1
|
Beyer T, Diwan GD, Leonhard T, Dahlke K, Klose F, Stehle IF, Seda M, Bolz S, Woerz F, Russell RB, Jenkins D, Ueffing M, Boldt K. Ciliopathy-Associated Missense Mutations in IFT140 are Tolerated by the Inherent Resilience of the IFT Machinery. Mol Cell Proteomics 2025; 24:100916. [PMID: 39880085 PMCID: PMC11907452 DOI: 10.1016/j.mcpro.2025.100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/26/2024] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
Genotype-phenotype correlations of rare diseases are complicated by low patient number, high phenotype variability, and compound heterozygosity. Mutations may cause instability of single proteins, and affect protein complex formation or overall robustness of a specific process in a given cell. Ciliopathies offer an interesting case for studying genotype-phenotype correlations as they have a spectrum of severity and include diverse phenotypes depending on different mutations in the same protein. For instance, mutations in the intraflagellar transport protein IFT140 cause a vast spectrum of ciliopathies ranging from isolated retinal dystrophy to severe skeletal abnormalities and multi-organ diseases such as Mainzer-Saldino and Jeune syndrome. Here, the quantitative effects of 23 missense mutations in IFT140, which forms part of the crucial IFT-A complex of the ciliary machinery, were analyzed using affinity purification coupled with mass spectrometry (AP-MS). A subset of 10 mutations led to a significant and domain-specific reduction in IFT140-IFT-A complex interaction indicating complex formation issues and potentially hampering its molecular function. Knockout of IFT140 led to loss of cilia, as shown before. However, phenotypically only mild effects concerning cilia assembly were observed for two out of four tested IFT140 missense mutations. Therefore, our results demonstrate the utility of AP-MS in discerning pathogenic MMs from polymorphisms, and we postulate that reduced function is tolerated by the evolutionarily highly conserved IFT-A system.
Collapse
Affiliation(s)
- Tina Beyer
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany.
| | - Gaurav D Diwan
- BioQuant, University of Heidelberg, Heidelberg, Germany; Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Tobias Leonhard
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Katrin Dahlke
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Franziska Klose
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Isabel F Stehle
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Marian Seda
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Sylvia Bolz
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Franziska Woerz
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Robert B Russell
- BioQuant, University of Heidelberg, Heidelberg, Germany; Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Dagan Jenkins
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.
| | - Marius Ueffing
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Karsten Boldt
- Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
2
|
Gerasimavicius L, Teichmann SA, Marsh JA. Leveraging protein structural information to improve variant effect prediction. Curr Opin Struct Biol 2025; 92:103023. [PMID: 39987793 DOI: 10.1016/j.sbi.2025.103023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/17/2024] [Accepted: 02/05/2025] [Indexed: 02/25/2025]
Abstract
Despite massive sequencing efforts, understanding the difference between human pathogenic and benign variants remains a challenge. Computational variant effect predictors (VEPs) have emerged as essential tools for assessing the impact of genetic variants, although their performance varies. Initially, sequence-based methods dominated the field, but recent advances, particularly in protein structure prediction technologies like AlphaFold, have led to an increased utilization of structural information by VEPs aimed at scoring human missense variants. This review highlights the progress in integrating structural information into VEPs, showcasing novel models such as AlphaMissense, PrimateAI-3D, and CPT-1 that demonstrate improved variant evaluation. Structural data offers more interpretability, especially for non-loss-of-function variants, and provides insights into complex variant interactions in vivo. As the field advances, utilizing biomolecular complex structures will be pivotal for future VEP development, with recent breakthroughs in protein-ligand and protein-nucleic acid complex prediction offering new avenues.
Collapse
Affiliation(s)
- Lukas Gerasimavicius
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah A Teichmann
- Cambridge Stem Cell Institute & Dept Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom; Canadian Institute for Advanced Research, Toronto, Canada
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
3
|
Chillón-Pino D, Badonyi M, Semple CA, Marsh JA. Protein structural context of cancer mutations reveals molecular mechanisms and candidate driver genes. Cell Rep 2024; 43:114905. [PMID: 39441719 PMCID: PMC7617530 DOI: 10.1016/j.celrep.2024.114905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/23/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
Advances in protein structure determination and modeling allow us to study the structural context of human genetic variants on an unprecedented scale. Here, we analyze millions of cancer-associated missense mutations based on their structural locations and predicted perturbative effects. By considering the collective properties of mutations at the level of individual proteins, we identify distinct patterns associated with tumor suppressors and oncogenes. Tumor suppressors are enriched in structurally damaging mutations, consistent with loss-of-function mechanisms, while oncogene mutations tend to be structurally mild, reflecting selection for gain-of-function driver mutations and against loss-of-function mutations. Although oncogenes are difficult to distinguish from genes with no role in cancer using only structural damage, we find that the three-dimensional clustering of mutations is highly predictive. These observations allow us to identify candidate driver genes and speculate about their molecular roles, which we expect will have general utility in the analysis of cancer sequencing data.
