1
|
Lane AR, Scher NE, Bhattacharjee S, Zlatic SA, Roberts AM, Gokhale A, Singleton KS, Duong DM, McKenna M, Liu WL, Baiju A, Moctezuma FGR, Tran T, Patel AA, Clayton LB, Petris MJ, Wood LB, Patgiri A, Vrailas-Mortimer AD, Cox DN, Roberts BR, Werner E, Faundez V. Adaptive protein synthesis in genetic models of copper deficiency and childhood neurodegeneration. Mol Biol Cell 2025; 36:ar33. [PMID: 39878654 PMCID: PMC11974963 DOI: 10.1091/mbc.e24-11-0512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
Rare inherited diseases caused by mutations in the copper transporters SLC31A1 (CTR1) or ATP7A induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation. Proteomic and transcriptomic analysis of CTR1 knockout (KO) cells revealed simultaneous up-regulation of mTORC1 and S6K signaling and reduced PERK signaling. Patterns of gene and protein expression and pharmacogenomics show increased activation of the mTORC1-S6K pathway as a prosurvival mechanism, ultimately resulting in increased protein synthesis. Spatial transcriptomic profiling of Atp7aflx/Y :: Vil1Cre/+ mice identified up-regulated protein synthesis machinery and mTORC1-S6K pathway genes in copper-deficient Purkinje neurons in the cerebellum. Genetic epistasis experiments in Drosophila demonstrated that copper deficiency dendritic phenotypes in class IV neurons are improved or rescued by increased S6k expression or 4E-BP1 (Thor) RNAi, while epidermis phenotypes are exacerbated by Akt, S6k, or raptor RNAi. Overall, we demonstrate that increased mTORC1-S6K pathway activation and protein synthesis is an adaptive mechanism by which neuronal cells respond to copper deficiency.
Collapse
Affiliation(s)
- Alicia R. Lane
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Noah E. Scher
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Shatabdi Bhattacharjee
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303
| | - Stephanie A. Zlatic
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Anne M. Roberts
- Department of Biochemistry, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
- Department of Neurology, Emory University, 12 Executive Park Dr NE, Atlanta, Georgia, USA, 30322
| | - Avanti Gokhale
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Kaela S. Singleton
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Duc M. Duong
- Department of Biochemistry, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
| | - Mike McKenna
- NanoString Technologies, 530 Fairview Ave N, Seattle, WA 98109
| | - William L. Liu
- Department of Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
| | - Alina Baiju
- Department of Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
| | - Felix G. Rivera Moctezuma
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332
| | - Tommy Tran
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303
| | - Atit A. Patel
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303
| | - Lauren B. Clayton
- Department of Biochemistry & Biophysics and Linus Pauling Institute, 307 Linus Pauling Science Center, Oregon State University, Corvallis, OR 97331
| | - Michael J. Petris
- Departments of Biochemistry, Molecular Microbiology and Immunology, Ophthalmology, and Christopher S. Bond Life Sciences Center, 1201 Rollins Street, University of Missouri, Columbia, MO, 65211
| | - Levi B. Wood
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332
| | - Anupam Patgiri
- Department of Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
| | - Alysia D. Vrailas-Mortimer
- Department of Biochemistry & Biophysics and Linus Pauling Institute, 307 Linus Pauling Science Center, Oregon State University, Corvallis, OR 97331
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, 100 Piedmont Ave SE, Atlanta, GA 30303
| | - Blaine R. Roberts
- Department of Biochemistry, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
- Department of Neurology, Emory University, 12 Executive Park Dr NE, Atlanta, Georgia, USA, 30322
| | - Erica Werner
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Victor Faundez
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| |
Collapse
|
2
|
Lane AR, Scher NE, Bhattacharjee S, Zlatic SA, Roberts AM, Gokhale A, Singleton KS, Duong DM, McKenna M, Liu WL, Baiju A, Moctezuma FGR, Tran T, Patel AA, Clayton LB, Petris MJ, Wood LB, Patgiri A, Vrailas-Mortimer AD, Cox DN, Roberts BR, Werner E, Faundez V. Adaptive protein synthesis in genetic models of copper deficiency and childhood neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612106. [PMID: 39314281 PMCID: PMC11419079 DOI: 10.1101/2024.09.09.612106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Rare inherited diseases caused by mutations in the copper transporters SLC31A1 (CTR1) or ATP7A induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that was associated with a metabolic shift favoring glycolysis over oxidative phosphorylation. Proteomic and transcriptomic analysis of CTR1 KO cells revealed simultaneous upregulation of mTORC1 and S6K signaling and reduced PERK signaling. Patterns of gene and protein expression and pharmacogenomics show increased activation of the mTORC1-S6K pathway as a pro-survival mechanism, ultimately resulting in increased protein synthesis. Spatial transcriptomic profiling of Atp7a flx/Y :: Vil1 Cre/+ mice identified upregulated protein synthesis machinery and mTORC1-S6K pathway genes in copper-deficient Purkinje neurons in the cerebellum. Genetic epistasis experiments in Drosophila demonstrated that copper deficiency dendritic phenotypes in class IV neurons are partially rescued by increased S6k expression or 4E-BP1 (Thor) RNAi, while epidermis phenotypes are exacerbated by Akt, S6k, or raptor RNAi. Overall, we demonstrate that increased mTORC1-S6K pathway activation and protein synthesis is an adaptive mechanism by which neuronal cells respond to copper deficiency.
