1
|
Yao L, Koripally N, Shin C, Mu A, Chen Z, Wang K, Ng TN. Engineering electro-crystallization orientation and surface activation in wide-temperature zinc ion supercapacitors. Nat Commun 2025; 16:3597. [PMID: 40234458 PMCID: PMC12000396 DOI: 10.1038/s41467-025-58857-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
Matching the capacity of the anode and cathode is essential for maximizing electrochemical cell performance. This study presents two strategies to balance the electrode utilization in zinc ion supercapacitors, by decreasing dendritic loss in the zinc anode while increasing the capacity of the activated carbon cathode. The anode current collector was modified with copper nanoparticles to direct zinc plating orientation and minimize dendrite formation, improving the Coulombic efficiency and cycle life. The cathode was activated by an electrolyte reaction to increase its porosity and gravimetric capacity. The full cell delivered a specific energy of 192 ± 0.56 Wh kg-1 at a specific power of 1.4 kW kg-1, maintaining 84% capacity after 50,000 full charge-discharge cycles up to 2 V. With a cumulative capacity of 19.8 Ah cm-2 surpassing zinc ion batteries, this device design is particularly promising for high-endurance applications, including un-interruptible power supplies and energy-harvesting systems that demand frequent cycling.
Collapse
Affiliation(s)
- Lulu Yao
- Program of Materials Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Nandu Koripally
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Chanho Shin
- Program of Materials Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Anthony Mu
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Zheng Chen
- Program of Materials Science and Engineering, University of California, San Diego, La Jolla, CA, USA
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, CA, USA
- Sustainable Power and Energy Center, University of California San Diego, La Jolla, CA, USA
| | - Kaiping Wang
- Program of Materials Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Tse Nga Ng
- Program of Materials Science and Engineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA.
- Sustainable Power and Energy Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Wang X, Zheng W, Zhao H, Li J, Chen S, Xu F. Robust and High-Wettability Cellulose Separators with Molecule-Reassembled Nano-Cracked Structures for High-Performance Supercapacitors. NANO-MICRO LETTERS 2025; 17:153. [PMID: 39969701 PMCID: PMC11839970 DOI: 10.1007/s40820-025-01650-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/27/2024] [Indexed: 02/20/2025]
Abstract
Separators in supercapacitors (SCs) frequently suffer from high resistance and the risk of short circuits due to inadequate electrolyte wettability, depressed mechanical properties, and insufficient thermal stability. Here, we develop a high-performance regenerated cellulose separator with nano-cracked structures for SCs via a binary solvent of superbase-derived ionic liquid and dimethylsulfoxide (DMSO). The unique nano-cracks with an average width of 7.45 nm arise from the acceleration of cellulose molecular reassembly by DMSO-regulated hydrogen bonding, which endows the separator with high porosity (70.2%) and excellent electrolyte retention (329%). The outstanding thermal stability (273 °C) and mechanical strength (70 MPa) enable the separator to maintain its structural integrity under high temperatures and external forces. With these benefits, the SC utilizing the cellulose separator enables a high specific capacitance of 93.6 F g-1 at 1.0 A g-1 and a remarkable capacitance retention of 99.5% after 10,000 cycles compared with the commercial NKK-MPF30AC and NKK-TF4030. The robust and high-wettability cellulose separator holds promise as a superior alternative to commercial separators for advanced SCs with enhanced performance and improved safety.