Collapse
Affiliation(s)
- Diego Chillón-Pino
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Colin A Semple
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Badonyi M, Marsh JA. Proteome-scale prediction of molecular mechanisms underlying dominant genetic diseases. PLoS One 2024; 19:e0307312. [PMID: 39172982 PMCID: PMC11341024 DOI: 10.1371/journal.pone.0307312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024] Open
Abstract
Many dominant genetic disorders result from protein-altering mutations, acting primarily through dominant-negative (DN), gain-of-function (GOF), and loss-of-function (LOF) mechanisms. Deciphering the mechanisms by which dominant diseases exert their effects is often experimentally challenging and resource intensive, but is essential for developing appropriate therapeutic approaches. Diseases that arise via a LOF mechanism are more amenable to be treated by conventional gene therapy, whereas DN and GOF mechanisms may require gene editing or targeting by small molecules. Moreover, pathogenic missense mutations that act via DN and GOF mechanisms are more difficult to identify than those that act via LOF using nearly all currently available variant effect predictors. Here, we introduce a tripartite statistical model made up of support vector machine binary classifiers trained to predict whether human protein coding genes are likely to be associated with DN, GOF, or LOF molecular disease mechanisms. We test the utility of the predictions by examining biologically and clinically meaningful properties known to be associated with the mechanisms. Our results strongly support that the models are able to generalise on unseen data and offer insight into the functional attributes of proteins associated with different mechanisms. We hope that our predictions will serve as a springboard for researchers studying novel variants and those of uncertain clinical significance, guiding variant interpretation strategies and experimental characterisation. Predictions for the human UniProt reference proteome are available at https://osf.io/z4dcp/.
Collapse
Affiliation(s)
- Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Joseph A. Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Yoon JG, Lim SK, Seo H, Lee S, Cho J, Kim SY, Koh HY, Poduri AH, Ramakumaran V, Vasudevan P, de Groot MJ, Ko JM, Han D, Chae JH, Lee CH. De novo missense variants in HDAC3 leading to epigenetic machinery dysfunction are associated with a variable neurodevelopmental disorder. Am J Hum Genet 2024; 111:1588-1604. [PMID: 39047730 PMCID: PMC11339613 DOI: 10.1016/j.ajhg.2024.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Histone deacetylase 3 (HDAC3) is a crucial epigenetic modulator essential for various developmental and physiological functions. Although its dysfunction is increasingly recognized in abnormal phenotypes, to our knowledge, there have been no established reports of human diseases directly linked to HDAC3 dysfunction. Using trio exome sequencing and extensive phenotypic analysis, we correlated heterozygous de novo variants in HDAC3 with a neurodevelopmental disorder having variable clinical presentations, frequently associated with intellectual disability, developmental delay, epilepsy, and musculoskeletal abnormalities. In a cohort of six individuals, we identified missense variants in HDAC3 (c.277G>A [p.Asp93Asn], c.328G>A [p.Ala110Thr], c.601C>T [p.Pro201Ser], c. 797T>C [p.Leu266Ser], c.799G>A [p.Gly267Ser], and c.1075C>T [p.Arg359Cys]), all located in evolutionarily conserved sites and confirmed as de novo. Experimental studies identified defective deacetylation activity in the p.Asp93Asn, p.Pro201Ser, p.Leu266Ser, and p.Gly267Ser variants, positioned near the enzymatic pocket. In addition, proteomic analysis employing co-immunoprecipitation revealed that the disrupted interactions with molecules involved in the CoREST and NCoR complexes, particularly in the p.Ala110Thr variant, consist of a central pathogenic mechanism. Moreover, immunofluorescence analysis showed diminished nuclear to cytoplasmic fluorescence ratio in the p.Ala110Thr, p.Gly267Ser, and p.Arg359Cys variants, indicating impaired nuclear localization. Taken together, our study highlights that de novo missense variants in HDAC3 are associated with a broad spectrum of neurodevelopmental disorders, which emphasizes the complex role of HDAC3 in histone deacetylase activity, multi-protein complex interactions, and nuclear localization for proper physiological functions. These insights open new avenues for understanding the molecular mechanisms of HDAC3-related disorders and may inform future therapeutic strategies.
