and functional dissociations between variably present anterior lateral prefrontal sulci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542301. [PMID: 37292839 PMCID: PMC10245924 DOI: 10.1101/2023.05.25.542301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The lateral prefrontal cortex (LPFC) is an evolutionarily expanded region in humans that is critical for numerous complex functions, many of which are largely hominoid-specific. While recent work shows that the presence or absence of specific sulci in anterior LPFC is associated with cognitive performance across age groups, it is unknown whether the presence of these structures relates to individual differences in the functional organization of LPFC. To fill this gap in knowledge, we leveraged multimodal neuroimaging data from 72 young adult humans aged 22-36 and show that dorsal and ventral components of the paraintermediate frontal sulcus (pimfs) present distinct morphological (surface area), architectural (thickness and myelination), and functional (resting-state connectivity networks) properties. We further contextualize the pimfs components within classic and modern cortical parcellations. Taken together, the dorsal and ventral pimfs components mark transitions in anatomy and function in LPFC, across metrics and parcellations. These results emphasize that the pimfs is a critical structure to consider when examining individual differences in the anatomical and functional organization of LPFC and highlight the importance of considering individual anatomy when investigating structural and functional features of the cortex.
Collapse
Affiliation(s)
- Ethan H. Willbrand
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
| | - Silvia A. Bunge
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
| | - Kevin S. Weiner
- Department of Psychology, University of California Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720 USA
| |
Collapse
|