Collapse
Affiliation(s)
- Alicia R. Lane
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Noah E. Scher
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | | | | | - Anne M. Roberts
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA, 30322
- Department of Neurology, Emory University, Atlanta, Georgia, USA, 30322
| | - Avanti Gokhale
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Kaela S. Singleton
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Duc M. Duong
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA, 30322
| | - Mike McKenna
- NanoString Technologies, 530 Fairview Ave N, Seattle, WA 98109
| | - William L. Liu
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Alina Baiju
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Felix G Rivera Moctezuma
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Tommy Tran
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Atit A. Patel
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Lauren B. Clayton
- Department of Biochemistry & Biophysics and Linus Pauling Institute, Oregon State University, Corvallis, OR 97331
| | - Michael J. Petris
- Departments of Biochemistry, Molecular Microbiology and Immunology, Ophthalmology, and Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211
| | - Levi B. Wood
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332
| | - Anupam Patgiri
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Alysia D. Vrailas-Mortimer
- Department of Biochemistry & Biophysics and Linus Pauling Institute, Oregon State University, Corvallis, OR 97331
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303
| | - Blaine R. Roberts
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA, 30322
- Department of Neurology, Emory University, Atlanta, Georgia, USA, 30322
| | - Erica Werner
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, Georgia, USA, 30322
| |
Collapse
|
3
|
Lu Y, Travnickova J, Badonyi M, Rambow F, Coates A, Khan Z, Marques J, Murphy LC, Garcia-Martinez P, Marais R, Louphrasitthiphol P, Chan AHY, Schofield CJ, von Kriegsheim A, Marsh JA, Pavet V, Sansom OJ, Illingworth RS, Patton EE. ALDH1A3-acetaldehyde metabolism potentiates transcriptional heterogeneity in melanoma. Cell Rep 2024; 43:114406. [PMID: 38963759 PMCID: PMC11290356 DOI: 10.1016/j.celrep.2024.114406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/08/2024] [Accepted: 06/11/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer cellular heterogeneity and therapy resistance arise substantially from metabolic and transcriptional adaptations, but how these are interconnected is poorly understood. Here, we show that, in melanoma, the cancer stem cell marker aldehyde dehydrogenase 1A3 (ALDH1A3) forms an enzymatic partnership with acetyl-coenzyme A (CoA) synthetase 2 (ACSS2) in the nucleus to couple high glucose metabolic flux with acetyl-histone H3 modification of neural crest (NC) lineage and glucose metabolism genes. Importantly, we show that acetaldehyde is a metabolite source for acetyl-histone H3 modification in an ALDH1A3-dependent manner, providing a physiologic function for this highly volatile and toxic metabolite. In a zebrafish melanoma residual disease model, an ALDH1-high subpopulation emerges following BRAF inhibitor treatment, and targeting these with an ALDH1 suicide inhibitor, nifuroxazide, delays or prevents BRAF inhibitor drug-resistant relapse. Our work reveals that the ALDH1A3-ACSS2 couple directly coordinates nuclear acetaldehyde-acetyl-CoA metabolism with specific chromatin-based gene regulation and represents a potential therapeutic vulnerability in melanoma.