Collapse
Affiliation(s)
- Jihoon G Yoon
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Laboratory Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong-Kyun Lim
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hoseok Seo
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seungbok Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Jaeso Cho
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Soo Yeon Kim
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Hyun Yong Koh
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Annapurna H Poduri
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Pradeep Vasudevan
- LNR Genomic Medicine Service, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Martijn J de Groot
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jung Min Ko
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Dohyun Han
- Department of Transdisciplinary Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Republic of Korea.
| | - Chul-Hwan Lee
- Department of Pharmacology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Ischemic/hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea; Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea; The Institute of Molecular Biology & Genetics, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Badonyi M, Marsh JA. Hallmarks and evolutionary drivers of cotranslational protein complex assembly. FEBS J 2024; 291:3557-3567. [PMID: 37202910 DOI: 10.1111/febs.16869] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 05/20/2023]
Abstract
Recent discoveries have highlighted the prevalence of cotranslational assembly in proteomes, revealing a range of mechanisms that enables the assembly of protein complex subunits on the ribosome. Structural analyses have uncovered emergent properties that may inherently control whether a subunit undergoes cotranslational assembly. However, the evolutionary paths that have yielded such complexes over an extended timescale remain largely unclear. In this review, we reflect on historical experiments that contributed to the field, including breakthroughs that have made possible the proteome-wide detection of cotranslational assembly, and the technical challenges yet to be overcome. We introduce a simple framework that encapsulates the hallmarks of cotranslational assembly and discuss how results from new experiments are shaping our view of the mechanistic, structural and evolutionary factors driving the phenomenon.
Collapse
Affiliation(s)
- Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, UK
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, UK
| |
Collapse
|
7
|
Crawford RA, Eastham M, Pool MR, Ashe MP. Orchestrated centers for the production of proteins or "translation factories". WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1867. [PMID: 39048533 DOI: 10.1002/wrna.1867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/20/2024] [Accepted: 06/07/2024] [Indexed: 07/27/2024]
Abstract
The mechanics of how proteins are generated from mRNA is increasingly well understood. However, much less is known about how protein production is coordinated and orchestrated within the crowded intracellular environment, especially in eukaryotic cells. Recent studies suggest that localized sites exist for the coordinated production of specific proteins. These sites have been termed "translation factories" and roles in protein complex formation, protein localization, inheritance, and translation regulation have been postulated. In this article, we review the evidence supporting the translation of mRNA at these sites, the details of their mechanism of formation, and their likely functional significance. Finally, we consider the key uncertainties regarding these elusive structures in cells. This article is categorized under: Translation Translation > Mechanisms RNA Export and Localization > RNA Localization Translation > Regulation.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Matthew Eastham
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Martin R Pool
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Mark P Ashe
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Cisneros AF, Nielly-Thibault L, Mallik S, Levy ED, Landry CR. Mutational biases favor complexity increases in protein interaction networks after gene duplication. Mol Syst Biol 2024; 20:549-572. [PMID: 38499674 PMCID: PMC11066126 DOI: 10.1038/s44320-024-00030-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Biological systems can gain complexity over time. While some of these transitions are likely driven by natural selection, the extent to which they occur without providing an adaptive benefit is unknown. At the molecular level, one example is heteromeric complexes replacing homomeric ones following gene duplication. Here, we build a biophysical model and simulate the evolution of homodimers and heterodimers following gene duplication using distributions of mutational effects inferred from available protein structures. We keep the specific activity of each dimer identical, so their concentrations drift neutrally without new functions. We show that for more than 60% of tested dimer structures, the relative concentration of the heteromer increases over time due to mutational biases that favor the heterodimer. However, allowing mutational effects on synthesis rates and differences in the specific activity of homo- and heterodimers can limit or reverse the observed bias toward heterodimers. Our results show that the accumulation of more complex protein quaternary structures is likely under neutral evolution, and that natural selection would be needed to reverse this tendency.
Collapse
Affiliation(s)
- Angel F Cisneros
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada
- Institut de biologie intégrative et des systèmes, Université Laval, G1V 0A6, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, G1V 0A6, Québec, Canada
- Centre de recherche sur les données massives, Université Laval, G1V 0A6, Québec, Canada
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Lou Nielly-Thibault
- Institut de biologie intégrative et des systèmes, Université Laval, G1V 0A6, Québec, Canada
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, G1V 0A6, Québec, Canada
- Centre de recherche sur les données massives, Université Laval, G1V 0A6, Québec, Canada
- Département de biologie, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada
| | - Saurav Mallik
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Emmanuel D Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Christian R Landry
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada.
- Institut de biologie intégrative et des systèmes, Université Laval, G1V 0A6, Québec, Canada.
- PROTEO, Le regroupement québécois de recherche sur la fonction, l'ingénierie et les applications des protéines, Université Laval, G1V 0A6, Québec, Canada.
- Centre de recherche sur les données massives, Université Laval, G1V 0A6, Québec, Canada.