Collapse
Affiliation(s)
- Xiaoyu Wang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Wenqiu Zheng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Hui Zhao
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Junying Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Sheng Chen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| | - Feng Xu
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
3
|
Chen X, Holze R. Polymer Electrolytes for Supercapacitors. Polymers (Basel) 2024; 16:3164. [PMID: 39599254 PMCID: PMC11598227 DOI: 10.3390/polym16223164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Because of safety concerns associated with the use of liquid electrolytes and electrolyte solutions, options for non-liquid materials like gels and polymers to be used as ion-conducting electrolytes have been explored intensely, and they attract steadily growing interest from researchers. The low ionic conductivity of most hard and soft solid materials was initially too low for practical applications in supercapacitors, which require low internal resistance of a device and, consequently, highly conducting materials. Even if an additional separator may not be needed when the solid electrolyte already ensures reliable separation of the electrodes, the electrolytes prepared as films or membranes as thin as practically acceptable, resistance may still be too high even today. Recent developments with gel electrolytes sometimes approach or even surpass liquid electrolyte solutions, in terms of effective conductance. This includes materials based on biopolymers, renewable raw materials, materials with biodegradability, and better environmental compatibility. In addition, numerous approaches to improving the electrolyte/electrode interaction have yielded improvements in effective internal device resistance. Reported studies are reviewed, material combinations are sorted out, and trends are identified.
Collapse
Affiliation(s)
- Xuecheng Chen
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland
| | - Rudolf Holze
- Confucius Energy Storage Lab, School of Energy and Environment, Southeast University, Nanjing 210096, China
- Department of Electrochemistry, Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg 199034, Russia
- Chemnitz University of Technology, D-09107 Chemnitz, Germany
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Zhao J, Liu X, Zhang C, Zhang P, Jiang C, Lin J, Liu Z, Deng K. Supramolecular polymers with dual energy storage mechanism for high-performance supercapacitors. J Colloid Interface Sci 2024; 658:783-794. [PMID: 38154241 DOI: 10.1016/j.jcis.2023.12.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/06/2023] [Accepted: 12/14/2023] [Indexed: 12/30/2023]
Abstract
In this paper, we prepared the supramolecular polymers (MWCNT-APP-s) with a dual energy storage mechanism as the electrode materials by the coordination of four transition metal ions with the small molecule chelator (APP) and functionalized carbon nanotubes, respectively. Among four MWCNT-APP-s, MWCNT-APP-Fe has the characteristics of moderate micropore/mesopore, significant hydrophobicity, redox property and functional groups. Interestingly, the redox reaction of Fe3+/Fe2+ and -CN-/-CN- transformation give MWCNT-APP-Fe an energy storage basis of pseudocapacitance, while MWCNTs and the micro/mesopore structure in MWCNT-APP-Fe provide a double-layer energy storage platform. As expected, on base of the dual energy storage mechanism, the symmetric supercapacitor assembled with MWCNT-APP-Fe has a higher specific capacity (Cs, 421 F g-1 at 1 mV s-1) as well as a long-lasting stability of 94.8% capacity retention with 99% Coulombic efficiency after 10,000 cycles at 20 mV s-1. More notably, the relevant aqueous Zn2+ hybrid supercapacitor provides a high capacity (Cm) of 191 mAh g-1 at 0.5 A g-1 and a long duration of over 2000 cycles at 50 A g-1, with a capacity retention of 92.4%. In summary, MWCNT-APP-Fe with a dual energy storage mechanism enables a potential application as an electrode material for high-performance supercapacitor.
Collapse
Affiliation(s)
- Jingyuan Zhao
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002, China
| | - Xu Liu
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002, China
| | - Chunfang Zhang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002, China
| | - Pengfei Zhang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002, China
| | - Chaojie Jiang
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002, China
| | - Jiayu Lin
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002, China
| | - Zhenyan Liu
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002, China
| | - Kuilin Deng
- College of Chemistry and Materials Science, Key Laboratory of Analytical Science and Technology of Hebei Province, Hebei University, Baoding 071002, China.