Collapse
Affiliation(s)
- Yuting Lu
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Jana Travnickova
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Florian Rambow
- Department of Applied Computational Cancer Research, Institute for AI in Medicine (IKIM), University Hospital Essen, 45131 Essen, Germany; University of Duisburg-Essen, 45141 Essen, Germany
| | - Andrea Coates
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Zaid Khan
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Jair Marques
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Laura C Murphy
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Pablo Garcia-Martinez
- Insitute of Genetics and Cancer, The Univeristy of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Richard Marais
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Oncodrug Ltd, Alderley Park, Macclesfield SK10 4TG, UK
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Alex H Y Chan
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 5JJ, UK
| | - Christopher J Schofield
- Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 5JJ, UK
| | - Alex von Kriegsheim
- Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Valeria Pavet
- Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park SK10 4TG, UK; Cancer Research UK Beatson Institute, CRUK Scotland Centre, Garscube Estate, Switchback Road, Bearsden Glasgow G61 1BD, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, CRUK Scotland Centre, Garscube Estate, Switchback Road, Bearsden Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Glasgow G12 0ZD, UK
| | - Robert S Illingworth
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh EH16 4UU, UK
| | - E Elizabeth Patton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XU, UK; Edinburgh Cancer Research, CRUK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh EH4 2XR, UK.
| |
Collapse
|
4
|
Benedict B, Kristensen SM, Duxin JP. What are the DNA lesions underlying formaldehyde toxicity? DNA Repair (Amst) 2024; 138:103667. [PMID: 38554505 DOI: 10.1016/j.dnarep.2024.103667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 04/01/2024]
Abstract
Formaldehyde is a highly reactive organic compound. Humans can be exposed to exogenous sources of formaldehyde, but formaldehyde is also produced endogenously as a byproduct of cellular metabolism. Because formaldehyde can react with DNA, it is considered a major endogenous source of DNA damage. However, the nature of the lesions underlying formaldehyde toxicity in cells remains vastly unknown. Here, we review the current knowledge of the different types of nucleic acid lesions that are induced by formaldehyde and describe the repair pathways known to counteract formaldehyde toxicity. Taking this knowledge together, we discuss and speculate on the predominant lesions generated by formaldehyde, which underly its natural toxicity.
Collapse
Affiliation(s)
- Bente Benedict
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Stella Munkholm Kristensen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Julien P Duxin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark.
| |
Collapse
|
5
|
Chen J, Chen W, Zhang J, Zhao H, Cui J, Wu J, Shi A. Dual effects of endogenous formaldehyde on the organism and drugs for its removal. J Appl Toxicol 2024; 44:798-817. [PMID: 37766419 DOI: 10.1002/jat.4546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Endogenous formaldehyde (FA) is produced in the human body via various mechanisms to preserve healthy energy metabolism and safeguard the organism. However, endogenous FA can have several negative effects on the body through epigenetic alterations, including cancer growth promotion; neuronal, hippocampal and endothelial damages; atherosclerosis acceleration; haemopoietic stem cell destruction and haemopoietic cell production reduction. Certain medications with antioxidant effects, such as glutathione, vitamin E, resveratrol, alpha lipoic acid and polyphenols, lessen the detrimental effects of endogenous FA by reducing oxidative stress, directly scavenging endogenous FA or promoting its degradation. This study offers fresh perspectives for managing illnesses associated with endogenous FA exposure.
Collapse
Affiliation(s)
- Jiaxin Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Wenhui Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Jinjia Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Huanhuan Zhao
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Ji Cui
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Junzi Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, China
| | - Anhua Shi
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
6
|
Crossley SW, Tenney L, Pham VN, Xie X, Zhao MW, Chang CJ. A Transfer Hydrogenation Approach to Activity-Based Sensing of Formate in Living Cells. J Am Chem Soc 2024; 146:8865-8876. [PMID: 38470125 PMCID: PMC11487638 DOI: 10.1021/jacs.3c09735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Formate is a major reactive carbon species in one-carbon metabolism, where it serves as an endogenous precursor for amino acid and nucleic acid biosynthesis and a cellular source of NAD(P)H. On the other hand, aberrant elevations in cellular formate are connected to progression of serious diseases, including cancer and Alzheimer's disease. Traditional methods for formate detection in biological environments often rely on sample destruction or extensive processing, resulting in a loss of spatiotemporal information. To help address these limitations, here we present the design, synthesis, and biological evaluation of a first-generation activity-based sensing system for live-cell formate imaging that relies on iridium-mediated transfer hydrogenation chemistry. Formate facilitates an aldehyde-to-alcohol conversion on various fluorophore scaffolds to enable fluorescence detection of this one-carbon unit, including through a two-color ratiometric response with internal calibration. The resulting two-component probe system can detect changes in formate levels in living cells with a high selectivity over potentially competing biological analytes. Moreover, this activity-based sensing system can visualize changes in endogenous formate fluxes through alterations of one-carbon pathways in cell-based models of human colon cancer, presaging the potential utility of this chemical approach to probe the continuum between one-carbon metabolism and signaling in cancer and other diseases.