- Département de biologie, Faculté des sciences et de génie, Université Laval, G1V 0A6, Québec, Canada.
| |
Collapse
|
9
|
Grønbæk-Thygesen M, Hartmann-Petersen R. Cellular and molecular mechanisms of aspartoacylase and its role in Canavan disease. Cell Biosci 2024; 14:45. [PMID: 38582917 PMCID: PMC10998430 DOI: 10.1186/s13578-024-01224-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/24/2024] [Indexed: 04/08/2024] Open
Abstract
Canavan disease is an autosomal recessive and lethal neurological disorder, characterized by the spongy degeneration of the white matter in the brain. The disease is caused by a deficiency of the cytosolic aspartoacylase (ASPA) enzyme, which catalyzes the hydrolysis of N-acetyl-aspartate (NAA), an abundant brain metabolite, into aspartate and acetate. On the physiological level, the mechanism of pathogenicity remains somewhat obscure, with multiple, not mutually exclusive, suggested hypotheses. At the molecular level, recent studies have shown that most disease linked ASPA gene variants lead to a structural destabilization and subsequent proteasomal degradation of the ASPA protein variants, and accordingly Canavan disease should in general be considered a protein misfolding disorder. Here, we comprehensively summarize the molecular and cell biology of ASPA, with a particular focus on disease-linked gene variants and the pathophysiology of Canavan disease. We highlight the importance of high-throughput technologies and computational prediction tools for making genotype-phenotype predictions as we await the results of ongoing trials with gene therapy for Canavan disease.
Collapse
Affiliation(s)
- Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200N, Copenhagen, Denmark.
| |
Collapse
|
10
|
Bernardini A, Tora L. Co-translational Assembly Pathways of Nuclear Multiprotein Complexes Involved in the Regulation of Gene Transcription. J Mol Biol 2024; 436:168382. [PMID: 38061625 DOI: 10.1016/j.jmb.2023.168382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023]
Abstract
Most factors that regulate gene transcription in eukaryotic cells are multimeric, often large, protein complexes. The understanding of the biogenesis pathways of such large and heterogeneous protein assemblies, as well as the dimerization partner choice among transcription factors, is crucial to interpret and control gene expression programs and consequent cell fate decisions. Co-translational assembly (Co-TA) is thought to play key roles in the biogenesis of protein complexes by directing complex formation during protein synthesis. In this review we discuss the principles of Co-TA with a special focus for the assembly of transcription regulatory complexes. We outline the expected molecular advantages of establishing co-translational interactions, pointing at the available, or missing, evidence for each of them. We hypothesize different molecular mechanisms based on Co-TA to explain the allocation "dilemma" of paralog proteins and subunits shared by different transcription complexes. By taking as a paradigm the different assembly pathways employed by three related transcription regulatory complexes (TFIID, SAGA and ATAC), we discuss alternative Co-TA strategies for nuclear multiprotein complexes and the widespread - yet specific - use of Co-TA for the formation of nuclear complexes involved in gene transcription. Ultimately, we outlined a series of open questions which demand well-defined lines of research to investigate the principles of gene regulation that rely on the coordinated assembly of protein complexes.
Collapse
Affiliation(s)
- Andrea Bernardini
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964 Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964 Illkirch, France; Université de Strasbourg, Illkirch, France.
| |
Collapse
|
11
|
Veitia RA. Dominant negative variants and cotranslational assembly of macromolecular complexes. Bioessays 2023; 45:e2300105. [PMID: 37551714 DOI: 10.1002/bies.202300105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Pathogenic variants occurring in protein-coding regions underlie human genetic disease through various mechanisms. They can lead to a loss of function (LOF) such as in recessive conditions or in dominant conditions due to haploinsufficiency. Dominant-negative (DN) effects, counteracting the activity of the normal gene-product, and gain of function (GOF) are also mechanisms driving dominance. Here, I discuss a few papers on these specific mechanisms. In short, there is accumulating evidence pointing to differences between LOF versus non-LOF variants (DN and GOF). The latter are thought to have milder effects on protein structure and, as expected, DN variants are enriched at protein interfaces. This tendency to cluster in 3D space can help improve the ability of computational tools to predict the pathogenicity of DN variants, which is currently a challenging issue. More recent results support the hypothesis whereby cotranslational assembly of macromolecular complexes can buffer deleterious consequences of variants that would otherwise lead to DN effects (DNEs). Indeed, subunits the variants of which are responsible for DNEs tend to elude cotranslational assembly, thus poisoning complexes involving wild-type subunits. The constraints explaining why the buffering of DNEs is not universal require further investigation.
Collapse
Affiliation(s)
- Reiner A Veitia
- Institut Jacques Monod, Université Paris Cité, CNRS, Paris, France
- Université Paris-Saclay, Saclay, France
- Institut de Biologie François Jacob, CEA, Fontenay aux Roses, France
| |
Collapse
|