| |
Collapse
|
5
|
Zschiebsch W, Sturm Y, Kucher M, Hedayati DP, Behnisch T, Modler N, Böhm R. Multifunctionality Analysis of Structural Supercapacitors- A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:739. [PMID: 38591598 PMCID: PMC10856288 DOI: 10.3390/ma17030739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 04/10/2024]
Abstract
Structural supercapacitors (SSCs) are multifunctional energy storage composites (MESCs) that combine the mechanical properties of fiber-reinforced polymers and the electrochemical performance of supercapacitors to reduce the overall mass in lightweight applications with electrical energy consumption. These novel MESCs have huge potentials, and their properties have improved dramatically since their introduction in the early 2000's. However, the current properties of SSCs are not sufficient for complete energy supply of electrically driven devices. To overcome this drawback, the aim of the current study is to identify key areas for enhancement of the multifunctional performance of SSCs. Critical modification paths for the SSC constituents are systematically analyzed. Special focus is given to the improvement of carbon fiber-based electrodes, the selection of structural electrolytes and the implementation of separators for the development of more efficient SSCs. Finally, current SSCs are compared in terms of their multifunctionality including material combinations and modifications.
Collapse
Affiliation(s)
- Willi Zschiebsch
- Faculty of Engineering, Leipzig University of Applied Sciences, PF 30 11 66, 04251 Leipzig, Germany; (Y.S.); (M.K.); (D.P.H.); (R.B.)
| | - Yannick Sturm
- Faculty of Engineering, Leipzig University of Applied Sciences, PF 30 11 66, 04251 Leipzig, Germany; (Y.S.); (M.K.); (D.P.H.); (R.B.)
| | - Michael Kucher
- Faculty of Engineering, Leipzig University of Applied Sciences, PF 30 11 66, 04251 Leipzig, Germany; (Y.S.); (M.K.); (D.P.H.); (R.B.)
| | - Davood Peyrow Hedayati
- Faculty of Engineering, Leipzig University of Applied Sciences, PF 30 11 66, 04251 Leipzig, Germany; (Y.S.); (M.K.); (D.P.H.); (R.B.)
| | - Thomas Behnisch
- Institute of Lightweight Engineering and Polymer Technology (ILK), Technische Universität Dresden, Holbeinstraße 3, 01307 Dresden, Germany;
| | - Niels Modler
- Institute of Lightweight Engineering and Polymer Technology (ILK), Technische Universität Dresden, Holbeinstraße 3, 01307 Dresden, Germany;
| | - Robert Böhm
- Faculty of Engineering, Leipzig University of Applied Sciences, PF 30 11 66, 04251 Leipzig, Germany; (Y.S.); (M.K.); (D.P.H.); (R.B.)
| |
Collapse
|
6
|
Shin C, Yao L, Jeong SY, Ng TN. Zinc-copper dual-ion electrolytes to suppress dendritic growth and increase anode utilization in zinc ion capacitors. SCIENCE ADVANCES 2024; 10:eadf9951. [PMID: 38170781 PMCID: PMC10796115 DOI: 10.1126/sciadv.adf9951] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024]
Abstract
The main bottlenecks that hinder the performance of rechargeable zinc electrochemical cells are their limited cycle lifetime and energy density. To overcome these limitations, this work studied the mechanism of a dual-ion Zn-Cu electrolyte to suppress dendritic formation and extend the device cycle life while concurrently enhancing the utilization ratio of zinc and thereby increasing the energy density of zinc ion capacitors (ZICs). The ZICs achieved a best-in-class energy density of 41 watt hour per kilogram with a negative-to-positive (n/p) electrode capacity ratio of 3.10. At the n/p ratio of 5.93, the device showed a remarkable cycle life of 22,000 full charge-discharge cycles, which was equivalent to 557 hours of discharge. The cumulative capacity reached ~581 ampere hour per gram, surpassing the benchmarks of lithium and sodium ion capacitors and highlighting the promise of the dual-ion electrolyte for delivering high-performance, low-maintenance electrochemical energy supplies.
Collapse
Affiliation(s)
- Chanho Shin
- Program in Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lulu Yao
- Program in Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Seong-Yong Jeong
- Department of Nanoengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Division of Advanced Materials Engineering, Kongju National University, Chungnam, 31080, Republic of Korea
| | - Tse Nga Ng
- Program in Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Electrical and Computer Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|