Collapse
Affiliation(s)
- Steven W.M. Crossley
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
| | - Logan Tenney
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
| | - Vanha N. Pham
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
| | - Xiao Xie
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
| | - Michelle W. Zhao
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, California, 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, 94720, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, 94720, United States
| |
Collapse
|
7
|
Shinde A, Chandak N, Singh J, Roy M, Mane M, Tang X, Vasiyani H, Currim F, Gohel D, Shukla S, Goyani S, Saranga MV, Brindley DN, Singh R. TNF-α induced NF-κB mediated LYRM7 expression modulates the tumor growth and metastatic ability in breast cancer. Free Radic Biol Med 2024; 211:158-170. [PMID: 38104742 DOI: 10.1016/j.freeradbiomed.2023.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Tumor microenvironment (TME) of solid tumors including breast cancer is complex and contains a distinct cytokine pattern including TNF-α, which determines the progression and metastasis of breast tumors. The metastatic potential of triple negative breast cancer subtypes is high as compared to other subtypes of breast cancer. NF-κB is key transcription factor regulating inflammation and mitochondrial bioenergetics including oxidative phosphorylation (OXPHOS) genes which determine its oxidative capacity and generating reducing equivalents for synthesis of key metabolites for proliferating breast cancer cells. The differential metabolic adaptation and OXPHOS function of breast cancer subtypes in inflammatory conditions and its contribution to metastasis is not well understood. Here we demonstrated that different subunits of NF-κB are differentially expressed in subtypes of breast cancer patients. RELA, one of the major subunits in regulation of the NF-κB pathway is positively correlated with high level of TNF-α in breast cancer patients. TNF-α induced NF-κB regulates the expression of LYRM7, an assembly factor for mitochondrial complex III. Downregulation of LYRM7 in MDA-MB-231 cells decreases mitochondrial super complex assembly and enhances ROS levels, which increases the invasion and migration potential of these cells. Further, in vivo studies using Infliximab, a monoclonal antibody against TNF-α showed decreased expression of LYRM7 in tumor tissue. Large scale breast cancer databases and human patient samples revealed that LYRM7 levels decreased in triple negative breast cancer patients compared to other subtypes and is determinant of survival outcome in patients. Our results indicate that TNF-α induced NF-κB is a critical regulator of LYRM7, a major factor for modulating mitochondrial functions under inflammatory conditions, which determines growth and survival of breast cancer cells.
Collapse
Affiliation(s)
- Anjali Shinde
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, 390002, Gujarat, India
| | - Nisha Chandak
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, 390002, Gujarat, India
| | - Jyoti Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, 390002, Gujarat, India
| | - Milton Roy
- Institute for Cell Engineering, John Hopkins University School of Medicine, 733 North Broadway, MRB 731, Baltimore, MD, 21205, USA
| | - Minal Mane
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, 390002, Gujarat, India
| | - Xiaoyun Tang
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G2S2, Canada
| | - Hitesh Vasiyani
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA-23284, USA
| | - Fatema Currim
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, 390002, Gujarat, India
| | - Dhruv Gohel
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Shatakshi Shukla
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, 390002, Gujarat, India
| | - Shanikumar Goyani
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, 390002, Gujarat, India
| | - M V Saranga
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, 390002, Gujarat, India
| | - David N Brindley
- Cancer Research Institute of Northern Alberta, Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G2S2, Canada
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The MS University of Baroda, Vadodara, 390002, Gujarat, India; Department of Molecular and Human Genetics, Banaras Hindu University (BHU) (IoE), Varanasi, 221005, UP, India.
| |
Collapse
|
8
|
Zlatic SA, Werner E, Surapaneni V, Lee CE, Gokhale A, Singleton K, Duong D, Crocker A, Gentile K, Middleton F, Dalloul JM, Liu WLY, Patgiri A, Tarquinio D, Carpenter R, Faundez V. Systemic proteome phenotypes reveal defective metabolic flexibility in Mecp2 mutants. Hum Mol Genet 2023; 33:12-32. [PMID: 37712894 PMCID: PMC10729867 DOI: 10.1093/hmg/ddad154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
Genes mutated in monogenic neurodevelopmental disorders are broadly expressed. This observation supports the concept that monogenic neurodevelopmental disorders are systemic diseases that profoundly impact neurodevelopment. We tested the systemic disease model focusing on Rett syndrome, which is caused by mutations in MECP2. Transcriptomes and proteomes of organs and brain regions from Mecp2-null mice as well as diverse MECP2-null male and female human cells were assessed. Widespread changes in the steady-state transcriptome and proteome were identified in brain regions and organs of presymptomatic Mecp2-null male mice as well as mutant human cell lines. The extent of these transcriptome and proteome modifications was similar in cortex, liver, kidney, and skeletal muscle and more pronounced than in the hippocampus and striatum. In particular, Mecp2- and MECP2-sensitive proteomes were enriched in synaptic and metabolic annotated gene products, the latter encompassing lipid metabolism and mitochondrial pathways. MECP2 mutations altered pyruvate-dependent mitochondrial respiration while maintaining the capacity to use glutamine as a mitochondrial carbon source. We conclude that mutations in Mecp2/MECP2 perturb lipid and mitochondrial metabolism systemically limiting cellular flexibility to utilize mitochondrial fuels.
Collapse
Affiliation(s)
- Stephanie A Zlatic
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Erica Werner
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Veda Surapaneni
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Chelsea E Lee
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Avanti Gokhale
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Kaela Singleton
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| | - Duc Duong
- Department of Biochemistry, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, United States
| | - Amanda Crocker
- Program in Neuroscience, Middlebury College, Bicentennial Way, Middlebury, VT 05753, United States
| | - Karen Gentile
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY 13210, United States
| | - Frank Middleton
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY 13210, United States
| | - Joseph Martin Dalloul
- Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, United States
| | - William Li-Yun Liu
- Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, United States
| | - Anupam Patgiri
- Pharmacology and Chemical Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, United States
| | - Daniel Tarquinio
- Center for Rare Neurological Diseases, 5600 Oakbrook Pkwy, Norcross, GA 30093, United States
| | - Randall Carpenter
- Rett Syndrome Research Trust, 67 Under Cliff Rd, Trumbull, CT 06611, United States
| | - Victor Faundez
- Department of Cell Biology, Emory University, 615 Michael Steet, Atlanta, GA 30322, United States
| |
Collapse
|
9
|
Mu A, Hira A, Mori M, Okamoto Y, Takata M. Fanconi anemia and Aldehyde Degradation Deficiency Syndrome: Metabolism and DNA repair protect the genome and hematopoiesis from endogenous DNA damage. DNA Repair (Amst) 2023; 130:103546. [PMID: 37572579 DOI: 10.1016/j.dnarep.2023.103546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/14/2023]
Abstract
We have identified a set of Japanese children with hypoplastic anemia caused by combined defects in aldehyde degrading enzymes ADH5 and ALDH2. Their clinical characteristics overlap with a hereditary DNA repair disorder, Fanconi anemia. Our discovery of this disorder, termed Aldehyde Degradation Deficiency Syndrome (ADDS), reinforces the notion that endogenously generated aldehydes exert genotoxic effects; thus, the coupled actions of metabolism and DNA repair are required to maintain proper hematopoiesis and health.
Collapse
Affiliation(s)
- Anfeng Mu
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Multilayer Network Research Unit, Research Coordination Alliance, Kyoto University, Kyoto, Japan
| | - Asuka Hira
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Minako Mori
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Okamoto
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; Multilayer Network Research Unit, Research Coordination Alliance, Kyoto University, Kyoto, Japan.
| |
Collapse
|